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WEAK CONVERGENCE AND A CHERNOFF-SAVAGE THEOREM
FOR RANDOM SAMPLE SIZES

By Ronarp PykeE Anp GALEN R. SHORACK
Unaversity of Washington

1. Summary. A Chernoff and Savage theorem on the asymptotic normality
of 2-sample linear rank statistics is here established for random sample sizes.
The proof parallels that of Pyke and Shorack (1968), hereafter referred to as
PS. A mild restriction on the underlying distributions is needed in the present
situation. A result of Pyke (1968) on the weak convergence of the 1-sample
empirical process for random sample sizes in the ordinary uniform metric is here
extended to other metrics. This extension provides an essential step in the pres-
ent proof and is also of separate interest. The results extend immediately to
c-samples.

2. Introduction and notation. Let {X,: 7 = 1} and {¥;:7 = 1} be inde-
pendent sequences of independent rv’s where the X;’s and YV ;’s have continuous
df.’s F and @ respectively. Let {m, : ¢ > 0} and {n, : ¢ > 0} be positive integer
valued stochastic processes satisfying

(2.1) t'm,—pa and ¢ 'n,—p B as {—
where 0 < a, 8 < «. Without loss of generality all random elements are de-
fined on the same probability space (2, @, P). Let
(2.2) N, = m; + n., )\t=mt/Nta )\0=a/(a+6)'

Tet A = [s,1 — As] where 0 < A <X <1 — X <1 and let an and
by denote the derivatives of K\ = FHy' and GHy' respectively where
(2.3) Hy =N+ (1 -)M@G

and where we write _&I{l for the composed function F(H,™") with inverses
defined to be left continuous.
Fort > 0 let

(24) H =H,, H =N+ (1-X\)G, H=H,,

when F, and G, are the empirical df’s of the first m, X s and the first n, ¥ /s
respectively. (Since the choice of subscripts will be consistent throughout, the
reader should not be confused by the notation Hy and H,.) For ¢ > 0 let

(2~5) K. = th_la K, = EHz—la l_{o = Fﬂo_l-
Define stochastic processes {Li(%) : 0 = u = 1} by
» (2.6) Lo(u) = N}NFH™(u) — FH ™ (w)], ¢>0.
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1676 RONALD PYKE AND GALEN R. SHORACK

Let a.(a0) and b,(bo) denote the derivatives of K,(K,) and GH,'(GH,™")
respectively; which exist a.s. with respect to Lebesgue measure and satisfy
Nae + (1 — \)b, = 1, (£ = 0).

For fixed integers m and n set N = m 4+ n and let

(2.7) Ty = m ' 2 1 cvilwi

where the cy,’s are arbitrary real constants and where Zy; equals 1 or O depend-
ing on whether the sth smallest among X;, -+, X,,and Y;,---, YV, isan X
or a Y. Define constants cy; by cyi = cyi + + -+ + cwy and let frw : N = 1}
denote a sequence of signed measures on [0, 1] such that »y puts measure cy;
at ¢/N for ¢ = 1, --- , N and puts 0 measure elsewhere. For ¢ > 0 let

<28) Tt = TN; and Ve = VN »

A summation by parts shows that

T = 2% on FHC (/N = [( FH ™ dv, .
Define u; = [0 K, dv, and set
(2.9) T = N T. — w) = [ Lo(u) du.

Let {Us(u):0 =u =1} and {Vo(u):0 = u < 1} be independent tied-
down Wiener processes on [0, 1]; and where defined set

(2.10) Lo(u) = (1 — Ao){No *bo(u)Up(FHy ™ (u))
— (1 = No) ag(u) Vo(GHy ™ (w))}.

Let D denote the space of all right continuous functions on [0, 1]. Let p denote
the uniform metric on D and let d denote Prokhorov’s (1956) metric on D.
Let weak convergence of processes, denoted by — , be as in Definition 2.1 of
PS. Let the class of functions @, be as in PS. Thus Q=1{geD:gq=2 ¢ for some
q ¢ Q'} where Q' denotes the class of all nonnegative functions defined on [0, 1]
which for some ¢ > 0 are bounded away from zero on (¢, 1 — ¢) and are non-
decreasing (non-increasing) on [0, ¢ ([1 — ¢ 1]) and which have square in-
‘tegrable reciprocals. When defined let po(f, ¢) = 0(f/q, g/q) and d, = d(f/q,

g/q) for all f, g £ D.
Let » denote a signed Lebesgue-Stieltjes measure on (0, 1) and let |»| denote

its total variation measure.

3. Statements of the main theorems. For ¢ > 0 define processes {U,(x) : 0 <
uw =1} and {V,(u) : 0 S u =< 1} by

(3.1) Ulu) =miFF ' (u) —u] and V.(u) = nlG.G0"(w) — ul.

TraEOREM 1. For any q ¢ Q, U, —, Ugrelative to (D, pg) and to (D, dg) ast — .

Assumprion 1. The functions Ky have derivatives ay for all u € (0, 1) and for
some \" & A the function ays can be continuously extended to [0, 1]. (See Corol-
lary 4.1 of PS for conditions under which this assumption holds.)
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TuEOREM 2. Suppose Assumption 1 holds, f}) gd|y| < o for some q ¢ Q and
(3.2) [ Led(v, — ») —, 0.

Then T.* is asymptotically distributed as ﬂ) Lo dv; which is a N (0, o0°) v where
oo 18 Jfinite and

(3.3) oo = 2(1 — No) N5 [4bo(u)bo(v)FHy * (w) [1 — FHy *(v)] dv(w) dv(v)
+ (1= 20) 7[5 3 ao(u)ao(v)GHs ()L — GHy ™ (v)] dv(w) dv(v)}.

Also po(L., Lo) =5 0 and dy(L;, Lo) —, 0 as t — «; when L, equals L, for
u = N, and equals O otherwise.

REMARK. Suppose the measure » is induced by a non-constant function —J
which is of bounded variation on (¢, 1 — €) for all ¢ > 0. Then under the hy-
pothesis of Corollary 5.1 of PS we have that (3.2) holds and that

(34) T* = Nt%[Tt — J2a J(Ho) dE] + 0p(1).

The quantity on the right of (3.4) is a more interesting statistic than is 7,
because it is centered by a fixed quantity. (The proof of Proposition 5.1 in PS
establishes (3.2) and the fact that NM[u, — [Zw J(H.) dF] = 0,(1). That
N2 [J(H,) — J(Ho) dF = 0,(1) follows from similar manipulations.)

ReMARK. In Theorem 2, Assumption 1 may be replaced by the assumption
that Ay, — Ao = 0,(N,*) and K, is differentiable a.e. |»|.

ExampLE. (1-sample tests of symmetry). Let &, - - -, &x be iid with continuous
df ¥. Let Ay = 1 — ¥(0) and suppose 0 < Ay < 1. It is desired to test whether
¥ is symmetric about the origin. With probability one we may let 0 < X; <
vt < Xmp(0 < Yy < +++ < Y,y) be an ordering of those |¢]’s among &, - - -,
£x for which £ > 0(¢ < 0). For z = 0 let F(z) = [¥(xz) — (1 — \o)]/A\o and
G(z) = [(1 — N) — ¥(—2x)]/(1 — X) be the conditional df’s of £ given that
£ is positive and negative respectively. Consider Ty = my ' > c;;,.ZN,- ;
Wilcoxon, normal scores and other 1-sample tests of symmetry can be repre-
sented as AyT'y where Ay = my/N. When (3.4) holds

NiTy — [2, J(H,) dF]

is asymptotically N(0, oo°) with oo given by (3.3). See Puri and Sen (1966)
for a corresponding result for the more usual statistic AyT» . Our result also
holds if N is a random sample size.

4. Proof of Theorem 1. For ¢ = 1 this theorem is proved in Pyke (1968).
If one divides by ¢ in a few obvious places one may recopy all of that proof
verbatim except for the statement (Pyke’s equation (2.10)):

(4.1) M, = maxigzza (k/n)'p(Us/g, 0) = 0,(1)
where Up(u) = K[F.F"(u) — u] for u ¢ [0, 1] and where F; is the empirical
df of Xy, ---, X). (In proving random sample size theorems one shows that

With high probability the random situation does not differ significantly from an
appropriate fixed sample size situation; M, arises when that difference is con-
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sidered. Hence it is necessary to introduce this notation for the fixed sample
size process. The context should insure that the reader will not be confused by
the notation U}, F for fixed sample size k¥ and U,, F, for random size N,.)
To prove (4.1) with ¢ = 1, Pyke used a weak convergence result of Dudley
(1966 ); a result which does not apparently allow for division by ¢ ¢ @. The gen-
eral outline of the proof of (4.1) given below is related to that used by Donsker
(1952).
As in Pyke (1968), one may write

(4.2) P[M, > y] = P[supo<a,c<1 |Za(u, t)|/q(u) > nly | Va(1, 1) = 0]
where
(4.3) Zu(u,t) = Vu(u,t) — uV,(1,1t), Valu, t) =‘N,,(u, t)-nut

and {N,(u, t) : 0 < u, t < 1} is a Poisson process over the unit square with
parameter E[N,(1, 1)] = n. Let

(4.4) S = inf {¢ : supo<usi [Za(u, t)|/q(u) > nly}

where one sets S = 1 if this set is empty. Write S, = ([SJ] + 1)/J where
[ ]is the greatest integer function. For > 0, define the event

(4.5) Ay = [supo<u=i [Zn(u, 8) — Zu(u, 85)|/q(u) 2 )
and set
(4.6) mos(y) = Plmaxi<j<s suPo<u<i [Zalu, j/0)|/q(u) > n'y | Va(1,1) = 0O].
Then
mas(y) = PIMa >yl = PIS < 1| Va(1,1) = 0]
=PA,,n[S<1]|V.(1,1) =0) 4 P(4sn
(4.7) [S < 1]| Va(1,1) = 0)
S mas(y — 8) + P(A;n[S < 1] Va(1,1) = 0)
= mus(y —8) + P(A;n[S < 1]n
[Va(1,1) = 0])/PIVa(1, 1) = 0].
Define the events
By = [supoguzi (1 — w)|Va(u, 85) — Va(u, S|/g(u) 2 n's/2]
and
Bys = [supo<us1 ul[Va(1,8;) — Valu, Ss)]
— Va1, 8) = Va(u, $)ll/a(u) = n5/2.]
Then
(4.8) P(A;n[S<1]n[V.(1,1) =0])
< 2w P(Biyn[S < 1n([Va(1,1) = 0])
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since A; C By; U By, . Using the independent increments of the Poisson process
we have for s < 1 — 1/J and ¢ = 1, 2 that

PBin[S<1n[V,.(1,1) =0]|S =5, V.(1,8) = v)

= 2L P(Bisn [Va(L, 85) — Va(1, 8) = 2]

(4.9) n[Vu(1,1) =0]| 8 =35, Va.(1,8) = v)

= 25 P(Bisn [Va(l,85) — Va(1,8) = 2))P[Va(1, 1)

— Va(l,85) = —v — 2]

for each v, where s; = ([sJ] + 1)/Jo and Bj; is defined as B;; only with s
and s; in place of S and S;. We use the fact that if Z is Poisson with mean A
then there is a constant ¢ such that

(4.10) max, P[Z = z] = P[Z = [\]] é e\~

the inequality in (4.10) follows from Stirlings approximation. It follows by using
(4.10) that for s < 1 — 1/J the term on the right hand side of (4.9) does not
exceed

eI P(Biyn [Va(l, s5) — Va(l, 8) = 2]) = eJ'n*P(B,)
=< cﬁn'%(éi/n&?)f% lg(u)] ™ n(ss — s) du
< it

where ¢* denotes a generic constant and the next to the last inequality follows
from Theorem 5.1 of Birnbaum and Marshall (1961 ). Thus taking expectations
in (4.9) we get

(411) P(Byuyn[S <1 — 1/J] n [Va(1,1) = 0]) £ * 2
A separate argument is necessary for the case 1 — 1/J < 8 < 1. Define
S*=inf{t =1— 1/J: supo<us<i [ Za(u, t)|/q(u) > niy}

where one sets 8* = 1 if this set is empty. Define S,* and B}, (z =1,2) in
terms of S* analogously to their unstarred counterparts. Then, for 7 = 1, 2,
one obtains

P(Bijn[l —1/J £ 8 < 1]n[V.(1,1) = 0])

= 2w PBin[S* =8 <1n[Vu(l,1) — Va(1, 8%) = 2]

n[Va(1,8%) = V(1,1 = 1/J) = wln [Va(1,1 = 1/J) = —z — w])
2w P(Bin [Va(1, 1) = Va(1, 8) = 2])

PVa(1, 8%) — Va(1,1 = 1/J) = wlP[Va(1,1 — 1/J) = —z — w]

IIA

»because of 1ndependent inerements and the fact that S* is a stoppmg time. By
(4.10) the last factor is bounded by cn?(1 — 1/7)F < 2en? for large J.
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Therefore, after summing over z and w one obtains
PB;n[l —1/J =8<1]n[V,.(1,1) =0])
< 2en*P(BY)
< TR [o [T — 8%) du)

I

IIA

by means of the Birnbaum-Marshall inequality and the fact that 1 — 8* < 1/J
by definition.

Combining this last inequality with (4.11) implies that (4.8) never exceeds
¢*87%(Jn). Upon substitution of this bound into (4.7) and application of
(4.10) to the term P[V,(1, 1) = 0], it follows that

(4.12) Tas(y) S P(M, > y) < wus(y — 8) + *62T

for all & > 0.
We now study the limit of 7,,(y) as n — «. To do this, consider J fixed and

define
(4.13) X.i(u) = 0 Zu(u, ;) — Za(w, ri1)]

where r; = j/J and consider the J independent processes {X,;(u) : 0 = u = 1},
(1 £ j £ J). By definition we may rewrite (4.13) as

(414) Xaj(u) = 0 {Nu(u, 7;) — Na(u, ri1) — ulNa(1, ;) — Na(1, 7520)]}
= (Nai/n)'Nni [Nai(w)/Na; — u]

where we have set N,,j(u) = N,(u,r;) — No(u, ;1) and N,; = N,;(1). Under
the condition [V,(1, 1) = 0], (equivalently [N,(1, 1) = n]), the random vector
(Nu1yNugy -+, Nyus) has the multinomial distribution of sample size # and with
cell probabilities p; = J ', 1 < j < J. Under the condition [N,(1, 1) = n,
N,.; =m;;1 £ j = J], the X, ;-processes are conditionally independent while
each X, ;-process has conditionally the same probability structure as ( mf/n)*Wm,-
where Wk is the empirical process

(4.15) We(u) = KNFe(u) —ul, O0=u=1,

based on a sample of K uniform-(0, 1) rv’s. By Theorem 2.1 of PS8 it is possible
to construct Wg-processes for which it is true that po( W, Wy) —,s 0 where
W is a tied-down Wiener process and ¢ ¢ Q. Therefore, by the above mentioned
conditional independence, it is possible to construct a sequence of multinomial
random vectors {(Ny; «--, N»;) : n = 1} with equal cell probabilities p; = J ™
and J independent sequences of empirical processes

(WP, oo, W) K 2 1)
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for which
max; <j<s po( (Nni/n W, T W) —,0

where Wy, - -, Wo'” are independent tied-down Wiener processes. In terms of
the X,;-processes this implies in particular that

rnj(y) =P [ma-X1§j§JSllp0§u§1 |Xn1(u) + .-
(4.16) + Xai(w)l/q(w) > y | Va(1,1) = 0]
—->P[max1§j§1 SUPo <u <1 IXOI(u) + -+ XOJ(U)l/Q(u) > y]

as n — o, where (Xu, ---, Xos) is a vector of independent Wiener processes
with Xo; equivalent to J W, If we let =,(y) denote the limit in (4.16) we
have that 7 ,;(y) is well defined and 7,(y) — 0 as y — «. It therefore follows by
taking limits as n — o in (4.12), that

(4.17) ws(y) < liminf, P[M, > ]
< lim sup, P[M, > y] £ =,(y — 8) + ¢*/°J%.

This suffices to establish (4.1) and hence Theorem 1 since the right hand side
of (4.17) can be made arbitrarily small by choosing y and J sufficiently large. []

It is possible however to establish a stronger result than that contained in the
above proof concerning the convergence in law of the sequence {M,}. To do this
we first introduce a 2-dimensional parameter Wiener process,

{(X(u,8):0=u,s =1},

defined by saying that (i) X (-, s) for each s is a tied-down Wiener process with
mean zero and E[X (u, s)X(v,8)] = su(l —v),0 S u = v = 1,and (ii) X(-,r)
and X(-,s) — X(-,r)areindependent for 0 < r = s < 1. Thus X is a Gavssian
process with mean zero and covariance E[X (u, r)X (v, 8)] = min(r, s)u(l — v)
if u < v. Equivalently the X-process may be described as having the same finite-
dimensional df’s as a Brownian motion on the unit square which is tied-down
along the line u = 1. Assume, without loss of generality, (Lévy (1954), p. 73),
that with probability one, X is continuous. With this definition one may rewrite
the right hand side of (4.16) as

(4.18) ms(y) = P[maxléng SUPo <u <1 |X(U7J/J)|/Q(u) > yl.
TaEOREM 3. Asn — =,
(4:.19) ‘ Mn, - M = SupOgu,sgl |X(u) S)I/Q(u)

Proor. The proof is outlined as follows. If one defines Y(z,s) =

(1 4+ z)X(z/(1 4+ z), s), it follows as in Doob (1949) that Y is a Brownian
motion over [0, « ) X [0, 1]. By Lévy’s Holder condition (Lévy (1954), p. 73)

# and the fact that g(cu)[u log(1/u ) — © asu — 0 for any ¢ > 0, it follows



1682 RONALD PYKE AND GALEN R. SHORACK

that
(4.20) inf{z > 0: |Y(z,s)| > yg(z/(1 +z)) forall 0 <s=1 >0

with probability one. In view of the relationship between X and Y, the a.s.
positivity of this stopping time suffices to show that

(4.21) limyse w,(y) = PIM > yl.

(It should be remarked that if s in (4.20) is restricted to the values
j/J, (1 <7 £ J), the positivity is a consequence of the law of the iterated
logarithm for ordinary 1-dimensional Brownian motion. This however would
not be enough to establish (4.21).) The proof is now completed by letting first
J — o and then § — 0 in (4.17). []

5. Proof of Theorem 2. The proof of this theorem corresponds closely to the
proof of Theorem 4.1 of PS. We ask the reader to reread that proof (Sections 2,
3 and 4 of PS) at this time; here we indicate only the changes that need to be
made. In PS we took the weak convergence of the empirical process as our
starting point; in Lemma 1 below we establish the corresponding weak conver-
gence result. Define

Wi(u) = A and Wy(t) = N\ for 0=su<it
=1—-X =1— N for tsu<#
= N/t =a-+8 for ¢2=su<éi
= U(5u — 3) = Up(bu —3) for ¢ u=%
= Vi(5u — 4) = Vo(bu —4) for $=u=1

(We wish to replace U;, V., m, and n, by random quantities which have the
same finite dimensional distributions but which satisfy additional requirements.
Introducing the W ,-processes merely provides a convenient way to show that
this is possible. )

Lemma 1. W, — W, relative to (D, d).

Proor. By Theorem 15.1 of Billingsly (1967) it suffices to show that (i) the
family of distributions I of the W -processes is tight and (ii) the finite dimen-
sional distributions of the W ,-processes converge to those of the Wo-process. We
now prove (i). From Pyke (1968) we know that U, — Usand V,—, V relative
to (D, d). Thus the families of distributions IIy and Iy of the U, and V-
processes respectively are tight by Billingsley’s Theorem 6.2. The definition of
tightness of a family II of probability distributions P on (D, d) implies that for
all ¢ > 0 there exists a compact subset K* of D such that P(K.) > 1 — e for
all P eII. Let Kyf and Ky° be the guaranteed compact sets for IIy and Iy re-
spectively. Since compactness is equivalent to sequential compactness in the
metric space (D, d), it is easy to find a compact set Ky related to Ky° and
K such that P(Kw®) > 1 — 3eforall P e Il . We next prove (ii). Let u, - - -,
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u, be any finite subset of [£, 1]. We will show that (W (w), - ,Wi(uz)) is
asymptotically distributed as (Wo(u1), - -+, Wo(uz)); the extension to the case
of Uy, -, u in [0, 1] being trivial. Since the Wy(u;)’s are jointly normal, it
suffices to show that the distribution of all linear combinations of the W,(u;)’s
converge to the distribution of the same linear combination of Wy(u;)’s; and this
latter fact follows from Theorem 1 of Miller (1961). Alternatively, a direct proof
is possible since the linear combination may be written as

[ 22" Wymd + 20" Zi/nl)

where the W./s are iid and the Zs are iid. The result then follows from the
proof of the 1-dimensional theorem of Anscombe (1952); Kolmogorov’s in-
equality is used separately on each of two error terms. []

As in equation (2.2) of PS we use item 3.1.1 of Skorokhod (1956) to construct
processes W, and W, on a probability space (2, &, P) that have the same finite
dimensional distributions as do the processes W, and Wy on (Q, @, P) and which
further satisfy p(W., Wo) —as 0 as ¢t — . We now define for u ¢ [0, 1] and
t>0

N.=W,.2), @w,=NW,0), df,=NW,G%), \=m/N,,
Uu) = W((u+3)/5),  To(u) = Wo((u + 3)/5),
Vi(u) = Wou + 4)/5),  Vo(u) = Wo((u + 4)/5).
Note that

’fﬁg/t —as. Q, ﬁt/t —a.s. ﬂ, Xt —a.s. )\0

and that almost surely U,(7,) has #.(#,) jumps of size , (A, ) and is other-
wise continuous (Lemma 1 was needed to be able to apply Skorokhod’s result.)

From now on we suppress the symbol ~ in our notation though everything
that follows refers to these specially constructed processes. As the proofs of the
lemmas and theorems of PS are now reread, subscripts m, n, N should be re-
placed by ¢, N — «© by { — « and the numbers m, n, N should be subscripted
by ¢. Theorem 2.1 of PS and hence Lemma 2.2 also, has been proved as Theorem
1 of this paper. The proof of Lemma 2.3 of PS carries over as it is, since N; —,s ©
as t — o (provided we consider the version of Lemma 2.3 that uses (2.2) of
PS; otherwise we get only —,.)

Lemma 2.5 of PS can not be recopied until we show that the random sample
size analog of equation (2.11) of PS is true; thus we must show for every ¢ > 0
there exists b > 0 such that P(A4,) > 1 — e where

(5.1) A, = [F(u) £ bF,(u) forall w where F.,(u)> 0].
Let B, = [|m,/t — a| £ 8], 7. = [t(a — 8)], 8: = [t(a + 6)] and

’ C,=[min{X;:1 <4 =<7} =mn{X;:1 =7 = s}l
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Then
P(4:) 2z P(AtnB,nC,)
= P([F(u) = bF,(u) for all (m;, w) such that r, < m; < s, and
Fyu) > 0]nC,)
P([(r/s:)bF,,(u) = F(u) for all u such that F,,(u) > 0] n C,)
z1— ¢2— P(CY),

for sufficiently large b, this last inequality following directly from (2.11) of PS.
Letting ¢, = min{X,; : 1 < ¢ =< r} we have

P(C:) = B((1 = &)™)
— B(ePe ) = (q — §)/(a + 5)

(1%

where Z is an exponential rv with mean one since 7:£; —, Z. Thus for small 3,
P(C:) = 1 — ¢/2 for t sufficiently large. We may now recopy the rest of the
proof of Lemma 2.5 of PS provided we replace 4; by A, n D, where
D, = [\ = 2\ and ¢ is so large that P(D,) = 1 — e

Likewise the rest of Section 2 and all of Sections 3 and 4 of PS carry over
with only trivial modifications. []

The second remark in Section 3 of this paper follows by rereading Section 5
of PS. (The statement Ay, — \o = 0,(N,*) is stronger than is needed for Lemma
5.2; however, the statement \y, — N = O,(N ) is not strong enough. )

NoTt AppED IN PROOF. An alternate proof of Theorem 1 is possible by deriv-
ing a suitable 2-dimensional generalization of the Birnbaum-Marshall inequality
which may then be applied directly to bound P(A,) appropriately. Such an in-
equality is derivable by paralleling the proof of Wichura’s multidimensional
Kolmogorov inequality; (Lemma 2.1 of Wichura [14]).
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