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A NOTE ON ROBUST ESTIMATION IN ANALYSIS OF VARIANCE

By Emin SpigrvoLL
Unaversity of Oslo
1. Introduction. Consider the c¢-sample model, in which the observations are
(L.1) Xia = £i + Usa, a=1,2 - ,n;; =12 ---,¢

where the variables U, are independently distributed with cumulative distribu-
tion function F. Let

(1.2) Yij = med (X — Xj)

be the median of the nm; differences X — Xjp(a =1, 2, .-, n;,
B=1,2, ---,n;). It has been shown by Hodges and Lehmann [2] that the esti-
mate Y of £ — £; has more robust efficiency than the standard estimate
Tij = X, — Xj. , where X;. = ZXia/m.

The estimates Y ;; do not satisfy the linear relations satisfied by the differences
they estimate. To remedy this, the raw estimates Y;; were by Lehmann [3] re-
placed by adjusted estimates Z; of the form £; — £; . This was done by minimizing
the sum of squares

(1.3) D (Yij — (8 — £))°
giving (see [3])
(14) Zi=Y,. —Y;

where Yi. = (1/c¢) 2. Y. and where Y; is defined to be zero for all 3.

The purpose of this note is to argue that in the sum of squares (1.3) there
should be used weights according to the number of observations on which the
different Y,; are based.

For purpose of reference we state a theorem of Lehmann. Let the sample sizes
n: tend to infinity in such a way that n; — pN(N = X n:),0 < p; < 1. Then
we have the following theorem (Theorem 2 of [3]).

THEOREM 1. Let the density f of F satisfy the regularity conditions of Lemma 3(a.)
of [1].

(1) The joint distribution of (Vi, Vs, -+, Vo) where

Vi=NNYi — (& — &))

1s asymptotically normal with zero mean and covariance matriz
Var (Vi) = (&) (1/pi + 1/p)/ ([ f*(=) dz)”
Cov (Vi, V) = (dep.)/(J f(2) dz)”.
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(ii) For any t and j
N'Yy~ N (Y — Vi)
where ~ indicates that the difference of the two sides tends to zero in probability.

2. Weighted estimates. Define the ic(c — 1)-component vector Y’ =
[Yio, Y13, - -+, Yeou,o. Denote the covariance matrix of ¥ by A. Suppose that
EY,; = £; — &; (conditions under which this holds or approximately holds are
given in [2]) for all 7 and j. The problem of estimating the differences £; — §; can
then be treated as an ordinary regression problem. The minimum variance un-
biased linear estimates of the £; — £; are obtained by minimizing

(2.1) 20 (Y — (8 — &) (Y — (& — &)

where a*** denote the elements of A",

Since from Theorem 1 asymptotically EY;; = &; — £; it seems reasonable to
minimize (2.1) even if the Y;; are not exactly unbiased estimates of £; — &; for
finite N.

Unfortunately the elements of A are unknown. But suppose we use an arbitrary
1(c — 1)e X 3(¢c — 1)c matrix W with elements w;; x; and try to minimize

(2.2) 2wV — (B — £)) (Y — (B — &)).

Let Y7; denote the minimizing value of & — £ in (2.2). We shall study the
asymptotic distribution of the ¥7; . We shall allow the matrix W to vary with the
number of observations, and use the notation W(n; , ny, -+, n,) = Wy. Let
the n; tend to infinity as in Theorem 1.

THEOREM 2. Let the assumptions of Theorem 1 be satisfied. For any sequence
{Wx} of nonsingular matrices converging to a nonsingular matrix Wo with finite
elements, asymptotically for any 7 and j

N (Y — Vi) ~0.

Proor. To get a full rank regression problem we introduce the parameters
(2.3) 0; = & — &, t=1,2---,¢c—1.
Then
(24) & — & =0, —0;.

Let B denote the (¢ — 1)c X (¢ — 1) design matrix of rank ¢ — 1 such that
(2.2) can be written

(2.5) (Y — BO) Wy(Y — BY)

where 6 = (6;, 6,,-+-, 6.1). The value of 6 minimizing (2.5) is
by = (BWxB) 'B'WyY. Define Y1 by Yy = (Vi - -, Ye1.c). By Theorem 1(ii)

(2.6) NY(Y — BY)) ~ 0.
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We have

(2.7) N'(by — Y1) = (B'WyB) 'WyN'(Y — BY3).

The elements of (B'WxyB)'B'W are bounded. Hence by (2.6)
N'(by — Y1) ~ 0.

Hence N*(YY, — Yi) ~ 0 for any <. By Theorem 1(ii) and the fact that
YY = V¥ — Y7 it follows that N*(Y}; — Y;) ~ 0 for any 7 and j. The theorem
is proved.

It is seen from the above theorem that the asymptotic distribution of the esti-
mates does not depend on the matrices Wy . The estimates Z,; given by Lehmann
correspond to Wy = I.

But the best unbiased linear estimates will give better estimates than the Z; .
Since 4 is unknown we cannot find the former. By Theorem 1(i) the asymptotic
value of A is known, but it is singular and cannot be used in (2.1).

We now propose to use the asymptotic variance of the Y,; as weights, i.e.
we want to minimize

(2.8) Q = Z (N/n; + N/nj) (Y — (& — &))* with respect to & — &;.

We introduce (2.3) and (2.4) in (2.8). After derivation of (2.8) with respect
to the 6; it is found that the minimizing values are given by the solutions of the
equations

(2.9) Bu(Divani(ni+na) ™) — Z'i;éa.c ni(ni + na) 0 = D ini(ni+na) " Vai,
a=12 ---,¢c—1.

It does not seem easy to find an explicit algebraic solution of (2.9), though for
each specific set of the n; we can solve (2.9), if necessary with the aid of an
electronic computer.

It follows from Theorem 2 that the asymptotic distribution of the 8; — §, is
equal to the asymptotic distribution of the estimates Z,; and hence the same is
true regarding asymptotic efficiencies.

We now proceed to prove that in some respects the estimates §; — 6; are better
than the Z,; . Let D be a subset of the integers 1, 2, - - - , c. Suppose that n; — pN
as N — « when ¢ ¢ D while n;/N — 0 when ¢ # D. We shall study the asymptotic
distribution of the estimates in this case. Without loss of generality we may
assume D = {1,2, ---, b} for some b < c.

TareoreM 3. Suppose that N — o such that n; — p;N when ¢ = 1,2, --- | b
(D 1% pi = 1). Then the asymptotic distribution of the 6; — 0; of (2.9) fori,j < bis
equal to the asymptotic distribution of the Y in Theorem 1 when c is replaced by b.

Proor. @ can be written

(210)  Q = Lmexiyzo (N/ni + N/n) (Vi — (& — &))"
+ 2maxiiss (0i/N) (ni/N) (ni/N + ny/N) (Vi — (5 — &)™
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By assumption the last expression on the right hand side of (2.10) tends to zero
when N — «. Hence

Q ~ D maxiiy<s (N/ni + N/mj) ™ (Yi; — (& — &))°

which is of the form (2.8) with ¢ replaced by b. The theorem now easily follows
since the same results hold for the Y ,; with 7, j < b as for the Y;; with ¢, < .
In [3], p. 958, it is pointed out that the estimate Zi, of & — & is not consistent
when n; and n, tend to infinity unless also n3 tends to infinity (¢ = 3). Theorem 3
proves that the new estimates §; — 8, do not have this deficiency. If for some ¢
and j, n; and n; tend to infinity, then §; — 6, is a consistent estimate of &; — £;.

3. An alternative estimate. Since the estimates 6; — 6; of (2.9) is not easily
computed unless one has access to an electronic computor, we shall give alterna-
tive simpler estimates which also are weighted estimates. We shall minimize

(3.1) N2 nmi(Yiy — (5 — £))™
By differentiation it is easily found that the values of £ — &; minimizing (3.1) is
(3'2) Wij = (Zna)_l Zna(Y'L’a - szx) = Y’L - Yj

where we have introduced the weighted sums ¥ = (2 7a) ™ 2 faY ia . Compare
(14).

It follows from Theorem 2 that the estimates W; have the same asymptotic
properties as the Z;; and 8; — §; when n; — p;N with 0 < p; < 1. Furthermore it is
easily seen that Theorem 3 holds for the W ;.

4. Thecase ny = ng = +-- = n,. When ny = ng = -+ = n, both ; — 6;
and W ,; reduce to Z;; . Further we have
TuHEOREM 4. Letny = ny = -+ = n, = n and suppose EY ;; = & — &;. Then

the estimates Zi; are the minimum variance unbiased estimates of the difference
£ — &; in the class of all estimates linear in the Y;.
Proor. Define ¢* and a by

(4.1) o = Var Vy,, ao® = Cov (Yi, V).
Note that both ¢ and a depend upon n and F. By symmetry we have
Var Y; =g, 1 # 7,
Cov (Yi, Yu) = 0, ik i#£LlL jEE §FEI
(42) Cov (Yy,Ya) =ad’, j#1, i#35, i#I;
Cov (Y, Vi) = as®, i#k, i#3j, k#j;
Cov (Yi;, Yy) = —ad’, %1, i#j, j#I;
Cov (Y, Yi) = —ad’, k=4, i#3j, ki

Let the covariance matrix of ¥ given by (4.2) be G(a)s’. It can be verified
that the inverse of G(a) is (1 + 2(¢c — 2) da)'G(d) where d = —a(l +
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(¢ — 4)a)”". Hence (2.1) is proportional to
Q=220 — (6 — &)
+2d2 202000 (Y — (5 — ) (Vi — (B — &)
+2d20 2002005 (Y — (85— ) (Y — (8 — &)).
The part of @, involving £, can be written
(Y= (5= &) + 2402 X0 (Yia — (& — &) (Vi — (& — &)
+2d2552°00 (Yie — (5 — &) (Yia — (5 —£)).
We find
3Qu/0k = 2(1 + d(c — 1)) (cta — 2 & — 2 i Vai).
Hence the minimizing values £; satisfy
be=c' b+ iV
and hence by (1.4)
b — b= ) aVia— ¢ D aYia = 2.

6. An example. In this section the estimates are compared on an example
taken from Scheffé: “The Analysis of Variance”. p. 140. It is a two-way layout
with factors genotype of the foster mother and that of the litter for four types
of rats. The observations are weights (average) of the litter. Let Ay, Az, 43, A4

and By, B:, Bs, By denote the different genotypes of the foster mother and the
litter respectively. The observations are shown in Table 1.

TABLE 1
B, B,

A, A, As Ay A A, A; Ay
61.5 55.0 52.5 42.0 60.3 50.8 56.5 51.3
68.2 42.0 61.8 54.0 51.7 64.7 59.0 40.5
64.0 60.2 49.5 61.0 49.3 61.7 47.2
65.0 52.7 48.2 48.0 64.0 53.0
59.7 39.6 62.0

B, By

A A; As As Ay A, A; Ay
37.0 56.3 39.7 50.0 59.0 59.5 45.2 44.8
36.3 69.8 46.0 43.8 57.4 52.8 57.0 51.5
68.0 67.0 61.3 54.5 54.0 56.0 61.4 53.0

55.3 47.0 42.0
55.7 54.0
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Let £;; denote the expectation of the variables from (4;, B;). In Table 2 are
given the estimates of the differences £;; — £4 obtained by the different methods.

From Table 2 the estimates of any £;; — £ can be found. It is seen that in
this example the estimates Z, W and 6 do not differ much. The estimates 6 tend
to lie between Z and W. In the example the sample sizes vary from 2 to 5 while
¢ = 16. The results seem to indicate that for such a small variation of sample
sizes relative to the value of ¢, the weighted estimates will not much change the
estimates Z.

To see the effect for smaller ¢ when the variation from 2 to 5 of sample sizes
seems more important, we select the factor combinations (A, B:i), (44, By)
and (A4, Bs). Then we have ¢ = 3 and sample sizes 5, 5 and 2. The estimates are
given in Table 3.

It is seen that the estimate of &1 — £4 based on W and 6 are closer to the original
estimate Y than the estimate based on Z. This is as should be expected since
there are 5 + 5 observations behind the estimate of the difference &; — £,
while there are 5 + 2 observations behind the other estimates.

TABLE 2
£n £ & Ea &2 £ 2 £
— tu — ty  — tu — fu — Eu —fu - Eu — &u
Y 14.2 3.5 6.1 0.0 3.9 10.7 5.0 —2.2
Z 14.35 3.86 4.65 0.14 3.14 12.0 4.82 —2.87
w 14.29 3.88 4.57 0.06 3.01 11.95 4.83 —2.88
] 14.31 3.87 4.60 0.09 3.07 11.98 4.82 —-2.89
Classical 14.62 3.34 5.07 —0.10 3.27 11.58  4.87 —-3.16
f2%) £ £33 £ &1 §u &34
— tu — &u — §u — $u — tu —fu  — fu
Y -7.8 15.5 2.7 0.5 5.0 6.5 5.5
Z =7.50 15.48  3.11 0.31 5.19 6.68 5.74
w —-7.84 15.51 3.12 0.33 5.21 6.68 5.73
[ —7.66 15.49 3.12 0.31 5.21 6.67 5.74
Classical —1.96 15.31 2.54 0.37 5.2 7.04 5.47
TABLE 3
fn — £a fn — e Ea — &
Y 15.8 18.05 3.1
A 15.52 18.3 2.78
w 15.66 18.40 2.74
[ 15.61 18.38 2.77

Classical 14.72 17.78 3.06
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