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BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF
INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS'

By R. A. Wisman
University of Illinots

1. Introduction and summary. In a previous paper [8] the asymptotic behavior
of a class of invariant sequential probability ratio tests was studied to the
extent of establishing termination with probability one. In this paper, under
somewhat stronger conditions, certain bounds on the distribution of sample
size will be obtained. ‘

The statistical framework is as follows: Z1, Z,, - - - is a sequence of independent
and identically distributed (iid) random vectors with values in Euclidean k-space
E*. The common distribution is at first assumed to belong to the family 9t of
all nondegenerate k-variate normal distributions. On E* there acts a group G*
of affine transformations (precise assumptions on G* are given in Section 2).
Let Vi, V2, --- be a maximal invariant sequence obtained from Z,, Z,, - --
under the application of G*. Since every transformation in G* sends a member of
9N into a member of 9, G* also acts on 91. Let v be a maximal invariant function
on 9, then the joint distribution of V1, V3, - - - depends only on .

Denote the distribution of (Vy, -+, V,) by P,,. Let v1, 72 be two distinct
values of v, let 7, = dP,,/dP.y, (set equal to o wherever P,,, is not absolutely
continuous with respect to P,,,) and put R, = 7,(V1, --+, V). Then an in-
variant sequential probability ratio test, based on the sequence {R,}, is defined by
choosing stopping bounds B < A, letting the stopping variable N be the
smallest n such that R, < B or = A, and accepting v; or v. according as
Ry < Bor = A.

Once the sequence {R,} has been defined we are at liberty to study its behavior
when the actual common distribution of the Z, is not necessarily on the orbit of
v, or of v, or, for that matter, is not even a member of 9t. Still assuming Z;, Z,,
.+ to be iid, the common distribution P will be assumed to be a member of
®, to be defined later, where ® D 9. The joint distribution of Z;, Z,, --- will
also be denoted P. The object is to establish a bound on P(N > n) as a function
of m, for each P ¢ @.

Results on sample size distribution of invariant sequential probability ratio
tests are very scarce. Ifram [5] considered a certain class of problems and ob-
tained an exponential bound on P(N > n), where P is a member of the original
model and should not belong to a certain exceptional set of distributions for
which no results could be obtained. Sacks [6] also obtained an exponential bound
in the case of the sequential {-test (as a by-product of other results), again
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excluding certain exceptional P’s. Savage and Sethuraman [7] obtained an ex-
ponential bound in a nonparametric problem, a sequential rank test. They allowed
P to be outside the original model, but again for a certain set of exceptional P’s
no results could be obtained.

In the present paper we shall establish, under Assumptions A and B (Section
2), an exponential bound of the form P(N > n) < ¢p" for some p < 1, except,
again, for P’s in a certain set. For these exceptional P’s, however, we also obtain
results, even though weaker, of the form P(N > n) < c,o"”a (under an additional
assumption on the function ® of Section 2). This result is still strong enough to
assert the existence of all moments of N, although not the existence of a moment
generating function as is the case if P(N > n°) has an exponential bound. Thus,
our results are more general and stronger in some respects than those of Ifram
[5], but Ifram does give a precise value of the smallest possible p in the exponential
bound, whereas we have nothing comparable to offer.

2. Assumptions and a basic lemma. We shall now give the precise conditions
on G* and ®. Those on G* are the same as in [8], whereas the conditions on @ are
more restrictive than those on ¥ in [8].

AssumpTiON A. G* = GH where (i) G is a Lie subgroup of the real general
linear group GL(k,R); (ii) G is closed in GL(k, R) and dim G = 1; (iii) His a
group of translations of E* with k-vectors b, the totality of vectors b constituting
a subspace invariant under G; (iv) each transformation ¢* = (C, b), C ¢ G,
b e H, transforms (Z;, Z,, - -+ ) according to Z, —» CZ, + b,n = 1,2, --- .

AssumptioN B. @ is the family of all distributions P such that (i) Z;,Z;, ---
are iid, (ii) the components Zy;, 1 < j < k, of Z, satisfy Ep exp tZ3; < « for ¢
in an interval about 0, (iii) if M is a k* symmetric matrix and b a k-vector then
P(Z/MZ, + b'Z, = constant) = 1 implies M = 0,b = 0.

For P e a sufficient statistic based on (Zy, -+, Z,) is (Z., S,), where
Z, = (Wn) 2t Z;and S, = (1/n) 2.1 (Zi — Zn)(Z: — Z,)'. The sample
covariance matrix S, takes, with probability one, values in a space $ of k* posi-
tive definite matrices. We may regard $ as a subset of a Euclidean space of
k(k + 1)/2 dimensions. We may write E* = E; X E,, and choose E, to consist
of the vectors b ¢ H. The coordinate system may be chosen so that E is spanned
by the first I (0 < I £ k) coordinate axes. For any vector v ¢ B let o™ be its
projection on Ey , so that the components of v are the first I components of .
Thus we have e.g. Z,", Z,.

After applying an invariance reduction on Z;, Z,, - -+ we may further reduce
by sufficiency. The same result is obtained by reversing the order in which these
two reductions are applied (more detail on this in [8]). Thus we may apply G*
to the sequence of sufficient statistics {(Z,, S.)} on which it acts according to
Zy— CZ, + b, S, — C8,C’". We may apply H first, obtaining the sequence of
maximal invariants X, = (Z,", S,), taking values in a space X = E, X §
of points x = (2, s). % is a subspace of E?, where ¢ = I + (k(k + 1)/2). For
any P ¢ ® let u and 2 be the mean and covariance matrix of Z; (so u and X are
functions of P). Put 6 = (u®, ), then 6 also takes its values in .
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There still remains the difficult step of obtaining a maximal invariant in &
under the action of the group G, and, from this, an expression for R, . The details
will not be given here since we shall not need them. Instead, we shall from [8]
(essentially Lemma 3 and (3.11) in [8]) take the main result that is needed
and shall state this as the following:

LemMma 2.1. There exists on X a continuous function ® such that for any open
set V on which ||z||, trs and trs™ are bounded there is a positive constant K
(depending on V but not on n) such that X, ¢ V implies

(2.1) In R, — n®(X,)| < dlnn + K,

m which d = dim G. .
Results on the behavior of R, will follow from the behavior of ®(X,) and the
approximation given by (2.1).

3. Exponential bounds. It will be convenient in this section to make a few
definitions that will be used repeatedly. We shall say that a sequence {p.} of
probabilities is exponentially bounded if there exists ¢ > 0 and p < 1 such that
Pa < cp" forn = 1,2, ... . If {X,} is any sequence of random vectors (not
necessarily the sequence of Section 2), we shall say that X, converges exponen-
lially to x, written X, —e, «, if for every neighborhood V of x the sequence
{P(X,2V)} is exponentially bounded. It will also be convenient to develop a
small amount of calculus of exponential convergence.

Levmma 3.1. Let X,; be the components of X, , x; the components of x, then
X, —exp 2 of and only if X,; —exp X for every j.

LemMma 3.2. If f is a continuous function from E® to E* and X, e E7, then
Xn exp U z'mplies f(Xn) —exp f(x)

These lemmas are very reminiscent of similar statements for convergence in
probability. The proofs are easy and will be omitted.

We shall rely heavily on the following result, which is part (the easy part)
of a stronger result of Chernoff ([1], Theorem 1). (Under an additional assump-
tion on the common distribution of the random variables the result also follows
from Theorem 6 in [2].)

Lemma 3.3. If Uy, U, -+ s a sequence of iid real valued random variables
such that E exp tU; < o for ¢ in some interval about 0, then (1/n) 21" Us —exp BU; .

We shall show now, under Assumption B (Section 2), that for the sequence
{X,} of Section 2 and any P ¢ ® we have

(3.1) X —exp 0

in which 6 = 6(P). Assumption B implies that E, exp tZ;; < o (for { in an
interval about 0) so that, by Lemma 3.3, Z,; —exp & for every j. From Lemma,
3.1. it follows then that Z, —exp ¢ and Z,V —ep u®. It can be checked easily
that Assumption B also implies E, exp tZ1;Z:;; < o« for all j, 4. Therefore, all
k(k + 1)/2 components of the matrix (Z; — u)(Z; — u)’, considered as a vector,
have a moment generating function. We write now

(82) S, = (1/n) 21" (Zi — w)(Zi — w) — (Zu — w)(Zn — n).
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Applying Lemmas 3.3 and 3.1, we find that the first term converges exponentially
to 2. Recalling Z, — u —exp 0 and applying Lemmas 3.1 and 3.2, we have
(Zn — w)(Z, — p)' —exp 0. Several more applications of Lemma 3.1 and 3.2
vield (3.1).

TuroreMm 3.1. If P e ® and 0 = 0(P) 1s such that ®(0) = 0, then there exvists
¢ > 0and p < 1 such that P(N > n) < ¢p”, i.e. {P(N > n)} 7s exponentially
bounded.

Proor. Suppose®(8) > 0, the case < 0 being analogous. Since ® is continuous,
there is a neighborhood V' of 6, satisfying the conditions of Lemma 2.1, and a
constant 6 > 0 such that ®(x) > sforallze V. By (2.1) we have that X, e V
implies that In R, > n®(X,) — dlnn — K and since ®(X,) > 6§ we have In
R, > né — d Inn — K. The right hand side of the last inequality exceeds In
A if n > ng, for some ny. In other words, if n > ng and X, ¢ V then stopping
must have occurred by stage n. Therefore, if n > n,, P(N > n) =
P(X, # V). Since X, —exp 0, the sequence {P(X, £ V)} is exponentially
bounded, and then so is {P(N > n)}.

4. A bound in the exceptional case. The proof for the exponential bound given
in Section 3 breaks down for distributions P with 6 = 6(P) satisfying ®(6) = 0.
It is much harder in this case to get any bound at all. In fact, we shall have to
make another assumption, this time on the function ®, in order to get anywhere.
In general, ® need not possess continuous first order partial derivatives in every
point. We know only (see [8]) that a derivative exists in each direction in each
point, and that in any given point the directional derivative is not identically
equal to 0 (Lemma 4 in [8]). On the other hand, in the various known examples
® is always a very nice, i.e. analytic, function (see e.g. [4] in which the function
h(6,, -) — h(6;, -) takes the place of our function ®). It is therefore not un-
reasonable to impose a certain smoothness on ®.

Turorex 4.1. Let P & ® be such that 6 = 6(P) satisfies () = 0 and assume
that ® at 6 has continuous first and second partial derivatives. Then there exists
¢ > 0 and p < 1 such that

3

(4.1) P(N >n) < ™"

Before presenting the proof, we shall introduce some useful notation, give a
sketch of the idea of the proof, and get some of the essential steps in the proof
out of the way in the form of lemmas. In the following, u and 2 are held fixed
and ®(6) = 0. Denote

(4.2) Y = grad ® at 6,

(43) 8t = (1/n) 220" (Ze — w)(Zi — w),
(4.4) Y= (Ze — 8" = 2),

(4.5) To= (Zo = p, (Zn — (%0 — ) — 2),
then Ty, T4, - -- are iid vectors, KT = 0, and
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Analogously to (4.4) and (4.5) define

(4.7) V.0 = (2. = u?, 8% - 3),

(4.8) 1.7 = (Z,” = u®, (Zo — ) (Za — w)' = 2),

so that

(4.9) nY, " = 2" 1.

Now define U,, by

(4.10) Un = ¢'T,"

then Uy, Uy, - - - is a sequence of iid real valued random variables with EU; = 0.

Furthermore, since ¢ 5 0 (from [8], Lemma 4), and using Assumption B (iii),
we have U; # 0. Comparing (4.9) and (4.10) we see

(4.11) Y'Y, ® = 3" U..
Further, define

(4.12) Wo=12,—n

so that by (3.2) and (4.3),

(4.13) S, = S, — wWL.W, .

Lastly, define
(4.14) X5 =(Z2.2,8%
so that from (4.7) we have

(4.15) X5 —6=17,".

We are interested in the process {R,} that is stopped as soon as it moves out-
side the fixed bounds A and B. In view of (2.1) we shall replace the process
{In R,} by {n®(X,)}, at the same time letting the stopping bounds widen essen-
tially at the rate In n. If we could replace ®(X,) by ¢’ (X, — 6) and if we could
replace X, by X,*, defined in (4.14), then in view of (4.11) we would have
replaced {n®(X,)} by the random walk {> ,"U;}. The necessary modification
is nontrivial and yields another term n|/Y.,|’. This follows from Lemma 4.2,
and in Lemma 4.3 it is shown how to cope with this extra term. This involves,
among other things, replacing the stopping bounds by others that are widening
somewhat faster than at the rate In n, but slower than n. Still, the main interest
is in the study of the random walk {>_;"U;} between those widening bounds.
Since this forms the most essential part of the proof, its contribution is presented
in the first lemma below.

LemMmA 4.1. Let 2, 22, -+ be a sequence of iid real valued random variables
with Exy = 0, Ex;" = 1, and let s, = 21 + -+ + x, be their partial sum. Let
{a.] be a sequence of numbers such that a, — « and an " — 0. Then there exists
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¢ > 0and p < 1 such that
(4.16) P{max;<, |si] < a.} < o™, n=12 .

Proor. From Erdés and Kac [3] we take the following result: Let {xz(¢),
¢t = 0} be standard Brownian motion and let @ > 0. Then

(4.17) lim, . P{maxi<, [si| < an'} = P{max, [z(t)| < a}.
Denote
(4.18) p(a) = P{max.< [z(t)] = a} < 1.

Let o’ = [a,’) + 1, then a,”is an integer and a, > a, so that
P{max;<a,: [8i] < 2a.} £ P{max;<a,[si] < 20.}.

Since a, — o, the right hand side of the above inequality has, by (4.17), the
limit p(2) given by (4.18) with a = 2. Choosing any p; such that p(2) < p; < 1,
it follows that there is n; such that n > n; implies

(4.19) P{max; <o |si < 2a,} < p1.

In the following it will be assumed that n > n;. If (4.16) is true with this re-
striction, it is also true without it.

Denote b, = [n/a,’]. From the definition of a, and the assumption that
an — 0 we deduce that b, — «. We now consider the time interval from 0
to n decomposed in b, blocks of length a,” each, plus whatever is left over.
(We shall ignore what happens in the left-over piece.) Forj = 1, - - , b, denote

Aj={ls] < an, (j — a,” 4 = ja,7} (define s, = 0),
Bi = {|si — [stmel < 20, (j — Da® £ 7 £ jo},

then {[siye,2| < an} n 4; C B; so that a fortiori A;y n A; C B, and therefore
nd; C nB;. We have P{maxic, [si| < @} £ P{maX;cppa,z|si] < @z} = P n 4,
= P n B;. Since x;, ¥, --- are iid, the B; are independent and have equal
probabilities, their common value being equal to the left hand side of (4.19).
Therefore, P n B; < p. From the definitions of b, and a, , by taking p slightly
larger than p;, (4.16) follows.

Lemma 4.2. We can choose a neighborhood V of 8 and b > 0 such that X, eV
wmplies

(4.20) B(X,) — ¢ ¥.P| < b|Y.|f,
where ¥, Y, and Y, are given by (4.2), (4.4) and (4.7), respectively.
Proor. First we write
(421) [®(X,) =¥V, S [B(X,) = ¥/ (Xy = 0) + W/(Xa — 0) —¢'7,"]

The second term on the right hand side can be bounded as follows. Let the last
k(k 4 1)/2 components of ¢ be denoted y;; , 1 <7 < ;' < k(k + 1)/2, and let
W.i, 1 =5 = k, be the components of W, (defined in (4.12)). From (4.15)
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we see that X, — 6 — ¥V, = X, — X,*. The latter equals (0, S, — S,*) by
(4.14), and S, — 8,* = —W, W, by (4.13). Hence

WX, —0) =Y. 0 = 2 i WaiWai < ol |[Wal?
and since ||, [ < ||V.||* we have
(4.22) W(Xa = 0) = ¢V < e [[Yal”
For the first term on the right hand side in (4.21) we have a bound
(4.23) [@(X,) — ¥/ (X — 0)] < el Xa — 6]
provided V is taken sufficiently small. Furthermore, using (4.13),
1Xn = 0" = 2.7 — w®I" + 18.* — = — W W[’
< Wal* 4 218" — 2I° + 2w W

in which the symmetric matrix W, W, is regarded as a (k(k + 1)/2)-dimensional
vector. One can easily check that |W,W.||> £ ||W.|* By further restricting V,
if necessary, we can make sure that |W, || < 1 for X, eV, so that ]|W I* <
|W.|". We have then | X, — 6| < 3 |W.|* + 2[1S.* — 2| < 3 ||Y.|I*. Substi-
tution of this into (4.23), and (4.22) and (4.23) into (4.21) yields (4.20).
Lemma 4.3. Let {,} be a sequence of numbers such that t, — » and t, = O(n').

Then there exists ¢ > 0 and p < 1 such that
(4.24) P ||Vl > ta} < cta o™,

i which Y, is defined in (4.4).

Proor. Letung T.;,1 =7 = q, be the components of T, defined in (4.5), we
can write n ||V, ]|%, in view of (4. 6), as 2 1'nTh; . If this quantity is to be >,
then for some j we must have nT%; > t./q, so that

(4.25) Pn||Yal" > tu} < 25 P{nTn; > t./q}.

Writing a, = (./ ¢)! we have a, = O(n*). The jth term on the right hand side in
(4.25) we write as

P{n*i’nj > anf + P{n%TnJ' < —an.

The bounds on these two terms are similar, so we shall only deal with thefirst
term. Let T1;, T5;, - -+ be a sequence of iid normal random variables with mean
0 and variance ¢° equal to the variance of T;. From the results of Cramér [2]
we know that P{n!T,; > a,}/P{n'T%; > a,} has a finite limit as n — . The rest
now follows easily from the fact that P{n!T%; > a.} < ca." exp [—a,’/20%] and
remembering that a,’ = £,/g.

The proof of Theorem 4.1 will now be given. A last word of explanation seems in
order. In the course of the proof there appear certain terms depending on 7,
e.g. P(X, £ V), whose values become small only when n becomes large. Yet, in a
bound for P(N > m) all terms with n = m contribute. To get around this diffi-
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culty we shall take an integer m (thought of as large) and study the process for n
between m and 2m, ignoring what the process does before m:.

Proor or TueoreMm 4.1. Let V be a neighborhood of 6 chosen according to
Lemma 4.2. Let a positive integer m be fixed. Define the events

4, ={X,2V forsome m = n £ 2m},
Bn ={X,eV and B <R, < A4,m £n = 2m},
Cn ={XaeV and n®(X,)| <dlnn + K;,m £ n £ 2m)
in which K; = K + max (In A, —In B), and K is defined in Lemma 2.1. From
(2.1) it follows that B, C C,. Furthermore, the event (N > 2m) =
{B<R,< A,n £ 2m} implies A, u B, , so that
(4.26) P(N > 2m) < PA,, + PC,.
Define the event
Dp={20"Ui<n |Vl +dlnn+Ki, m=n=2m}

with U; defined in (4.10), Y, in (4.4) and b in Lemma 4.2. By (4.11) and Lemma
4.2 we have C,, C D,, so it suffices to find a bound for PD,, . Let {¢,} be an in-
creasing sequence of numbers, to be determined later, such that ¢,/Inn — .
Then there exists n, such that n > n, implies t, > d Inn 4+ K;. We shall assume
in the following that m > m,. Define the events

E, = {n |V, > t, forsome m < n £ 2m},
Fro={20"U < 2y, m =n < 2m},

then D,, © E, u F,,, and we have

(4.27) P(N > 2m) = PA,, + PE, + PF,.

From Section 3 we know that P(X, ¢ V) < c¢p” for some ¢ > 0, oy < 1.
Summing this over n from m to 2m we have

(4:28) PAm < C}Dlm.

We now impose on ¢, the restriction ¢, = O(ni’). By Lemma 4.3, with ¢, re-

placed by t,/b (changing the value of p) we have PE, < 2.ty o™ <

(m + 1)cgdn *p'™ in which use has been made of the monotonictiy of {t.}. Since
tm goes to oo faster than In m, by taking p, slightly larger than p we can write

(429) PEm < Cngt'".

If in the expression for F,, we replace ¢, by its maximum value ¢, , we increase,
if anything, the probability. Furthermore, P{|> 1" Us| < 2t , m < n < 2m} <

P{D iy Ui < 4ty ,m + 1 = n < 2m} and the latter equals P{|2 1" Ui < 4ty ,
1 = n = m} since the U, are iid. Thus we have

(4.30) PF, S P{{2" U < 4tw, 1 S 1

IIA

mj.
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Let the variance of U be o (>0 since U; # 0), then the right hand side of (4.30)
corresponds to the left hand side of (4.16) if we set 4fyn/0 = @, . Thus a bound on
PF,, is given by the right hand side of (4.16) in which the exponent of p is
ma”/ 1615, . This can be written as

(4.31) PF,, < c;p™*™

After substituting (4.28), (4.29) and (4.31) into (4.27) we see that the ex-
ponential bound on the first term on the right hand side in (4.27) goes to zero
faster than the bounds on the second and third term. If we increase the rate with
which ¢, — o, the bound on PE,, becomes better, on PF, worse. A balance is
struck by choosing ¢, = ¢ent in which case P(N > 2m) < C4pm1/3. By suitable
redefinition of the constants we obtain (4.1).
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