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MINIMIZATION OF EIGENVALUES OF A MATRIX AND
OPTIMALITY OF PRINCIPAL COMPONENTS

By MasAsar OrkaMoTo! AND MI1TsUYO0 KANAZAWA
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1. Introduction. Let ' = (2, @2, ..., z,) be a random vector with mean
vector E(z) = 0 and variance matrix E(xz') = Z. Let M = N = -+ 2\, = 0
be the eigenvalues of = in order of decreasing magnitude, and v;, v, -+ , v, be
the corresponding orthonormal eigenvectors.

The principal components of z, namely », 'z, vz, - -+ , v,z were introduced
by Hotelling [3], and since then characterized by various optimal properties.
Almost all of these optimal properties, however, are stated in terms of linear
functions of &1, 22, - - - , & . For example, Rao [4] characterizes the first k(< p)
principal components as a linear form y = T’z with a p X k matrix 7 which
minimizes the trace or the Euclidean norm of the residual variance matrix of z
after subtracting its best linear predictor based on y. The unique exception is
Darroch [2] who deals with the optimality within the class of all random variables
with at most ¥ dimensions.

The purpose of this paper is to characterize the first k principal components by
a more general optimal property containing those due to Rao or Darroch as
special cases. Lemma 3 in Section 2 dealing with simultaneous minimization of the
eigenvalues of a non-negative definite matrix is of an algebraic character, and
may be interesting by itself.

2. Notation and lemmas. Let @ = @, be the set of all real non-negative defi-
nite matrices of order p. A partial order in the set @ is defined as usual; A = B if
andonlyif A — Be@.Forany A e @let Mi(4) = N(4) = -+ = N (4) be the
eigenvalues of A in order of decreasing magnitude. The following two Lemmas
will be stated without proof.

Lemma 1. A necessary and sufficient condition for a real-valued function f(A)
defined on G to be

() strictly increasing, that is, f(A) = f(B) if A = B, and f(4) > f(B)if
moreover A # B, and

(il) snvariant under orthogonal transformation, that is, f (P’AP) = f(A) for any
orthogonal matriz P,

18 that f(A ) s identical to some function g\ (A), -+, Np(A)) of the eigenvalues
of A which is strictly increasing in each argument.

It is noted that the trace as well as the Euclidean norm of a matrix enjoys this
property of a function f.

Now we denote by M (4) (k = 1,2, ---, p) the linear subspace spanned by
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the eigenvectors corresponding to the eigenvalues larger than Nz (4 ). This does
not necessarily involve the eigenvalues M (4), - -+, M-1(4) because of the pos-
sibility that M—1(4A) = A (4). Furthermore, for any matrix L we denote by
M (L) the linear subspace spanned by the column vectors of L.

LemMA 2. For any A & @, any positive integer k and any matriz L with p rows and
with rank <k it holds that

SUPLz=0 g Az/z'c = M (4 ),
sup denqting the supremum for p-vectors © satisfying L'z = 0. A sufficient condition
that the equality sign holds s that
M (L) D Mr(4),

which 1s also a necessary condition in case k = p and implies that M (L) ¢s orthogonal
to some eigenvector of the matrix A corresponding to the smallest etgenvalue N, (4 ).
This result is referred in Bellman ([1], p. 113) to the Courant-Fischer min-max
theorem without the statement about L attaining the equality.
LemmMa 3. IT A, B and A — B all belong to @ and if B is at most of rank k, then
for each v = 1,2, -+, p it holds that

1) N(A — B) = Myi(4),

where \; = \;(4A) is defined to be zero for j > p. A mecessary and sufficient condition
that the equality sign holds in (1) for every © simultaneously s that

2) B = Mow + Moy’ + -+ 4 Mo,
where vy, Vs, -, Ux are orthonormal eigenvectors of A corresponding to
A, N, oo, Mk

The first half of the lemma is a corollary of the Weyl inequality (see Bellman
[1], p. 119), but the second half is new as far as the authors are aware.

Proor. Applying Lemma 2 to the matrix A — B and choosing L of rank <3 for
which the equality holds, we have for each ¢

3) (A — B) = supremo @ (A — B)x/2'x
> SUDLac0pam0 T AT/TT = Nepi(A) = Megis
Now suppose that
4) Ni(A — B) = Ngys for every <,

and we shall prove (2), the converse being obvious. Without loss of generality
we can assume the matrix 4 to be diagonal, thatis, A = diag (\, -+, N\p) with
diagonal elements Ny, - -+ , A\, . Combining (3), Lemma 2, and the relation (4)
for i = p — k, we conclude that M (B, L), and a fortiori, M (B) is orthogonal to
some eigenvector of A corresponding to the smallest eigenvalue A, . This implies
that there exists an orthogonal matrix P, leaving the eigenspaces of A invariant,
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or P,/AP, = A, and satisfying

P/BP, — <B(,;_1 8)

for some B, 1 & @y . Define A,_; = diag (A1, -+, Ap_1), then the set of the ei-
genvalues of A — B is identical with that of

P, (A — B)P, = <A’”’1 o By >S,>
Therefore it follows from (4) that
N(Ap 1 — Bpg) = Myi for ¢=1,--+ ,p—Fk —1,
=0 for ¢t=p—Fk, ---,p—1
By a mathematical induction we have an orthogonal matrix P, of order

jG=k+1,---,p)andaB;e@; (j =k, ---,p) such that

(5) Pj'Aij = Aj and Pj,Bij — <Ba_1 8)

foranyj =k +1,---,pand
(6) )\z(A]—B]) = Neti for 7 = ly 1j_k7
=0 for t=5—-k+1,.--,j

foranyj =k, --- , p, where A; = diag (\, -+ -, \)).
From (6) for j = k we obtain that B, = A4, . Define

_ o (Pea O\ (Pen O
V“Pf'<0 L) (o Ip-kﬂ)’

where I; stands for a unit matrix of order j. Then, V is an orthogonal matrix of
order p and the relations (5) forj =% + 1, --- , p imply
7 VAV = 4,
’- _ Ak 0

(8) V'BV = ( 0 O)'
It is readily seen that by (7) the columns vy, v,, -+ -, v, of V give a set of ortho-
normal eigenvectors of A and that (8) is equivalent to (2), which completes the
proof. .

3. An optimal property of principal components.

THEOREM. Let A be any p X k matriz and y' = Wr,¥2, -+, Yr) be any random

vector. Let f be a real-valued function defined on @ which is strictly increasing and
tnvariant under any orthogonal transformation in the sense in Lemma 1. Then

Fi=fE@— Ay) @ — Ay))
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18 minimaized with respect to A and y when and only when
Ay = wo'x + ve'x 4 - + v

and the minimumvalue of F1is g (N\eqa, <<+ ,0p,0, <+ - ,0),wherev; (G =1,---,k)
are orthonormal eigenvectors of Z corresponding to N;’s and g s the function intro-
duced in Lemma 1.

RemarRk. When f(4) = tr (4), the optimal property above reduces to that
due to Darroch [2], while it affords a generalization of Rao’s result [4] when
f(4) = ||A]. It is noted that this theorem does not necessarily hold when f is
assumed only to be strictly increasing and also that the Ay which attains the
minimum of F is uniquely determined when and only when N, 5 Ayq .

Proor. Let r be the rank of the matrix =..If » < k the problem is trivial; F; is
minimized uniquely by taking Ay = x. Suppose, therefore, r > k.

Without loss of generality we can assume E (yy') = I, and let E (xy') = B.

Since ( ;; f) is the variance matrix of a joint random vector (z’,y"), it is non-
k
negative definite and hence the matrix = — BB’, too. Since
E@— Ay)(x — Ay) =2 — BB' 4+ (4 — B)(4 — B)

> = — BB,
we have
fB@— Ay) (@ — Ay)') =2 f(E — BB') = F;, say,

with the equality sign if and only if A = B.
By Lemma 1 F, is an increasing function of each eigenvalue of = — BB’, which
we shall try to minimize. Lemma 3 implies that

(2 — BB') = M (2)

for each 7, where the equality holds for all ¢ simultaneously if and only if

) BB' = \owy” 4 vy’ + -+ 4+ Nowwrd,

vi’s (j = 1, -+, p) being orthonormal eigenvectors of = corresponding to \,’s.

Let V.= (v1,0, -+ ,0,) and A = diag (A1, --- , \,), then (9) is written as
;o 1 I, 0 317

(10) BB = VA (0 0>AV.

We denote by A™ the diagonal matrix obtained by substituting ones for zeroes
in the diagonal of A and define

(11) Q= (?2) = A*'W'B,

where Q1isak X kand Q:isa (p — k) X k matrix. From (10) and (11) it

follows that
Lo\ _ v (@Q) Q@)
<0 0) == <Q2Q1, Q2Q2I)’
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and hence Q:Q;" = I; and Q, = 0. Therefore, F, is minimized by taking

B = vA® (%1) = @, say,

where @ is any orthogonal £ X k matrix, and the minimum value of Fs is
f()‘k+lvk+lvllﬂ+1 + e + )\Pvpvpl) = g()\k+1 y "t )‘ZJ ) 0, Y 0))

where ¢ is the function defined in Lemma, 1.

Though the argument from now on is the same as that in Darroch [2] except
that we here admit = to be singular, we shall give it for the sake of completeness
of the proof. Define

H = VA (%l> and v = H'z.
Then it is easily seen that

SH =G and H'G=1I,.

Now we shall show that there exists uniquely a random vector y satisfying the
conditions E (yy') = I and E (zy’) = G. In fact v is the solution, for

E@') = E@s)H = 2H = G
and
Ew)=HE@') = HG = I,.
Uniqueness follows from the fact
BE@—y)0—y) =Ew)—Ew) - EYv) + Ewy)
=5 —ILi—I,+ I, =0,
since E(vy') = H'E(zy’) = H'G. Thus F, is minimized by taking

0 0

! ’ ’
= F vwr + -+ v,

Ay = Gv = GH'z = V<I’° 0) V'
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