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EXTINCTION IN A GALTON-WATSON PROCESS AND IN
SOME RELATED MULTIPLICATIVE POPULATION
PROCESSES!

By Leo A. GoopmMAN
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1. Introduction. Let us consider a given population of N individuals who form,
say, the Oth generation, who produce during their lifetime new individuals who
form the 1st generation, who in turn produce during their lifetime new individuals
who form the 2nd generation, who in turn produce during their lifetime new
individuals who form the 3rd generation, etec. Let ¢;; be the probability that an
individual in the jth generation (j = 0, 1, 2, - -+) will produce during his life-
time 7 new individuals (¢ = 0, 1, 2, ---) in the (j 4 1)th generation. We as-
sume that within each generation, given the past, individuals reproduce in-
dependently of one another, and that > igi; = 1 forj = 0, 1,2, --- . Let
u; denote the mean number of new individuals produced during his lifetime by
an individual in the jth generation; ie., uj = D ioigij, forj = 0,1,2,---.
We call u; the Malthusian rate for the jth generation (see, e.g., Karlin (1966),
p. 364). Let m = {mo, my, ms, ---} and M = {Mo, M1, M, -+ -} denote two
sequences of numbers which are such that

(1) mjéﬂjéMj’ for j=0;1;2;“"

For any given m and M, we shall consider all possible values of g;; which are
such that Condition (1) is satisfied, and we shall answer the following four
questions herein: (A) How can we minimize the probability that the jth genera-
tion (j = 0, 1,2, --+) will become extinet? (B) How can we maximize the prob-
ability that the jth generation (j = 0, 1, 2, - - -) will become extinct? (C) How
can we minimize the probability of eventual extinction? (D) How can we maxi-
mize the probability of eventual extinction?

In a recent article, Freedman and Purves (1967) answered question (A) for
the special case where it is assumed that

(2) q1i=0’ for j=0’1727"',
and that Condition (1) is satisfied with m; = 0 and M; = M < 2 forj = 0,
1,2, --- . The answer to question (A) under the special restriction (2) differs

from the corresponding answer obtained herein when (2) is not assumed. In
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order to show the relationship between these two answers, we shall also answer
herein a more general question which is presented below.

For each value of j (j = 0, 1,2, -+ ), let H; denote either the empty set or a
given non-empty set of nonnegative integers. (In the following sections, we shall
specify some further restrictions on the possible sets H; that will be considered.)
For a given m and M, we shall consider all possible values of ¢;; which are such
that Condition (1) is satisfied and

(3) Qh]’:O for hSHj, and j=0,]_’2,....

For these possible values of ¢;; , we shall answer questions (A), (B), (C), and
(D) given in the first paragraph above. By taking H; as the empty set (for
j=0,1,2 -..), we note that the questions described in the first paragraph
form a special case of those introduced in the present paragraph. By taking H;
as the set consisting of the integer 1 (forj = 0, 1, 2, ---), and setting m; = 0
and M; = M < 2 (forj = 0,1, 2,.-.), we also note that the question con-
sidered by Freedman and Purves (1967) is a special case of question (A) in-
troduced in the present paragraph.

The process described in the first paragraph herein is a generalization of the
Galton-Watson process. For the Galton-Watson process, it is usually assumed
(see, e.g., Harris (1963), Chapter I) that ¢;; = g¢:. for all values of j = 0, 1,
2, - -+ . In other words, it is usually assumed that the ¢;; do not depend upon
the value of j; i.e., that the ¢;; are not generation-dependent. In the present
article, we shall consider both the case where the ¢;; are generation-dependent
(as described in the first paragraph above) and the case where they are not (as
in the usual Galton-Watson process).

For a population of individuals whose growth can be described by a Galton-
Watson process, the Malthusian rate u (i.e., the mean number of new individuals
produced by an individual during his lifetime) can be readily calculated from
the appropriate demographic life-table and the age-specific birth-rates (see, e.g.,
Goodman (1967), (1968b)). When the demographic data are subject to error,
a lower bound m and an upper bound M could also be calculated for the Mal-
thusian rate u (where m < u < M). For a given population for which the Mal-
thusian rate u, or the corresponding lower and upper bounds m and M, have
been calculated, it would then seem natural to ask the following questions
which we consider herein: (a)~(b) What are the smallest and largest possible
values of the probability that the jth generation (j = 0, 1, 2, - --) will become
extinct? (¢)—(d) What are the smallest and largest possible values of the prob-
ability of eventual extinction?

For the study of the growth of populations of individuals, various kinds of
multiplicative population processes may be of interest. Goodman (1967) showed
how to caleulate the probabilities of eventual extinction for three different kinds
of multiplicative population processes which take explicitly into account the
fact that the chances of death and the chances of giving birth, for a given in-
dividual in the population at time ¢, may depend upon his age at that time or
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upon the “phase” (or “stage’) of life in which he is at that time. These three
kinds of population processes were (i) a general age-dependent birth-and-death
process in which the time-scale and the age-scale are discrete, (ii) a general
multiphase birth-and-death process in which the time-scale is continuous and
the phases (or stages) through which an individual proceeds during his lifetime
are discrete, and (iii) a general age-dependent birth-and-death process in which
the time-scale and the age-scale are continuous. Goodman (1967) showed,
among other things, that the probability of eventual extinction satisfied an
equation which was of the same form when considering the eventual extinction
of the line of descent for an individual in the youngest age-interval in the popu-
lation process (i), for an individual in the earliest phase of life in the population
process (ii), for an individual who is newborn in the population process (iii),
and for an individual in the usual Galton-Watson process. In other words, these
particular probabilities of eventual extinction for the .population processes (i),
(ii) and (iii) satisfy an equation of the same form as the usual equation for the
probability of eventual extinction in the Galton-Watson process. That is, in
each of these cases the probability p of eventual extinction is the smallest root
of the equation

(4) p = D im0qip’,

where ¢;. is the probability that an individual will produce during his entire
lifetime ¢ new individuals. (In order to determine the smallest root of equation
(4) for the population process (i), (ii), or (iii), it is actually not necessary to
calculate first the values of the ¢;. from the corresponding parameters of the
population process, since simpler methods for determining the root are available
without calculating the ¢;. ; see Goodman (1967).)

Since the particular probabilities of eventual extinetion which were considered
in the preceding paragraph for the population processes (i), (ii), and (iii)
satisfy equation (4) (which is the usual equation for the probability of eventual
extinetion in a Galton-Watson process), all the results presented herein per-
taining to the minimization and the maximization of the probabilities of eventual
extinction in a Galton-Watson process can be applied directly to the minimi-
zation and the maximization of the corresponding probabilities for the popula-
tion processes (i), (ii), and (iii). A similar remark applies also to the population
processes introduced in Goodman (1968a) for the study of the population growth
of the two sexes both in the case where females are “marriage-dominant” and
in the case where males are “marriage-dominant.” For further discussion of the
relationship between these two-sex population processes and the more usual
one-sex population processes, see Goodman (1968a).

Before closing this section, we note that some of the questions considered herein
and the answers obtained can be interpreted in a way that pertains to the de-
termination of optimal strategies for certain kinds of gambling systems. Molenaar
and van der Velde (1967) and Freedman (1967) showed that in order for a
gambler to maximize the probability that he will survive for a fixed number of



PROBABILITIES OF EXTINCTION IN A GALTON-WATSON PROCESS 1703

bets in a gambling house that offers certain kinds of fair and unfair bets, the
optimal strategy would be to always make a certain kind of “timid” fair bet.
On the other hand, Molenaar and van der Velde (1967) also noted that in a
gambling house in which only certain kinds of unfair bets are offered (i.e., in a
more realistic gambling house), ‘“timid”’ betting need not be optimal and ‘“bold”
betting can be attractive. In contrast to these results, we provide the following
interpretation for some of the results presented herein.

Let us suppose that a gambler wishes to make a fixed number % of consecutive
visits to a gambling house in which each gamble on the (7 4+ 1)th day (j =
0,1,---,k — 1) costs one dollar and in return the gambler receives ¢ dollars
(i =0,1,2, ) with probability ¢;; . (Note that Y 7= ¢:; = 1, and that the
mean p; = Z,_o 1q;; 1 equal to one in a fair gamble.) The gambler plans to
start with a fixed number N of dollars with which he will pay the cost of N
gambles on the first day, and the returns he receives from his gambles on the
jthday (j = 1,2,---, k — 1) will be used to pay the costs of the gambles on
the (5 4+ 1)th day. On the (j 4+ 1)th day the gambling house offers a range
of possible values of the ¢;; which are such that Condition (1) is satisfied for some
specified constants m; and M ; , and Condition (3) is satisfied for some specified
set H;. (When M; < 1, only unfair gambles are available; and when M; = 1
both fair and unfair gambles are available if m; < 1). From some of the re-
sults which we shall present herein, we find that, in order for the gambler to
minimize the probability that he will go broke (i.e., maximize the probability
that he will survive) during the k visits, the optimal strategy would be to al-
ways make a certain kind of “timid” unfair bet in the case where the gambling
house offers only unfair bets, and to make a certain kind of “timid” fair bet in the
case where the gambling house offers both fair and unfair bets. Furthermore, in
this context, the worst possible strategy for the gambler would be to make a
certain kind of “bold” bet; i.e., it would maximize the probability that the
gambler would go broke.

2. Two lemmas. Our main results depend upon the following two lemmas.
The first lemma is a generalization of the corresponding result given by Freed-
man and Purves (1967).

Lemma 1. Let g and M denote given constants, with 0 < ¢ < land M = 0
Let H denote a given set of nonnegative integers, which includes at least one integer =
M and at least one integer < M. Let M™ denote the smallest integer in H such
that M* = M, and let M’ denote the largest integer in H such that M’ < M. Let
D = M* — M'. Let Y be a random variable that takes on the values M' and M*
with probabilities (M* — M)/D and (M — M')/D, respectively. (When M =
M* = M’ then Y takes on the value M with probability one.) Let X be any random
variable that takes on values in H and that has a mean value u < M. Then
(5) E{g"} z E{g"}.

7

Proor. In the case where D = 0, we make use of Jensen’s inequality (see, e.g.,
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Zygmund (1959), p. 21) and the fact that ¢* is a decreasing function of u. Thus,
E{g*} =z ¢ = ¢g" = E{g"}. Now let us consider the case where D > 0.

Let f(z) = [(M* — 2)g™ + (z — M")g™"/D. Then f(z) = ¢° forz = M*
and £ = M'; and f(z) < ¢” for all other values of = ¢ H. Note that f(z) is a
decreasing linear function of z. Thus,

Blg"} z B(f(X)} = J(B{X}) = f(u) Z f(M) = Elg"}. 0

LemMA 2. Let g and m denote given constants, with 0 < g < 1 and m = 0. Let
T denote a given integer which is =m. Let H* denote a given subset of the integers
0,1,2, --- , T, which includes at least one integer =m and at least one integer <m.
Let m* denote the largest integer in H”, and let m' denote the smallest integer in
A" Let d = m* — m'. Let Z denote a random variable that takes on the values
m’ and m* with probabilities (m* — m)/d and (m — m')/d, respectively. (When
m = m* = m', then Z takes on the value m with probability one.) Let X be any
random variable that takes on values in H™ and that has a mean value u = m. Then

(6) Elg"} = Elg"}.

Proor. The case where d = 0 is trivial. Now let us consider the case where
d > 0. Let

b(z) = [(m" — 2)g™ + (z — m')g™/d.

Then b(z) = ¢° for z = m* and = m'; and b(z) > ¢° for all other values of
z ¢ H”. Note that b(z) is a decreasing linear function of . Thus,

E{g"} < B{b(X)} = b(E{X}) = b(w) = b(m) = E{g°}. 0

Note that the inequalities (5) and (6) remain true in a trivial way when
g = 1 org = 0. (We can also obtain the inequalities (5) and (6) for g = O or
g = 1 by continuity by taking g — 0 or g — 1.)

The set H defined in Lemma 1 can be interpreted as the set of possible numbers
of new individuals produced by a given individual; and the set H” defined in
Lemma 2 can be interpreted similarly. The corresponding set H; (for
j =0,1,2 ---), which we shall introduce in Section 3 (The minimization
problem), can be interpreted as the set of possible numbers of new individuals
in the (j + 1)th generation produced by a given individual in the jth generation;
and the set H;” (forj = 0,1, 2, --- ), which we shall introduce in Section 4
(The maximization problem), can be interpreted similarly. The set H;, which
was referred t6 in the introduction herein, restricts by Condition (3) the possible
numbers of new individuals in the (j + 1)th generation produced by a given
individual in the jth generation. For the minimization problem, the set H; to be
considered is the set of nonnegative integers that are included in the complement
of H; . For the maximization problem, the set H; to be considered is the set of
nonnegative integers that are included in the complement of H;".

We shall now make use of the above lemmas to prove our main results con-
cefning the minimization and maximization of the probability that the kth
generation (k = 0, 1, --- ) will become extinct.
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3. The minimization problem. Let M = {M,, My, M., ---} denote a
sequence of numbers, with M; = 0 forj = 0, 1, 2, -- - . For each value of 7, let
H; denote a given set of nonnegative integers which includes at least one integer
= M ; and at least one integer <M ; . Let W; be an integer-valued random vari-
able forj = 0,1, 2, - - - . For a given nonnegative integer N and a given sequence
M, the sequence of random variables Wy , Wy, W, , - - - will be called a (N, 0, M)-
process if Wy = N and for allj = 0, given Wy, Wy, -+, W;, the conditional
distribution of Wjy; is the sum of W; independent random variables, each
taking on values in H; and having a mean u; < M, .

Let M;* denote the smallest integer in H; such that M;* = M, and let M/
denote the largest integer in H; such that M; < M;. Let D; = M;* — M.
Let us now consider the particular (N, 0, M)-process (Wo, W1, Wz, -+ ) in
which, given W, , W1, -+ -, W;, the conditional distribution of W, is the sum
of W; independent random variables each taking on the values M; and M ¥
with probability (M,;* — M,)/D; and (M; — M;')/D; , respectively. For this
particular process, we find that

(7) P(W; = 0} = [g(M, )]I",
where

9(M, 0) =0,
and

g(M,j + 1) = {[g(M*, NI (Me* — Mo) + [g(M*, /)1 (Mo — My)}/Do,

with M™ = {M;, My, M5, ---}. (Note that g(M, j + 1) is the probability
P{W 41 = 0} for a (1, 0, M)-process (Wo, Wi, Wy, -+ ), and g(M™, 7) is the
conditional probability that W;; = O given that W; = 1.)

Let K ; denote the set of integers 0,1, - -+ ,j — 1,forj = 1. Forj =1, 2,3, - - -,
we note that g(M, j) = 0if M’ > Oforallk ¢ K; ; that g(M,j) = 1if M;, = 0
for at least one value of k ¢ K; ; and that 0 < ¢g(M, j) < 1 otherwise.

We now prove the following theorem which is a direct extension of the Freed-
man-Purves (1967) result.

TaEOREM 1. For any (N, 0, M)-process (Wo, Wi, Ws, --+ ), and for any
nonnegative integer j, the probability that W; = 0 is at least [g(M, )"

Proor. We proceed by induction on j. For j = 0 the theorem is trivial. Suppose
the theorem holds true for some value of 7 > 0 for all (N, 0, M)-processes. Con-
sidering the (N, 0, M)-process (Wo, Wy, Ws -+ ), we see that, given Wi, the
process (Wy, Wy, ++- )isa (Wi, 0, M*)-process, where MY = {M;,M,, ---}.
Thus

P{Wia = 0| Wi 2 [g(M*, )",
and therefore
P{W;a = 0} 2 B{lg(M*, )™}
Now W1 is the sum of N independent random variables X; (forz = 1,2, --- , N),
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each taking on values in H, and having mean uo < M, . From Lemma 1 we see
that

Eflg(M*, NI} = Bllg(M*, )1,

where Y takes on the values My and M,* with probabilities (Mo* — M,)/Do and
(My — My)/Dy, respectively, where Dy = My* — M, . Since E{g(M™, /)*} =
g(M, j + 1), we obtain

P{Wiu =0} = [g(M,j + 1)I". [

Since [g(M, 7)]" is the probability of extinction P{W; = 0} for the particular
(N, 0, M)-process (W,, Wy, W,, -+ ) defined earlier herein, Theorem 1 states
that the corresponding probability of extinction for any other (N, 0, M)-process
is at least P{W; = 0}. Recall that for the particular (N, 0, M)-process (Wo, W1,
.-+ ), each individual in the jth generation produces a random number ¥ of new
individuals in the (j + 1)th generation, where Y takes on the values M; and
M ;* with probability (M;* — M;)/D; and (M; — M/)/D; , respectively.

In the special case where H; = H (forj = 0, 1,2, - - ) is the set of nonnega-
tive integers excluding the integer 1, and M; = M (forj = 0,1,2,--- ) is a
constant such that 0 < M =< 2, then M’ = 0, M* = 2, and Y is the random
variable taking on the values 0 and 2 with probabilities 1 — (M/2) and (M /2),
respectively. This agrees with the Freedman-Purves (1967) result.

In the special case where H; = H (forj = 0, 1,2, --- ) is the set of nonnega-
tive integers, then M, is the largest integer < M;, and M,* is the smallest
integer = M;, forj = 0, 1, 2, --- . Thus, in this special case, D; = 1 (for
j=0,1,2---), unless M; = M;* = M/ (ie., unless M; is a nonnegative
integer). In particular, when M; = M (forj = 0, 1, 2, - - - ) is a constant such
that 0 < M < 1,then M’ = 0 and M™* = 1 (unless M’ = M™), and Y is the
random variable taking on the values 0 and 1 with probabilities 1 — A and M,
respectively. Similarly, when M is such that 1 £ M =< 2, then M’ = 1 and
M* = 2 (unless M’ = M™), and Y takes on the values 1 and 2 with probabilities
2 — M and M — 1, respectively. More generally, when the H; and the M ; are
such that D; = 1, then Y takes on the values M, and M;* (for M;* = M} + 1)
with probabilities M;* — M; and M; — M, respectively.

In the special case where H; = H and M; = M (forj = 0,1, 2, --- ), the
(N, 0, M)-process (W, , Wi, --- ) is a Galton-Watson process. From Theorem 1
we see that the corresponding probability of extinction for any other Galton-
Watson process, which has N individuals in the Oth generation and has a Mal-
thusian rate <M, will be at least P{W; = 0}.

It should be noted that, in general, there may be other (N, 0, M)-processes
(Wo, Wy, -+ ), in addition to the particular (N, 0, M)-process (Wo, Wi, --- ),
for which P{W; = 0} = [g(M, 5)]". For example, in the particular case where
H; = H (forj = 0,1,2,---) is the set of nonnegative integers, and M,; = M
(forj = 0,1,2,--- ) is a constant such that 1 < M = 2, then P{W; = 0} =
P{W; = 0} = 0 for any (N, 0, M)-process (W,, Wi, --- ) in which each in-
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dividual in the jth generation (j = 0, 1, 2, --- ) produces at least one new
individual in the (j 4+ 1)th generation (with probability 1). More generally,
when the H; and the M are such that M, = 1 forj = 0, then P{W; = 0} =
P{W; = 0} = 0 for any (N, 0, M)-process (W,, W1, --- ) in which each in-
dividual in the jth generation (7 = 0, 1, 2, --- ) produces at least one new in-
dividual in the (j + 1)th generation (with probability 1). On the other hand,
by a slightly more detailed analysis following along the lines of the proof of
Theorem 1, we find that when the H; and the M; are such that M, = 0 and
M; > 0 for all j = 0, then the probability of extinction P{W; = 0}, for any
(N, 0, M)-process (Wo, Wy, -+ ), is greater than P{W; = 0} for k = 1, unless
the first & -+ 1 terms Wo, Wy, - -+, W, are distributed like Wo, Wy, -+, Wi .

Let P, = P{W, = 0} for any (N, 0, M)-process (W,, Wi, -+ ), and let
P, = P{W, = 0}. Since Py, Py, P,,--- and Py, P,, P, --- are both non-
decreasing sequences which are bounded from above, each sequence will have a
limit. Let P = lim P, and P = lim P, . By an argument similar to that presented
by Harris (1963), p. 7, we see that,

P = P{W,— 0 = P{W, =0 forsome Fk},

and a similar result applies to P. Thus, P and P are the probabilities of eventual
extinction for the processes (Wo, Wi, --- ) and (W, Wy, --- ), respectively.
By applying Theorem 1, we see that P = P. In other words, the probability of
eventual extinction for any (N, 0, M)-process is at least P, which is the prob-
ability of eventual extinction for the particular (N, 0, M )-process (W, , W1, -+ -)
defined earlier herein.

Before closing this section, let us again consider the special case where H; = H
and M; = M (for j = 0). We noted earlier that the (N, 0, M)-process
(Wo, Wi, ---) is a Galton-Watson process in this special case. Therefore, the
eventual-extinction probability P can be calculated by the usual equation (4)
for the Galton-Watson process (see, e.g., Harris (1963), p. 7). The results in
the preceding paragraph indicate that the probability of eventual extinetion for
any Galton-Watson process, which has N individuals in the Oth generation and
has a Malthusian rate <M, will be at least P. (A more direct proof of this result
can be obtained by applying Lemma 1 to the usual equation (4) for calculating
the eventual-extinction probability for the Galton-Watson process.) If M’ = 1,
the eventual-extinction probability can be reduced to zero as noted earlier herein;
if M' = 0 and M < 1, the eventual-extinction probability will be one for any
Galton-Watson process; if M’ = 0 and M = 1, the eventual-extinction prob-
ability is minimized only for the (N, 0, M)-process (Wo, Wy, ---).

From the remarks in the introduction herein concerning the population proc-
esses (1), (ii), and (iii) which were considered in Goodman (1967), and the two-sex
population processes which were considered in Goodman (1968a) for the case
where females or males are ‘“marriage-dominant”, we see that the results pre-
sented in the preceding paragraph can be applied directly to each of these
processes as well as to the Galton-Watson process.
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4. The maximization problem. Let m = {mo , m1,m2, - -+ } denote a sequence
of numbers, with m; = 0 forj = 0, 1, 2, - - - . For each value of 7, let T'; denote
a given nonnegative integer (7'; = m;), and let H;" denote a subset of the inte-
gers 0, 1, --- , T; which includes at least one integer =m; and at least one
integer <m; . Let V; be an integer-valued random variable, forj = 0, 1, 2, - - - .
For a given nonnegative integer N and a given sequence m, the sequence of
random variables Vo, Vi, Vo, - -+ will be called a (N, m, o )-process if Vo = N
and for all j = 0, given V,, Vi, .-+, V;, the conditional distribution of V ;4; is
the sum of V; independent random variables, each taking on values in H;” and
having a mean u; = m; .

Let m,;* denote the largest integer in H,”, and let m, denote the smallest
integerin H,". Let d; = m;* — m;. Let us now consider the particular (N, m, o)
process (Vo, Vi, Va2, -++) in which, given Vo, Vi, -+, V;, the conditional
distribution of V;4; is the sum of ¥; independent random variables each taking
on the values m, and m;* with probability (m;* — m,)/d; and (m; — m;’)/d;,
respectively. For this particular process, we find that

P{V; = 0} = [y(m,/)]"
where
(8) y(m, 0) = 0,
and
y(m,j + 1) = {[y(m™, H]™ (me* — me) + ly(m™, HI™"(me — ma')}/do

with m* = {m, my, mg, ---}. (Note that y(m, j 4+ 1) is the probability
P(V,41 = 0) fora (1,m, o)-process (Vo, Vi, V2, -++),and y(m™, ) is the con-
ditional probability that ¥;;1 = 0 given that V; = 1.)

Let K; denote the set of integers 0,1, --- ,5 — 1,forj = 1. Forj = 1, 2,3,

., we note that y(m,7) = Oif m;’ > Oforallk e K; ; thaty(m,7) = 1if m;, =
0 for at least one k ¢ K; ; and that 0 < y(m, ) < 1 otherwise.

We now introduce the following:

TaeoreM 2. For any (N, m, o )-process (Vo, V1, Vs, --+), and for any non-
negative integer j, the probability that V; = 0 is at most [y(m, j .

Proor. The method of proving Theorem 1 can be directly applied here, except
that Lemma 2 (rather than Lemma 1) would be used in the proof. The details
are left to the interested reader.

Since v(m, j)" is the probability of extinction for the (N, m, oo)-process
(Vo, V1, Vo, --+) defined earlier herein, Theorem 2 states that the probability
of extinetion for any other (N, m, o )-process is at most P{V; = 0}. Recall that
for the particular (N, m, o )-process (Vo, V1, V2, --), each individual in the
jth generation produces a random number Z of new individuals in the (7 4 1)th
generation, where Z takes on the values m; and m;* with probability (m;* —
m;)/d; and (m; — m;’)/d; , respectively.

In the special case where H;" = H” and m; = m (for j = 0, 1,2, ---), the
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(N, m, o)-process (V,, Vi, ---) is a Galton-Watson process. From Theorem 2
we see that the corresponding probability of extinction for any other Galton-
Watson process, which has N individuals in the Oth generation and has a Mal-
thusian rate =m, will be at most P{V; = 0}.

It should be noted that, in general, there may be other (N, m, o )-processes
(Vo, Vi, -++), in addition to the particular (N, m, e )-process (Vo, V1, --+),
for which P(V; = 0) = [y(m, j)]". For example, when the H;" and the m; are
such that m; = 1forj = 0, then P(V; = 0) = P(V; = 0) = 0 for any (N,
m, o )-process (Vo, Vi, --+). On the other hand, we find that when the a;”
and the m; are such that m; = 0 and m; > 0 for all j = 0, then the probability
of extinction P(V; = 0), for any (N, m, o )-process (Vo, Vi, -+ ), is less than
P(V: = 0) for k = 1, unless the first £ + 1 terms Vo, Vi, -+, V} are dis-
tributed like Vo, Vi, -+, Vi.

Let pr = P{Vx = 0} for any (N, m, o)-process (Vo, Vi, --+), and let
pr = P{V, = 0}. As in the preceding section, we find that the two sequences
Do, D1, P2y -+ and Po, P1, Pz, - - - have limits, say, p and P, respectively; and
that these limits are the probabilities of eventual extinction for the processes
(Vo, Vi, --+) and (Vo, Vi, ---), respectively. By applying Theorem 2, we
see that p < P. In other words, the probability of eventual extinction for any
(N, m, o )-process is at most 7, which is the probability of eventual extinction
for the particular (N, m, o )-process (Vo, V1 ---).

Let us again consider the special case where H;” = H" and m; = m (for
7 = 0). We noted earlier that the (N, m, o )-process (Vo, V1, --+) is a Galton-
Watson process in this special case. Therefore, the eventual-extinction prob-
ability 7 can be calculated by the usual equation (4) for the Galton-Watson
process. The eventual-extinction probability for any Galton-Watson process,
which has N individuals in the Oth generation and has a Malthusian rate =m,
will be at most p. (This result can be obtained from the results given in the pre-
ceding paragraph, or more directly by applying Lemma 2 to the usual equation
(4) for calculating the eventual-extinction probability for the Galton-Watson
process.) If m" = 1, the eventual-extinction probability will be zero; iftm =0
and m < 1, the eventual-extinction probability will be one for any Galton-
Watson process having a Malthusian rate <1 (except for the process in which
each individual in the jth generation produces during his lifetime one new in-
dividual who is in the (j -+ 1)th generation; i.e., in which ¢;; = 1 forj = 0, 1,
2,---);if m" = 0and m > 1, the eventual-extinction probability will be maxi-
mized only for the (N, m, o )-process (Vo, V1, ).

As earlier herein, we note that the results presented in the preceding paragraph
can be applied directly to the population processes (i), (ii), and (iii), and to the
two-sex population processes, to which we referred in the introduction herein, as
well as to the Galton-Watson process.

The results presented in this section pertain to certain kinds of population
processes for which the Malthusian rate u; = m;, forj = 0,1, --- . These results

will continue to hold for the subset of these population processes for which
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M;z u; = m; (forj =0,1,---), where M is any sequence for which M; = m;
(j = 0,1, ---). Similarly, the results presented in the preceding section, which
pertain to certain kinds of population processes for which the Malthusian rate
pi = M; (for j = 0), will continue to hold for the subset of these population
processes for which m; < u; = M; (for j = 0), where m is any sequence for
which m; < M; (forj = 0).
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