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ON THE NON-CENTRAL DISTRIBUTION OF THE SECOND
ELEMENTARY SYMMETRIC FUNCTION OF THE ROOTS
OF A MATRIX!
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1. Summary and introduction. Let X be a p X f matrix variate (p < f) whose
columns are independently normally distributed with E (X) = M and covariance
matrix E. Let wy, - -+ , w, be the characteristic roots of [XX' — wXE| = 0, then
the distribution of W = diag (w;) is given by [4], [5]

(1.1) e F Bf; 1, W)k(p, f)

VWD T s (wi —wj), 0<wy < --- < wy, < 0,
where
(1.2) k@, f) = 7/(2"T, BT, ()},
Q@ = diag (w;) where w;, 7 = 1,--+, p, are the characteristic roots of
MM’ — w=| = 0 and oF}; is the hypergeometric function of matrix argument

(see Section 2) defined in [5]. The above distribution of non-central means with
known covariance matrix was obtained by James [4]. But (1.1) has also been
shown, [5], to be the limiting distribution as n — « of nR> = W such that
0 < nP’ = @ < o, where R’ = diag (%) and P* = diag (o) and where the
canonical correlation coefficients %, - -+, r,> between a p-set and a g-set of
variates (p = q) following a (p + ¢) variate normal distribution, are calculated
from a sample of n + 1 observations and p,’, - - - , s, are population canonical cor-
relation coefficients. Further ¢ = f.

In this paper, the first two non-central moments of W, the second elementary
symmetric function (esf) in jwi, 3w:, -+, w, have been obtained first by
evaluating certain integrals involving zonal polynomials, and then alternately
in terms of generalized Laguerre polynomials, [2], [5]. These moments were used
to suggest an approximation to the non-central distribution of W, . The approxi-
mation is observed to be good even for small values of f.

2. The moments of W;®. First let us recall a lemma due to Constantine [1]
which will be used later in this section.

Lemma 1. Let Z:m X m be a complex symmetric matriz whose real part R (Z) is
p.d. and let T:m X m be an arbitrary complex symmetric matriz. Then

2.1) [ssoexp (—tr ZS)|S|" ™ € (TS) dS = Tw(t, «)|Z|'C(TZ ),
where R(t) > 3(m — 1) and Tu(t, k) = o™ P JIaT ¢ + k; — 3G — 1))
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where k = (ky, ~++ Jkm), ks Z ke = -+ 2 ks =20, k1 + -++ + kn = k. (See
Khatri [6].) Now let us note that

(2.2) Ce(S) = [xl2¢] (1)2°%!/ (k) 1Z.(S)

where x[2«] (1) is defined in [3]. Hence one can either work with the zonal poly-
nomials Cx(S) or Z,(S) which differ only in their normalizing constants. Now
since Za2y = 2a,, where a, is the second esf in the roots of S, W,® can be ex-
pressed in terms of the zonal polynomials Cazy (W) or Zazy (W). Further let us
note that [5]

(23)  oF1(f; 1@, W) = 2000 2. Ce(GR)C(W)/{ (Bf ) Ca @,)E1.

Now since
(24) Ce(W)C, (W) = D 590,05 (W),

where 6 is a partition of £ 4+ n = d and ¢’s are constants, it is easy to see that
using (2.3) and (2.4) in the product of (1.1) by (3/4°)Caz (W), we can obtain
E(W,y®) by using Lemma 1. Similarly the higher order moments can be ob-
tained successively. Thus the first moment of W,® is given by

25) BW®) = 3/4)e 2 3o 30 20 2T, (3, 8)/Tp (S, ©)]

(05 (1,)/C @p)]lge,an /ENC. GR),
where k 4+ 2 = d such that n = 2. Similarly the rth moment of W,® is given by
2.6) EW?) = (3/47) e 3000 30 25 20, (3, 8)/T5 (3, «)]

[Cs 1)/ C @p)]lgh /B! 1CK (GR),

where now k& + 2r = d such that n = 2r. The g-coefficients in (2.5) and (2.6) may
be computed using (2.4).

The first two moments of W,® obtained from (2.5) and (2.6) are given at the
end of this section. Following are some intermediate results on the expected
values of certain expressions in the central case i.e. when @ = 0 which have been
used to obtain E(W,®) and E(W,®)* in the non-central case. These results
were obtained with the help of Lemma 1.

Noting that

2.7) a = 3Zay ;

(2.8) E(a:Zw) = B, f)lp — 1) —1)of +4k) k=1,2,---;

29)  E(eZo-y) = Belp, Nllp — 1) — 1) (of + 4k) + 42k — 1)]
k=23,--;

(2.10) E(aZg—avn) = Be(p,Nl(p — 1)(f — 1) (pf + 4k) + 44k — 3)]
=34, ;

@11) E(®Zesin) = B, Nl — 1) — 1) (pf + 4k) + 4 (6k — 6)]
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k=45
(2.12) E(aZen) = B, fllpe — 1)ff — (p — 1) (p — 16)f
—8@2p — 7)];

where Bc(p, f) = 2% () 3f)s, & denoting the specific partition of k given on
the left side of each equation involving B, (p, f). Further noting that

(2.13) @’ = (1/24)Zey + (2/15)Zean + (3/40)Zqs
E(@'Zw) = 2" @/2) (f/2)c(0 — 1)(f — Dp*(p — 1)f*
(2.14) —p — {p = 8% + 1)}f
—4{2(k + 1)p" — (4k" + 14k + 5)p + 4k (k + 3)}f
— 16{(k + 3)p — @k + 7)}k] k=1,2---.

E(@'Zan) = 2% (p/2):(f/2)d0" (0 — 1)
—2p( — 1){p — 4G + 1}
+ @ — 1){p’ — (16k + 17)p" + 4 (4K + 20k + 5)p
(2.15) — 16k (k + 3)}f* + 4{2(k + 1)p°
— (8K + 32k + 5)p® + (40K + 94k — 13)p
— (32K" + 80k — 24)}f + 16{k(k + 3)p*
— 2(4K" + 10k — 3)p + (15k* + 25k — 12)}]

k=23,
where

(2.16) @) = [[*(@ — 3G — 1)),

(2.17) @r=a@+1)-- (@a+k—1).

In addltlon, expressmns for E(a:"Zas)), E(@Zag), E(a’Ze ), E@Zaey),
E(a'Z o1%), and E (05°Z ) were also obtained (which are not presented here)
and all these were used to compute the following two moments of W,®.

(2.18) EW,?) = [1/2°[(p — 1)(f — 1) (pf + 4b1) + 8bi],
EW:®) =10 - 1)(f — 1)/290'p — 1)f
—p — L){p — 80 + 1)}f*
(2.19) — 4{2(b + 1)p* — (4b* + 18by + 5)p + 4by(by + 4)}f
— 16b:{ (bs + 4)p — (Bb1 + 10)}] + (be/4) D (p — 1)f?
—{p" = @b+ 1T)p + 4B + 5)}f — 4{ (B + 5)p
— 3(b + 4)}] + bs’ + 6bs,

where b; is the sth esf in wy, -+ -, L0, .
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It may be pointed out that (2.18) and (2.19) were obtained after summation
of infinite series arising from the use of (2.5) or (2.6). For example, (2.18) was
obtained from the following expression:

©220) EW.?) = e ™3 20b (0 — 1)(f — 1) (of + 44)/2%]]
+ bo[ D iso (b1l/7f')]}

The coefficients of by* and beb;’ in (2.20) were obtained by the use of (2.8) to
(2.12) since computing the coefficients for a few small values of 7 easily yielded
the generalization. It was further observed that the coefficients of terms
bbby -+ - other than given in (2.20) reduced to zero. The method used for
obtaining (2.19) was similar. .

However, it may be pointed out that the above method only suggests the
results (2.18) and (2.19) and does not prove them. But the intermediate results
(2.8)-(2.15) should be of additional interest. Now, a second method is given
which proves (2.18) and (2.19).

Alternately, the moments of W,* may be obtained in terms of the generalized
Laguerre polynomials in the sense of Constantine [2]. For obtaining the first
two moments of W,® this method is simpler since for these cases, certain a,,. co-
efficients involved in the generalized Laguerre polynomials are available in
Constantine [2]. Hence using Equations (13), (14) and (20) of Constantine [2]
we get

@.21) EW,?) = 3L (—3Q)

and

©2.22) EW,?) = (1/16)[5L%x» (—3Q) + 4L%b 1» (—3Q) + 9Lhs (—3Q)),
where v = 3(f — p — 1), and L,” is the generalized Laguerre polynomial [2].

(p)

3. An approximation to the non-central distribution of W, . In a previous
paper the authors [8] had suggested an approximation to the central distribution
of W,® in the following form after obtaining the first four moments:

3.1) FW,®) = [o/20 () WP (PP 0 < W < o
where

(3.2) v = 3pf

and

3.3) o =2(f +2)/[(0 — ) = 1]

From a comparison of the exact and approximate moments and moment
quotients the approximation (3.1) was recommended for f = 14 and above when
p = 3,f = 11 and above when p = 4, f = 10 and above when p = 5, f = 8 and
above for p = 7 and all values of f and p beyond 7. However, since the lowest
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value f can take is p and small values of f are quite important from a practical
point of view, the approximation to the non-central distribution of W, given
below is believed to serve that purpose. The new approximation satisfies (3.1)
with

(3.4) v = 202w )/ (')} — w )P
and
(3.5) o =v+1)/u,

where ' and w’ are the first two (non-central) moments given in (2.18) and
(2.19) respectively and ps is the variance of w,®.

4. Accuracy comparisons. The approximation to the non-central distribution
of W,® has the first moment the same as that of the exact. An idea of the close-
ness of the approximate to the exact second moment can be had from Table 1.

The values of the exact and approximate variances tend to be closer for larger
values of f for a given p and hence the tabulation has been confined to the smallest
value of f in each case. It may further be noted from Table 1 that ratios of the
(approximate to exact) variances are closer to unity for larger values of p,
for example, in the null case.

Further, the approximation to the non-central distribution is better even in
the null case than that given earlier just for the null case [8] which is the same
asin (3.1)-(3.3). The third and fourth moments when @ = 0 which were evalu-
ated earlier [8] are presented in a much simpler form below.

TABLE 1
Values of exact and approximate variances
p=3 f=3
twr 1wy 1ws Exact 2 Ratio (4/E)
Approx.
0 0 0 24.75 24 .56 .9924
1 2 0 156.75 155.89 .9945
25 0 0 1824.75 1820.46 .9976
5 5 5 5154.75 5148 .41 .9988
5 5 25 31194.75 31180.31 .9995
15 15 15 98214.75 98194.92 .9998
p=5 f=.5
1w 1w 3ws EN 1ws Exact L2 Ratio
Approx. (A/E)
0 0 0 0 0 875.00 874.27 .9992
1 2 1 2 1 4821.00 4817.81 .9993
25 0 2 2 10 85963.00 85948.64 .9998
10 10 10 10 10 256875.00 256846.38 .9999
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“4.1) ﬂ3(0){W2(p)} =l - 1ff - 1)/24]
‘5@ — 1)f — (10p" — 40p + 33)f + 5p° — 33p + 49,
and
WO W) = Bpe — LFF — 1)/ — 1) — 4¢p — 1)
- (3p" — 34p + 28)f°
4.2) + (12p* — 396p" + 1917p* — 2893p + 1384)f®
— (4p* — 360p° + 2893p* — 7129p + 5192)f
— (112p° — 1384p" + 5192p — 5864)],
where 4;® and 1, denote the third and fourth moments in the central case.

The moments (4.1) and (4.2) were obtained by evaluating linear compounds of

TABLE 2

Ratios of moments of Wo® (@ = 0) from the exact and approzimate distributions for p=3
and f = 3 and 10

f=3 f=10

Exact Approximate Ratio Exact Approximate Ratio
(4/E) (4/E)

Moments

m' |.45000000 X 10 (.45000000 X 10 (1.0000|.67500000 X 102 |.67500000 X 102 |1.0000
ka2 |.24750000 X 10% |.24561937 X 102 | .9924|.13162500 X 10¢ |.13154799 X 10¢ | .9994
ks |.37350000 X 10° [.36307500 X 10° | .9721|.66318750 X 105 |.65752496 X 105 | .9915
ke |.12067312 X 105 |.11468028 X 105 | .9503|.10954364 X 108 |.10835868 X 10% | .9892
pet |.49749371 X 10 [.49560001 X 10 | .9962(.36280159 X 102 |.36269546 X 102 | .9997
Br |.92014357 X 10 |.88962059 X 10 | .9668|.19286681 X 10 |.18992046 X 10 | .9847
B2 |.19699724 X 102 [.19009186 X 102 | .9649|.63228139 X 10 |.62617429 X 10 | .9903

certain determinants [7], [8]. That the approximation suggested for the non-
central case (see eqns. (3.1), (3.4) and (3.5)) works very well for the null case
for all values of p and f, can be inferred from Table 2.

Table 3 provides some comparison of the closeness of the approximate to the
exact moments when Q = 0 for a) the earlier approximation for the null case
(Eqns. (3.1)-(3.3)) and b) the new approximation for the non-null case (Eqgns.
(3.1), (3.4) and (3.5)). ,

Thus it may be seen that the new approximation can be used in the null case
even for the very small values of f for which the earlier approximation was not
recommended.

The authors wish to thank the referee for suggesting the use of the generalized
Laguerre polynomials in Section 2. They also wish to express their thanks.to Mrs.
Louise Mao Lui, Statistics Section of Computer Sciences, Purdue University,
for the excellent programming of the material for the computations in this paper
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TABLE 3

Ratios of moments of Wy® (@ = 0) from the exact and approxzimate distributions using (a)
earlier approzimation (b) new approrimation for p = 4 and f =5

(a) earlier approximation (b) new approximation
Moments Exact
Approximation Ratio (4/E) Approximation Ratio (4/E)

' .30000000 X 102 .30000000 X 102  1.0000 .30000000 X 10z  1.0000
M2 .40500000 X 103 .37636364 X 103 .9293 .40445819 X 103 .9987
M3 .14354999 X 103 .12228099 X 108 .8518 .14153057 X 105 .9859
I .13799024 X 107 .11130166 X 107 .8066 .13501215 X 107 L9784
not .20124611 X 102 .19400093 X 102 .9640 .20111145 X 102 .9993
B .31019966 X 10 .28047550 X 10 .9042 .30274682 X 10 .9760
B2 .84127571 X 10 78575356 X 10 .9340 .82532614 X 10 .9810

carried out on the IBM 7094 Computer, Purdue University’s Computer Science’s
Center.
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