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BAYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL
EXPERIMENTS FOR THE ESTIMATION OF A SUBGROUP
OF PRE-ASSIGNED PARAMETERS'

By S. Zacks

Kansas State University

0. Introduction. The objective of the present study is to investigate and find
optimal sequential designs of fractional factorial experiments, for the purpose of
estimating a pre-assigned subgroup of parameters. We are given a factorial
system of N = 2" treatment combinations. Without loss of generality, assume
that the pre-assigned subgroup of parameters consists of the first S = 2°(s < m)
main effects and interactions. (The parameters are arranged according to the
standard order, see Ehrenfeld and Zacks [2].) All the other K = N — § param-
eters are considered as nuisance parameters. It is desired to estimate the sub-
vector of S pre-assigned parameters. Randomized unbiased procedures were
studies by Ehrenfeld and Zacks [5], [6], [13] in which n(1 £ n < M = 2"7°)
blocks consisting of S treatment combinations are chosen. The design of these n
fractional replicates is carried according to those procedures by a non-sequential
manner. The question is whether one can improve and reduce total estimation
risk by designing the fractional replicates sequentially, and after each stage of
experimentation adjusting the appropriate estimator according to the information
obtained concerning the parameters (pre-assigned as well as nuisance). It is well
known that the best truncated sequential procedure for estimating the mean of a
normal distribution with a known variance, 9(«, 1) say, when the loss function
is quadratic is a fixed sample procedure (see Hodges and Lehmann [8], and J.
Wolfowitz [12]). In the present model we have observations following an S-variate
normal distribution with a known covariance matrix ¢’Is. The mean vector is
A(e, B)’, where A is an S X N matrix; o is an S-dimensional vector to be esti-
mated, and 8 is a K-dimensional vector of nuisance parameters. The question is
whether under this model there exists a sequential procedure which is better than
any fixed sample procedure. The present study is devoted to the solution of this
problem. We search for a Bayes sequential design procedure, when the a-priori
distribution of the parameters is assumed to be normal and the loss function is
quadratic. As expected, the result is that the Bayes procedure for a prior normal
distribution is of a fixed sample size. The optimal number of fractional replicates
to perform is a function of the cost of experimentation and the prior dispersion
matrix of the parameters. The main part of the investigation is then devoted to
the problem of the best choice of n fractional replicates out of the M = 2™°
possible ones. It is proven that the Bayes procedure is to choose n different blocks
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974 S. ZACKS

(fractional replicates) of treatment combinations. The choice of the blocks of
treatment combinations can be done in a non-randomized fashion, and is im-
material of which blocks are chosen. It is also proven that the common least
squares estimators, with a non-randomized choice of fractional replicates are
minimax.

1. Preliminaries. Let &, &1, -+, 8x_1 be M = 2" ° available experiments
(fractional replicates). If experiment &, is performed (v = 0,1, --- ,M — 1), an
S = 2° dimensional random vector Y, is observed. The statistical model for Y,
is: :

(1-1) Yv=Ca+Hv6_+ev (U=Oy"';M_1)

where ¢, ~ N(0, ¢°Is) independently of v, « is an S-dimensional vector of the
pre-assigned parameter; 8isa K = N — S(N = 2™) dimensional vector of the
nusiance parameters. ¢ = € is an § X S Hadamard matrix. H, = (c¢{{”, - - -,
M )@ (C™),(v=0,---,M — 1) where (1,c${”, - -+, c$%1) is the vth row
vector of C*”, and the matrices C® (k = 0, 1, - - - ) are generated by a Kronecker
direct multiplication of C® = [i - i] with itself & times. ® designates the
Kronecker direct multiplication operator (see details in [13]). We are concerned
with the problem of estimating «. The following lemma from normal regression
theory will play a role in the sequel:

LemMa 1. If £(X1| X,) = 9U(AX:, $u) and £(X2) = 9U(n, Tn), where £(Y)
designates the distribution law of Y, and £(Y | Z) designates the conditional dis-
tribution law of Y, given Z, then £(X:| X1) = S(E (X, | X1), $a21) where:

(1-2) E(X2 I Xl) =7+ EmAl(Eu + A222AI)_I(X1 - A'ﬂ),
and
(1-3) 222.1 = 222 - 222A,($11 -+ A$22A,)_1A2722 .

Proor. Let £(X;, X;) denote the joint distribution law of X; and X, . Ac-
cording to the hypotheses,

x;kl 1 212
L(X:1,X,) =N <(A17,17), [i;:i}};])’

where £3; = I + AZ»A’. By normal regression theory (see Anderson [1]),
£(X2 I Xl) = M(E(XE f Xl), 222.1),

with:

(1.4) E(Xy|X1) = 9 + I3l (X1 — An),
and

(1-5) 222.1 = 2722 - 22127?1_12712 .

The Lemma, is proven by substituting

(1.6) In = E(X, — 0) (X1 — An)' = Iud,

and 312 = o1 in (1.4) and (1.5).
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2. The sequential Bayes procedure for prior normal distributions.

2.1. The decision framework. In Section 2.2 we shall derive the Bayes sequential
procedure for estimating «, assuming that the prior distribution law of the
parameters (e, 8)" is

,[6°Is) 0 -
n((0,0),| ———=—1), 0<6 < .
O ITIK

We shall consider a quadratic loss function of the form
(2.1) L(& a) = (¢ — @) (& — a),

where & is an estimator of a. According to the above assumption concerning the
prior distribution of (a, 8)’, the Bayes risk at the nth stage of experimentation
is the minimal trace (over all choices of experiments v, , --- ,v,) of the posterior
dispersion matrix of «. In order to describe the Bayes procedure let
3;(j =0,1,---,n) denote a set of j pairs 3; = {(v1, Ys,), -+, (v;, ¥,;)}, which
contains the whole relevant data of the first j experiments. 3, = ¢ designates the
null set, and corresponds to the case of no experimentation. We denote by
E{(a, B)'|3;} the posterior expectation of (a, 8)’, given 3;(j = 0, 1, -+-, n).
Given J;, the best estimator of «, after the jth experiment has been performed, is

(22) di(si) = E{Ot l Sj}) (.7 = O) 1) ] n)'

There are two decisions to be made after the jth experiment:

(i) Whether to terminate experimentation or perform the (5 4 1)st experi-
ment (j =0,1,---,n — 1);

(ii) If the decision is to perform the (j + 1)st experiment, which experiment
from &, + -+, &x_1 to choose?
Experimentation always terminates after the nth experiment, if it has not been
terminated before.

The Bayes sequential truncated sampling rule is determined by the n functions
pn—i(33),J = 1, -+, n; which are given by the following recursive definition:

(23)  po(B) = E{(a — &n(3a)) (@ — 6a(3a))| 54}

p1(3n-1) = minyeg,...,a—1 {min [po(Fai), 1 + E*{po(Tns, (v, Y,))}]}
and, forevery k = 2,--- ,n — 1,
(24)  pr(Bnt) = MiNyeg,..., -1 {min [po(Fnrt), 1 + E*{pp_1(5ucic, (v, Y,))}1}.
In these equations we designate
(28) E*Hora(Bai, (v, Yo))} = [ pra(Bac, (0, 9)) dF (y | Suete, 0),

where F(y|3;, v) is the expected distribution of ¥, , under the posterior dis-
tribution of («, 8) given 3;(j = 1, - -- , n). The optimal (Bayes) stopping rule
is to terminate at the least integer j, 1 < j < n, such that

(2.6) po(35) = pa—i(35).
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In this formulation we assumed that the cost of an experiment is 1 risk unit
(in §).

The decision theoretic framework formulated here has been obtained by an
appropriate adjustment of the well established truncated sequential Bayes pro-
cedure for the particular design and estimation problem under consideration.
Proofs of the optimality of this sequential Bayes procedure can be found in
various references. Among the well known are: Blackwell and Girshick [2];
Haggstrom [7], Paulson [9], Whittle [11], Wald [10].

2.2. The Bayes sequential procedure in the normal case. The normal posterior dis-

tribution of (e, 8) given 3;(7 = 0,1, - - - , n) can be found according to Lemma 1
in the following manner. Consider the vector ( Y;l R Y;j)'. Its distribution,
given (e, 8) and (v;, --- , v;) is normal, with expectation
C |H,,
___[ —_—
(27) E{(ley"':Y”j>/| (Ol,ﬁ), (017"' 701')} = ¥j_} (ayﬂ)/'
R
The dispersion matrix of (Y;, N Y:j)', given (a, 8)" and (vy, -+, v;), is
(28) (Yo, Vo) (0, 8), (oo o)) = oL ® L.
Thus, the posterior distribution of (e, 8) given 3;(j = 0, --- , n) is normal with
mean:
Bl 8) |5} = | 2 (Cl L
aB) |5} =|-— | -
’ 0 |7 \H., |-+ H.,
2.9) 6°C | 7°H,, -
( | A R
ol; @ Is + ! : }}‘,"l'—"}—ﬁr I
__________ v | vj X
6°C | 7'H,, H ‘ Yo
We notice that,
(2.10) H,,Hvl = KIs, lf v = 7)/
= —8Ig, if v =0
Thus,
020 ]I‘I'ZHvl o ’
_____ ’|_____ C I{C
(2.11) P 51—l ) =B ®Is,
__;__}_2*_*- H”' A .;ij
0°C i Hy,;

where B is a j X j symmetric matrix whose diagonal elements are all equal to
(6’S + 7°K), and its off-diagonal elements are

(2.12) b(i,7) = 6S + 7K, if v =vs
=0S(1 — ), if viFoe, 54 =1,---,7,
and vy = 7°/6".
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The posterior dispersion matrix of (e, 8), given J;, is according to Lemma 1,

0'Is) 0 o'l
3G) = | =5 7 l=r
0 i7" Ix | \Ho,| -+ Hy,

(2.13) o iH”]

Therefore, the risk function po(3;) of the Bayes estimator of a is, when
L= (1,1, 1)

(2.14) po(3;) = 0°S{1 — 6°S(1; (I, + B)7'1;)}.

We have shown the rather expected result that the risk function associated with
the Bayes estimator of @ does not depend on the observations. It depends only
on the number of experiments performed, j, and the experiments chosen
(&, ", &,). The conclusion is that the Bayes sequential procedure is a fixed
sample procedure. (See Blackwell and Girshick [2], Theorem 9.3.3.)

2.3. The optimal allocation of experiments. Before we proceed with the deriva-
tion of a more explicit formula of the Bayes estimator we investigate the question
of the optimal choice of experiments.

Suppose that the Bayes sequential procedure prescribes to perform n experi-
ments &, , -+ + , &, . Following Degroot [4], we shall call the choice of a specific
set (vy, -+ ,v,) of n experiments an allocation. We denote by A(n;k;ny, - -+, nz)
an allocation of n experiments according to which % different experiments are
chosen. &,, is chosen n; times; &,, , ne times, and &,, , ny times; vy # - -+ = 0.
An allocation 4; is called better than A, if the posterior Bayes risk associated
with 4, , say po(5.2), is smaller (or equal) to that associated with A, , po(3,%).
In case po(3.0) < po(3,%) A, is strictly better than A, .

TuaroreEM 2.1. For every 7 = 1, 2, .-+, n, A(§; 7; 1, ---, 1) s better than
A(7; 1;7), and strictly better if j = 2.

Proor. Consider the allocation A(j; 7; 1,1, ---, 1). According to Lemma 1,
(2.7) and (2.8), the associated dispersion matrix of the posterior distribution of

(o, B)" is:

(2.15) 6°C [©°H.,,

6°C ITZH Iy

where J; is aj X 7 matrix all of whose elements are 1. Without loss of generality,
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assume o© = 1. It is easy to prove that,
{1 + 7N + 0°S(1 — v)Jj] ® Is}™
(2.16) = (1 4+ #*N)I; 4+ 6°S(1 — v)(1 + #N)JJ" ® Is

= (1 4+ #N)7[I; — 0°S(1 — 7)(1 + 7N + jo"S(1 — v))7Jj] ® Is.
Let $11(3;) denote the dispersion matrix of e, given 3;. From (2.15) and (2.16)
we find,

tr. $n(35)
= §°8{1 — 6°S(1 + ~N)~'1/ A
(2.17) ;= 681 — ¥)(1 + N + j0°S(1 — 7)) T3}

=68 (1 + 7K — (j — 1)8)(1 + 7K — (j — 1)87 +j6°S)7",
j = 1;2> rer, N

Similarly, the dispersion matrix of the posterior distribution of (e, 8)’, associ-
ated with the allocation A(j;1;7),j = 1, -+, n, is:

25) [ezls'l 0 ] <[020’}® 1,)
218) 7 L 0 Ik ~H, ’

I = (B8 + PK)(1 + 7 (688 + 7K)TM ) ® Is} 1; ® (6°Ci7°H,).
From this we obtain that the Bayes risk associated with 4 (j; 1;7) is:
(2.19) tr. Tu(3;) = 81 +j7'K)(1 +j(0°S +7K))™, j=1,---,n.
Finally,
(220) (147K — (G =181+ 7K — (j — 1)87 +6°S)~"
< (1+7K)Q+jES + KN, j=1,-,mn

for all 6% and 7°, with strict inequality for all j = 2. This proves the theorem. We
shall prove now that the allocation A(n; n; 1, 1,---, 1) is optimal. Observe
that the combination of two allocations A (7;; 1;71) and A (. ; 1; j2), where the
experiments chosen for the two allocations are different, is the allocation
A(j1 + J25 2501, J2).

TuEOREM 2.2. For every j = 2, -+ , n, if j1 + jo = j the allocation A(j1 + o ;
g1 4 gas 1, -+-, 1) 4s better than A(j1 + a5 2; J1, j2) and strictly better for every
1= 2andj, = 2.

Proor. Consider the two allocations A(ji; 1, j1) and A(j2; 1, j2). Let

(Y&, ., Y8 and (Y357, -, Y$i®}, with »; % 0;, be the random vector
associated with these allocations. Define _
(2.21) Z; =3t 2in vy, (i=1,2).

We derive now the form of the Bayes estimator of « for the allocations A (j: ; 1;7),
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¢ = 1, 2, and for the combined allocation A4 (j; + 72 ; 2; 1, 2). Assuming ¢* = 1
we have,
(2.22) £(Z;| (e, B),v:) = N(j#(Ca + H.B), Is), = 1,2
Let &(Z:; (§i;1;4:)),% = 1,2, denote the Bayes estimator of «, under the alloca-
tion A (ji; 1;4:). Since
(2.23) (jiCljiH,,) [ oTs 'I 0 ]<j20,> = j: (6°S + 7K)Is, i=1,2,

UL 0 WIe | \siH,,

it is simple to verify that the Bayes estimator of a, from each of the single alloca-
tion, is: :

(2.24) &(Zi; (Ji; 1;59) = 6°Z(1 + j:(6°S + 7K)) 0 DL Y, i =1, 2.
We derive now the Bayes estimator of the combined allocation. Let
(2.25) =08+ 7K, »=068(1-—r4).

It is a straightforward matter to prove that
E {(a,8)'| Z1, Za} = (1 + jaif) (L + jof) —jajees”) ™

(2.26) 0’SC % sC ™ 1+ 5 |— Gujo)o iy
. 5 | 7 | ®Is ('7.15 1).
?H, | 7?H, ||~ Gugel 1+ i e
From (2.24) and (2.26) we obtain that the Bayes estimator of «, for the com-
bined allocation A (j1 + Ja2 ; 2; j1, J2) is:
(2.27) &(Z1,Zs; (1 + Jo; 2551, 72))
= ki($, w)a(Zy 5 (Gi; ;1)) + ka(§, w)a(Ze 5 (J2 5 15 2)),

where:
(2.28) kg, @) = ((1 4+ 4L + jot — G oD@ + 718) (1 + 7af) — fujaes”) ™
ka(¢y @) = (14 o) + jis — Guin)*e) (X + 5i) (1 + faf) — fagws”)

The Bayes risk of &(Z; (5; 1;7)) is given by (2.19). Since &(Z; ; (51 ; 1;72)) and
&(Zy; (42 ; 1; 72)) are independent we obtain from (2.27) that the Bayes risk
corresponding to the allocation A(j + 7; 2; 7, j) is:

(2.29) tr. 201 + J2; 2551, J2)
= k(¢ w) tr. 2@ 5 15 51) + kPGS, o) tr. 2052 ;5 15 2).

Let &(Z; (5;7; 1, -+, 1)) denote the Bayes estimator of « for the allocation
A(4;451, -+, 1). The Bayes risk of this estimator, tr. £(j;7; 1, - -+ , 1) is given
by (2.17). According to Theorem 2.1,

tr. £2(5;7; 1, ---, 1) = tr. 2(5; 1;9), with strict inequality for every 7 = 2.
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Consider the estimator,
(230) @&(Z1,Z2; (h+jdasii + 5251, -+, 1))
= k(¢ 0)a(Zy; (s 1,00, 1)) + ka(§, 0)a(Zo; (Jo 55231, -+, 1)).
The posterior risk of this estimator is
k(8 @) tr. 305515 L, -0, 1) 4+ k(5 @) tr B 525 L, -, 1),

which is not greater than (2.29) for all j;, j., and is strictly smaller than (2.29)
for all j3 = 2 and j>» = 2. Finally, the (Bayes) posterior risk of the Bayes esti-
mator &(Zy,Z; ; (i + 72351+ 7231, - -+, 1)) is minimal and therefore smaller or
equal to k12(§7 O)) tr. }:(.71 7.71 5 1’ ] 1) + k22(§" 0)) tr. }:(.72 7.72 5 1’ T 1) This
proves that the allocation A (51 + j2 ;71 + 7231, - -+, 1) is better than the alloca-
tion A (1 + J2 5 2; J1, Je); it is strictly better whenever j; = 2 and j, = 2.

CoROLLARY 2.3. For every n = 1,2, --- | M, the allocation A(n;n; 1, ---, 1)
is optimal with respect to the normal prior distribution.

Proor. Let A(n; k; ny, ---, ni) be an arbitrary allocation, 1 < k < n. This
allocation can be obtained as a combination of k allocations over different experi-
ments A(ni; 1; ng), ¢ = 1,---, k. The Bayes estimator &(Z;, ---, Z;;
(n; k;ma, -+, mx)) is, in analogy to (2.27), a linear combination of the cor-
responding Bayes estimators &(Z; ; (n;; 1;7n:)),% = 1, - -+ , k. The same argu-
ment as in the proof of Theorem 2.2 yields that A(n;n; 1, ---, 1) is a better
allocation than A(n; k;ny, -« - , ).

Corollary 2.3 gives a similar result to that of Theorem 2.8 of Degroot [4].

2.4. The Bayes estimators. We have proven that the Bayes sequential pro-
cedure for a prior normal distribution of («, 8)’ consists of the allocation
A(n;n; 1, -+, 1), where n is the optimal number of experiments (fractional
replicates). For this optimal allocation the Bayes estimator of «, at the nth stage,
is, according to (1.2) and (2.16),

@n(3s) = 60°S (1 + ~N)7 L) ® ¢
(231)  All, —6S (1 — v)(1 + 7N + n*S(1 — v)) " J.] ® Is}

Y.,
| [ : ]= 6°S(1 + #'N)7 (1— no"S(1 — )
Y.,

(14 7N+ n°8(1 —4))™) D2 ia €' Y,,.

Accordingly,

(2.32) & () = W+ n— (n =1y 20T,

where A = (1 + 7°K)/6°S. The commonly used least squares estimator is
(2.33) & =0 21 07T,

This estimator is obtained as a limit of the sequence of Bayes estimators é.(3,)
as 6> — «» and 7°/6° — 0.
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The posterior risk associated with the Bayes estimator &,(3,) is, according to
(2.17)

(2.34) po(3n) = SN — (n — D)¥)(n + X — (n — 1)y)™

We notice that the Bayes risk function po(3,) does not depend on the
actual n experiments chosen (v;,---, v,). The only requirement is that
V3 F Vg & - ZE 0y

According to (2.34), if n experiments are performed the reduction in the Bayes
risk from the prior risk of 6°S, is

(2.35) po — po(3) = nd'S(n + X — (n — 1)y)™

The number of experiments that should be performed can be determined by
(2.35), which, acording to (2.6) should be in equivalent cost units larger than
the cost of observing n blocks. Moreover, the size of the available budget deter-
mines whether n < M or n = M (full factorial experiment). In any event, the
Bayes sequential procedure is actually a fixed sample size procedure; namely, a
fractional replicate of size n/M.

We conclude with the following remark. As previously mentioned, the common
least-squares estimators &, (2.33) is obtained from the Bayes estimator by letting
0°— o, 7°/6° — 0. The corresponding limit of the Bayes posterior risks is, for
any fixed 0 < 7* < o,

(2.36) limgzow po(Fn) = n (1 + 7(N — n)), 0< 7 < .

This limit approaches « as 7> — o. The posterior risk of the least-squares esti-
mator &, is:

(237)  Eein™(n + 2t FHH,B)|Fa) = n7(1 + S(M — 1)7).

Applying a result of Blyth [3], the least-squares estimator &, is minimax (letting
7’ — ). However, the minimax value is «, and obviously &, is not a unique
minimax. Moreover, from the Bayesian point of view, (2.36) and (2.37) show
that for every 0 < 7° < o, &, is inferior to the Bayes estmator &, (F,).
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