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1. Introduction and summary. Let the following expressions denote the bi-
nomial and Poisson probabilities,

(1.1) B(k;n, p) = 250b(j; n, p)
= 2 hL(Hp’'1 —p)",
(1.2) P(k;N) = 25ap(k;N) = D foe N/l

Section 2 contains two basic theorems which generalize results of Anderson
and Samuels [1] and Jogdeo [7]. These two theorems serve as lemmas for the
more detailed results of Sections 3 and 4.

Section 3 is devoted to a study of the median number of successes in Poisson
trials (i.e. independent trials where the success probability may vary from trial
to trial). The study utilizes a method first introduced by Tchebychev [12],
generalized by Hoeffding [6], and used by Darroch [5] and Samuels [10]. The
results correspond to those for the modal number of successes obtained by Dar-
roch.

Ramanujan (see [8]) considered the following equation, where # is a positive
integer:

(1.3) 3 = P(n — 1;n) + yap(n;n),

and correctly conjectured that ¥ < y, < . In Section 4 we show that for the
corresponding binomial equation,

(1.4) 3 =Bk — 1;n,k/n) + 2,,.0(k;n, k/n),
3 < z» < % and, for each k and for n = 2k, 2z, decreases to y; asn — «.

2. Basic theorems.

THEOREM 2.1. Let {my}, {m.p.} and {m,(1 — p,)}, n = 1,2, --- , be nonde-
creasing sequences of positive integers with my’s strictly increasing and the p,’s
between 0 and 1. Then the sequence { B(m,p, + r; m, , pa)} s strictly increasing
(decreasing) if r is a negative (non-negative) integer.

TaEOREM 2.2. Consider n 4+ 1 independent irials with success probabilities
PoZPrZ " ZDu, 1> Pu,and py+ po+ -+ + p. = k (positive integer)
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Then
P( £ ksuccesses) < B(k — 1;n,k/n) + (1 — po)b(k; n, k/n).

Proor of TuEOREM 2.1. B(m,p, + 7; m,, p,) may be interpreted as the
probability of < (mui1pa+1 + ) successes in m, 4 trials in which m, of the suc-
cess probabilities are equal t0 pu , Mat1Prt1 — Mapa of them areequal to 1 and the
remaining 7, 41(1 — Pat1) — ma(1 — pa) are equal to 0. To complete the proof
we need only to apply the theorem of Hoeffding [6] (see [10], Lemma 1) which
states (in part) that if the mean number of successes in 7 independent trial is X,
then the probability of <k successesis = (=) B(k;n, M/n)ifk Z N (=X — 1),
with equality holding only if all n success probabilities are equal to \/n.

Proor of THEOREM 2.2. Fix po and consider the class of all choices of py , - -,
PawWithl = poZ P12 -+ 2 pa 2 0and pr + po + -+ + pu = k. We need
to show that, within this class, the probability of =<k successes in the n + 1
trials attains its unique maximum when p; = p. = --- = p, = k/n. Since by
compactness and continuity the maximum probability is attained, it suffices to
prove that it is not attained when p; > p. . Now

P[< k successes] = pipalf*(k) — ff(k — 1)] — (p + ) (k) + A,

where f*(k) is the probability of k successes in the other n — 1 trials and A
does not depend on p; and p, . By a corollary to Theorem 1 of [10], the hypotheses
of the present theorem are sufficient to guarantee that k) > ff(k — 1).
Hence the probability of <k successes can be increased by replacing p: and px
by (p1 + Pa)/2, which completes the proof.

Note that if (n — 1)po = k, we may take py = p» = -+ = Pz = k/(n — 1),
pn = 0 and conclude that
(21) B(k—1;n—1,k/(n — 1)) + (1 — po)b(k;n — 1, k/(n — 1))

< B(k — 1;n, k/n) + (1 — po)b(k; m, k/n).

3. Median number of successes. The modal number of successes in Poisson
trials has been studied in [5] and [10], and the following is known:

(a) If the mean number of successes is an integer k, then the mode is also &

(and is unique). If the mean is between two integers k and k + 1 then the mode

iskork + 1.
(b) The set of all possible mean numbers of successes in n independent trials
which uniquely determine the mode is

A, = 1?=_o1 (Ik U Jk+1)

where I, is the interval [k, k 4+ 1/(k + 2)), and Jiis (k — 1/(n — k + 2), k].

In this section we obtain analogous results for the median.

TarEorREM 3.1. Let ¢ be a fized positive integer >1. Then as n — o, B(n — 1;
nt, 1/t) increases to L while B(n; nt, 1/t) decreases to .

Proor. By the central limit theorem, both limits are §. Monotonicity follows
by applying Theorem 2.1, with p, = 1/t, m, = nt and r = —1 for the first
sequence and » = 0 for the second.
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TaEoREM 3.2. If the mean number of successes in n independent trials is an
integer k then the median s also k.

Proor. First suppose that all success probabilities are equal to k/n. By Theo-
rem 2.1 of [1], or from Theorem 2.1 of this paper, the sequences {B(k — 1; n,
k/n)} and {B(k; n, k/n)} are, respectively, increasing and decreasing in 7, so
that

Bk — 1;n,k/n) < B(k — 1;kn, 1/n) < % < B(k; kn, 1/n) < B(k;n, k/n),

where the two inequalities in the middle follow from Theorem 3.1.
If the success probabilities are unequal, we apply the Hoeffding theorem (see
proof of Theorem 2.1) to conclude that

P(=<k—1 successes) < B(k — 1;n,k/n) <% < B(k;n, k/n)
< P(=Fk successes).

CoROLLARY 3.1. If the mean number of successes is between the integers k and
k -+ 1 then the median s k or k + 1.

Proor. Use Theorem 3.2 and the fact that, for every j, the probability of
=<j successes is a decreasing function of each success probability.

The preceding fact, plus a result of Hoeffding {[6], Theorem 4} gives

TaEOREM 3.3. For k = 0, - -+ ; n — 1, define My and 041 to be, respectively, the
solutions of

= miN,—91,-. at1 Blk;n — 1, /(0 — 7)),

[T N

= MaXemo1,--x Bk — s;n — 5, (001 — 8)/(n — ).
Let I, be the interval [k, \v) and Jy, be the interval (6, k. Then
B, = UiZ (I u Jip)
1s the set of all possible mean numbers of successes in n independent trials which
uniquely determine the median.

The point of this theorem is that the analogue to statement (b), for the me-
dian, cannot be as explicit as is the statement for the mode, since clearly the
M’s and 6;’s are not rational functions of n and k.

If we require that the success probabilities be almost equal then, for large n,
the median cannot be smaller than the one corresponding to the case of equality.
The precise statement of this remark is given in the next theorem which follows
from Theorem 5.1 of [1].

TareoreM 3.4. If N, the mean number of successes in n independent trials, s
between the integers k and k + 1 and if each of the success probabilities is <N/
(n — 1), and if n s suffictently large so that

A>[(n—1)/(n = 3)]k — 1/(n — k)],
then the median is k + 1 whenever B(k; n, A\/n) < %.

4. Ramanujan’s equation. Among the multitude of interesting problems
Ramanujan discussed in his correspondence with Hardy (see [8]) is one con-



1194 KUMAR JOGDEO AND S. M. SAMUELS

cerned with the equation,
(4.1) e"/2 =14+ n+ (n°/21) + -+ + ya(n"/nl),

which is equivalent to (1.3). In 1911 he proved that y, — 3 as n — o« and cor-
rectly conjectured that 3 < y, < % for all non-negative integers n (obviously
yo = %). Szegd (1928) and Watson (1928) showed that y, decreases to 3 and dis-
cussed more precise estimates conjectured by Ramanujan in 1913. These results
were subsequently extended by various authors. Copson (1933) considered the
case when 7 is a negative integer while Carlitz (1965) studied complex exponents.

The Poisson interpretation was first utilized by T. T. Cheng (1949) who gave
a more elementary proof for the bounds on y, while studying the error in the
normal approximation to the Poisson distribution.

In this section we consider the binomial analogue of (4.1) as given by (1.4).
Some values of z;., are obvious: 2o, = 2in = Zn,2. = 3. Also, by Theorem 3.2,
0 < zxn < 1for all k£ and n. The following theorem yields sharper bounds. (In
the remainder of this section we assume k = 1.)

TuaeoreM 4.1. For each k, and for n = 2k, 2. decreases to yi as n — .

Proor. The assertion that the limit is ¥, is an immediate consequence of the
Poisson convergence theorem. Since 2z, = 3, it suffices to prove that, if po = 3
andn — 1 = 2k, (which implies that (n — 1)po = k), then

(42) Bk —1;n— 1,k/(n — 1)) 4+ (1 — po)b(k;n — 1, k/(n — 1))
< B(k — 1;n,k/n) + (1 — po)b(k;n, k/n).

Now (4.2) is identical to (2.1); hence it is true by Theorem 2.2.

Since zx» — Yr > % asn — « we have the following

CoROLLARY 4.1.n > 2k = § < . < %

A weaker statement is:

COROLLARY 4.2. n > 2k = 2., < % (i.e. Theorem 4.1 can be regarded as pro-
viding a new proof of the Simmons inequality [9]).

Note that by interchanging the roles of success and failure we can conclude
that 1 < z.. < %fork < n < 2k; but we cannot conclude that z; . is decreasing
in n for n < 2k. This is not surprising since the statement is false (for example,
2ok = 3 < Zrasa; Skt > 3 = Zka). Presumably 2. first increases and then
decreases as n increases from k to 2k, but we are unable to prove this.

We are also unable to generalize the statement that y, is decreasing in k.
We sought a result of the form

B(k — 1;n,k/n) + B(k,n, k/n) < B(k;m, (k4 1)/m)
' + B(k + 1;m, (k + 1)/m)

for some appropriate sequences of n’s and m’s, which, it can be shown, would
imply that 2, > 2x41, - But the inequality is false when n = 2k, m = 2k + 1,
as well as when n = 3k or 4k and m = 3(k+ 1) or 4(k + 1). Of course, Theorem
4.1 plus the fact that yi > yri1, implies that zi, > 2k41,» for all sufficiently
large n. But we are unable to make this more precise.
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