MINIMIZATION OF EIGENVALUES OF A MATRIX AND OPTIMALITY OF PRINCIPAL COMPONENTS

By Masashi Okamoto¹ and Mitsuyo Kanazawa

Osaka University

1. Introduction. Let $x' = (x_1, x_2, \ldots, x_p)$ be a random vector with mean vector E(x) = 0 and variance matrix $E(xx') = \Sigma$. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$ be the eigenvalues of Σ in order of decreasing magnitude, and v_1, v_2, \cdots, v_p be the corresponding orthonormal eigenvectors.

The principal components of x, namely $v_1'x$, $v_2'x$, \cdots , $v_p'x$ were introduced by Hotelling [3], and since then characterized by various optimal properties. Almost all of these optimal properties, however, are stated in terms of linear functions of x_1, x_2, \cdots, x_p . For example, Rao [4] characterizes the first $k (\leq p)$ principal components as a linear form y = T'x with a $p \times k$ matrix T which minimizes the trace or the Euclidean norm of the residual variance matrix of x after subtracting its best linear predictor based on y. The unique exception is Darroch [2] who deals with the optimality within the class of all random variables with at most k dimensions.

The purpose of this paper is to characterize the first k principal components by a more general optimal property containing those due to Rao or Darroch as special cases. Lemma 3 in Section 2 dealing with simultaneous minimization of the eigenvalues of a non-negative definite matrix is of an algebraic character, and may be interesting by itself.

2. Notation and lemmas. Let $\alpha = \alpha_p$ be the set of all real non-negative definite matrices of order p. A partial order in the set α is defined as usual; $A \geq B$ if and only if $A - B \varepsilon \alpha$. For any $A \varepsilon \alpha$ let $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_p(A)$ be the eigenvalues of A in order of decreasing magnitude. The following two Lemmas will be stated without proof.

Lemma 1. A necessary and sufficient condition for a real-valued function f(A) defined on @ to be

- (i) strictly increasing, that is, $f(A) \ge f(B)$ if $A \ge B$, and f(A) > f(B) if moreover $A \ne B$, and
- (ii) invariant under orthogonal transformation, that is, f(P'AP) = f(A) for any orthogonal matrix P,

is that f(A) is identical to some function $g(\lambda_1(A), \dots, \lambda_p(A))$ of the eigenvalues of A which is strictly increasing in each argument.

It is noted that the trace as well as the Euclidean norm of a matrix enjoys this property of a function f.

Now we denote by $M_k(A)$ $(k = 1, 2, \dots, p)$ the linear subspace spanned by

Received April 28, 1967.

¹ Now visiting professor at the Statistical Laboratory and Department of Statistics, Iowa State University.

the eigenvectors corresponding to the eigenvalues larger than $\lambda_k(A)$. This does not necessarily involve the eigenvalues $\lambda_1(A)$, \cdots , $\lambda_{k-1}(A)$ because of the possibility that $\lambda_{k-1}(A) = \lambda_k(A)$. Furthermore, for any matrix L we denote by M(L) the linear subspace spanned by the column vectors of L.

Lemma 2. For any $A \in \mathbb{C}$, any positive integer k and any matrix L with p rows and with rank < k it holds that

$$\sup_{L'x=0} x' A x / x' x \ge \lambda_k(A),$$

sup denoting the supremum for p-vectors x satisfying L'x = 0. A sufficient condition that the equality sign holds is that

$$M(L) \supset M_k(A),$$

which is also a necessary condition in case k = p and implies that M(L) is orthogonal to some eigenvector of the matrix A corresponding to the smallest eigenvalue $\lambda_p(A)$.

This result is referred in Bellman ([1], p. 113) to the Courant-Fischer min-max theorem without the statement about L attaining the equality.

LEMMA 3. If A, B and A - B all belong to \mathfrak{A} and if B is at most of rank k, then for each $i = 1, 2, \dots, p$ it holds that

$$\lambda_i(A - B) \ge \lambda_{k+i}(A),$$

where $\lambda_j = \lambda_j(A)$ is defined to be zero for j > p. A necessary and sufficient condition that the equality sign holds in (1) for every i simultaneously is that

$$(2) B = \lambda_1 v_1 v_1' + \lambda_2 v_2 v_2' + \cdots + \lambda_k v_k v_k',$$

where v_1, v_2, \dots, v_k are orthonormal eigenvectors of A corresponding to $\lambda_1, \lambda_2, \dots, \lambda_k$.

The first half of the lemma is a corollary of the Weyl inequality (see Bellman [1], p. 119), but the second half is new as far as the authors are aware.

Proof. Applying Lemma 2 to the matrix A-B and choosing L of rank < i for which the equality holds, we have for each i

(3)
$$\lambda_{i}(A - B) = \sup_{L'x=0} x' (A - B)x/x'x$$

$$\geq \sup_{L'x=0, B'x=0} x' Ax/x'x \geq \lambda_{k+i}(A) = \lambda_{k+i}.$$

Now suppose that

(4)
$$\lambda_i(A - B) = \lambda_{k+i} \text{ for every } i,$$

and we shall prove (2), the converse being obvious. Without loss of generality we can assume the matrix A to be diagonal, that is, $A = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ with diagonal elements $\lambda_1, \dots, \lambda_p$. Combining (3), Lemma 2, and the relation (4) for i = p - k, we conclude that M(B, L), and a fortiori, M(B) is orthogonal to some eigenvector of A corresponding to the smallest eigenvalue λ_p . This implies that there exists an orthogonal matrix P_p leaving the eigenspaces of A invariant,

or $P_p'AP_p = A$, and satisfying

$$P_p'BP_p = \begin{pmatrix} B_{p-1} & 0 \\ 0 & 0 \end{pmatrix}$$

for some $B_{p-1} \in \Omega_{p-1}$. Define $A_{p-1} = \text{diag } (\lambda_1, \dots, \lambda_{p-1})$, then the set of the eigenvalues of A - B is identical with that of

$$P_p'(A - B)P_p = \begin{pmatrix} A_{p-1} - B_{p-1} & 0 \\ 0 & \lambda_p \end{pmatrix}.$$

Therefore it follows from (4) that

$$\lambda_i (A_{p-1} - B_{p-1}) = \lambda_{k+i} \quad ext{for} \quad i = 1, \dots, p - k - 1,$$

$$= 0 \quad \quad ext{for} \quad i = p - k, \dots, p - 1.$$

By a mathematical induction we have an orthogonal matrix P_j of order j $(j = k + 1, \dots, p)$ and a $B_j \in \mathfrak{A}_j$ $(j = k, \dots, p)$ such that

(5)
$$P_j'A_jP_j = A_j \text{ and } P_j'B_jP_j = \begin{pmatrix} B_{j-1} & 0\\ 0 & 0 \end{pmatrix}$$

for any $j = k + 1, \dots, p$ and

(6)
$$\lambda_i(A_j - B_j) = \lambda_{k+i} \text{ for } i = 1, \dots, j - k,$$
$$= 0 \quad \text{for } i = j - k + 1, \dots, j$$

for any $j = k, \dots, p$, where $A_j = \text{diag } (\lambda_1, \dots, \lambda_j)$.

From (6) for j = k we obtain that $B_k = A_k$. Define

$$V = P_p \begin{pmatrix} P_{p-1} & 0 \\ 0 & I_1 \end{pmatrix} \cdots \begin{pmatrix} P_{k+1} & 0 \\ 0 & I_{p-k-1} \end{pmatrix},$$

where I_j stands for a unit matrix of order j. Then, V is an orthogonal matrix of order p and the relations (5) for $j = k + 1, \dots, p$ imply

$$(7) V'AV = A,$$

$$(8) V'BV = \begin{pmatrix} A_k & 0 \\ 0 & 0 \end{pmatrix}.$$

It is readily seen that by (7) the columns v_1, v_2, \dots, v_p of V give a set of orthonormal eigenvectors of A and that (8) is equivalent to (2), which completes the proof.

3. An optimal property of principal components.

THEOREM. Let A be any $p \times k$ matrix and $y' = (y_1, y_2, \dots, y_k)$ be any random vector. Let f be a real-valued function defined on \mathfrak{A} which is strictly increasing and invariant under any orthogonal transformation in the sense in Lemma 1. Then

$$F_1 = f(E(x - Ay)(x - Ay)')$$

is minimized with respect to A and y when and only when

$$Ay = v_1v_1'x + v_2v_2'x + \cdots + v_kv_k'x$$

and the minimum value of F_1 is $g(\lambda_{k+1}, \dots, \lambda_p, 0, \dots, 0)$, where v_j $(j = 1, \dots, k)$ are orthonormal eigenvectors of Σ corresponding to λ_j 's and g is the function introduced in Lemma 1.

REMARK. When $f(A) = \operatorname{tr}(A)$, the optimal property above reduces to that due to Darroch [2], while it affords a generalization of Rao's result [4] when f(A) = ||A||. It is noted that this theorem does not necessarily hold when f is assumed only to be strictly increasing and also that the Ay which attains the minimum of F_1 is uniquely determined when and only when $\lambda_k \neq \lambda_{k+1}$.

PROOF. Let r be the rank of the matrix Σ . If $r \leq k$ the problem is trivial; F_1 is minimized uniquely by taking Ay = x. Suppose, therefore, r > k.

Without loss of generality we can assume $E(yy') = I_k$, and let E(xy') = B. Since $\begin{pmatrix} \Sigma & B \\ B' & I_k \end{pmatrix}$ is the variance matrix of a joint random vector (x', y'), it is nonnegative definite and hence the matrix $\Sigma - BB'$, too. Since

$$E(x - Ay)(x - Ay)' = \Sigma - BB' + (A - B)(A - B)'$$

$$\geq \Sigma - BB',$$

we have

$$f(E(x - Ay)(x - Ay)') \ge f(\Sigma - BB') = F_2$$
, say,

with the equality sign if and only if A = B.

By Lemma 1 F_2 is an increasing function of each eigenvalue of $\Sigma - BB'$, which we shall try to minimize. Lemma 3 implies that

$$\lambda_i(\Sigma - BB') \ge \lambda_{k+i}(\Sigma)$$

for each i, where the equality holds for all i simultaneously if and only if

$$BB' = \lambda_1 v_1 v_1' + \lambda_2 v_2 v_2' + \cdots + \lambda_k v_k v_k',$$

 v_j 's $(j=1,\dots,p)$ being orthonormal eigenvectors of Σ corresponding to λ_j 's. Let $V=(v_1,v_2,\dots,v_p)$ and $\Lambda=\mathrm{diag}(\lambda_1,\dots,\lambda_p)$, then (9) is written as

$$BB' = V\Lambda^{\frac{1}{2}} \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} \Lambda^{\frac{1}{2}} V'.$$

We denote by Λ^* the diagonal matrix obtained by substituting ones for zeroes in the diagonal of Λ and define

$$Q = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} = \Lambda^{*-\frac{1}{2}} V' B,$$

where Q_1 is a $k \times k$ and Q_2 is a $(p - k) \times k$ matrix. From (10) and (11) it follows that

$$\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} = QQ' = \begin{pmatrix} Q_1Q_1' & Q_1Q_2' \\ Q_2Q_1' & Q_2Q_2' \end{pmatrix},$$

and hence $Q_1Q_1'=I_k$ and $Q_2=0$. Therefore, F_2 is minimized by taking

$$B = V\Lambda^{*\frac{1}{2}} \begin{pmatrix} Q_1 \\ 0 \end{pmatrix} = G, \text{ say,}$$

where Q_1 is any orthogonal $k \times k$ matrix, and the minimum value of F_2 is

$$f(\lambda_{k+1}v_{k+1}v'_{k+1} + \cdots + \lambda_{p}v_{p}v'_{p}) = g(\lambda_{k+1}, \cdots, \lambda_{p}, 0, \cdots, 0),$$

where g is the function defined in Lemma 1.

Though the argument from now on is the same as that in Darroch [2] except that we here admit Σ to be singular, we shall give it for the sake of completeness of the proof. Define

$$H = V\Lambda^{*-\frac{1}{2}} \begin{pmatrix} Q_1 \\ 0 \end{pmatrix}$$
 and $v = H'x$.

Then it is easily seen that

$$\Sigma H = G$$
 and $H'G = I_k$.

Now we shall show that there exists uniquely a random vector y satisfying the conditions $E(yy') = I_k$ and E(xy') = G. In fact v is the solution, for

$$E(xv') = E(xx')H = \Sigma H = G$$

and

$$E(vv') = H'E(xv') = H'G = I_k.$$

Uniqueness follows from the fact

$$E(v - y)(v - y)' = E(vv') - E(vy') - E(y'v) + E(yy')$$

= $I_k - I_k - I_k + I_k = 0$,

since E(vy') = H'E(xy') = H'G. Thus F_1 is minimized by taking

$$Ay = Gv = GH'x = V\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}V'x$$
$$= v_1v_1'x + v_2v_2'x + \cdots + v_kv_k'x.$$

REFERENCES

- [1] Bellman, R. (1960). Introduction to Matrix Analysis. McGraw-Hill, New York.
- [2] DARROCH, J. N. (1965). An optimal property of principal components. Ann. Math. Statist. 36 1579-1582.
- [3] HOTELLING, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24 417-441; 498-520.
- [4] RAO, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā Ser. A. 26 329-358.