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AN EXTENSION OF PAULSON’S SELECTION PROCEDURE

By D. G. HoerL aAxnp M. MazuMmpARr
Westinghouse Research Laboratories

1. Introduction. Suppose that my, m2, -+, m are k populations in which we
may observe the independent random variables X; , X», - -+, Xi, respectively.
We assume that the distribution of X, is a member of the one-dimensional
Koopman-Darmois family with density exp {P(2)Q(6:;) + R(z) + S8(6:)},
i1=1,2,---,k. Let - = Q(8) and suppose that the ordered set of the r-values
of m, m, -+, m are denoted by 7y = 71y = -+ = 7 - These 7-values are
assumed to be unknown, and if 7y > 7y, we refer to the population asso-
ciated with 7y as the best population. In this paper we obtain a sequential
procedure which guarantees that the probability of selecting the best population
is at least a specified amount whenever 7y exceeds 7x—1; by a specified quantity.
This procedure is an extension of Paulson’s [4] procedure for selecting the nor-
mal population with the greatest mean. The major difference between the two
procedures is that Paulson’s is truncated while the one obtained here is not.

An exhaustive discussion of the different aspects of the problem considered
in this paper will be found in the monograph by Bechhofer, Kiefer and Sobel
[1], who have given a different sequential procedure which guarantees the same
probability requirements. The notations used in the present paper largely fol-
low those used in the monograph. The procedure obtained in this paper solves
the ranking problem when the measure of distance between two populations
w; and ; is defined to be |r; — 7;|. However in some applications this measure
may not be appropriate.

In Section 2 we describe briefly the ranking problem and the proposed rule.
A proof is given for the fact that the procedure guarantees the stated proba-
bility requirements. This procedure can be easily extended to the ranking of %
stochastic processes belonging to the Koopman-Darmois family. The procedure
so obtained will tend to be on the conservative side in the sense of ‘“‘overprotec-
tion” due to inequalities on the probability of correct selection which are used
in its construction. Certain modification of the procedure for values of k¥ < 5
so as to reduce the amount of overprotection (and consequently, the average
sample size) are obtained in Section 3. In Section 4 the procedure is applied
to the problem of selecting the Poisson process with the largest parameter when
L = 3 and the ezact probability of correct selection is obtained using relaxation
techniques.

2. Formulation of the selection problem.
2.1. Koopman-Darmois Populations and Some of Their Relevant Properties.
A univariate population is said to belong to the Koopman-Darmois family if
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its frequency function f(z; ) can be written in the form
(1) f(z; 8) = exp {P(2)Q(0) + R(z) + S(6)},

where f(x; 8) represents the probability density at x for continuous variables
or the probability of obtaining the observed value x for discrete variables and
§ is the unknown real parameter on which the frequency function depends.
Here P(z) and R(z) do not involve 8, while Q(6) and S(6) do not depend on
2. We shall define @(6) to be the Koopman-Darmois parameter, and all of our
statements regarding the ranking procedure will be made in terms of this param-
eter. The function Q(- ) is assumed to be a continuous, strictly increasing func-
tion of 6. A detailed characterization of these populations and the usual regu-
larity assumptions on the functions P(-), @(-), B(-) and S(-) are contained
in Bechhofer, Kiefer and Sobel [1]. We now state a result pertaining to the Koop-
man-Darmois family of distributions which we shall need in the sequel.

Let X; and X, be two independent random variables distributed according
to the frequency functions belonging to the same univariate Koopman-Darmois
family given by (1), and let their frequency functions be denoted by f(X; ;
6,) and f(X, ; 62) respectively. Let Z = P(X:) — P(X.), and Z,, Z,, --- be
a sequence of independently distributed random variables having the same dis-
tribution as that of Z. If 6, < 6, then

(2) Pr{supn Z;;I Z: = a} < 6—[0(32)—0(01)10,

where a is positive constant.
A detailed proof of this result is given in [1]. Briefly, since E(Z) < 0, we have
that for all positive a,

Plsup, Dt Z: = a] £ 6",
where {, is the non-zero root of the equation E(e'?) = 1. Also
E(e'?) = [Zo [Za " (@5 0)f(22 ; 62) dan dy
= [2% [Zwexp {P(22)Q(6:) — #] + P(2:)[Q(6:) + ]
+ 8(6:1) + S(6:) + R(21) + R(x2)} dzy ds

and if we set ¢ = Q(6:) — Q(6;) we see that E(e'”) = 1. This result was first
given by Girshick [3].

2.2. Formulation of the ranking problem. Let m , m, « -+, m be k populations
belonging to the same Koopman-Darmois family given by (1) and let the 6-
values of these frequency functions be denoted by 6, 6., ---, 0. Let the
ranked values of these parameters be 0y < 0z < -+ = 0y . Let 7 = Q(0)
and the corresponding 7-values be denoted by 73y £ 723 £ +++ = 7 . Since
Q(-) has been assumed to be strictly increasing in 6, we shall have @(6;;) =
71,1 = 1, 2, -+, k. Our problem is to obtain a procedure which will select
the population associated with 6y (and therefore ;) such that

(3) Pr {correct selection of the “best” population} = P¥
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whenever
(4) Tw — Ty = 6 > 0.

Here P* is a preassigned positive constant lying between 1/k and 1, and &* is
another specified positive constant. These constants are supplied to the statis-
tician by the experimenter and will depend on his requirements of accuracy.
The above formulation of the ranking problem is due to Bechhofer, Kiefer and
Sobel [1].

2.3. The proposed selection procedure. Let X;; denote the jth observation from
the 7th population (¢ = 1,2, --- , k; 7 = 1,2, --- .). It is assumed that the
X./’s are mutually independently distributed. Let YV = 2 j= P(Xy5), 2 = 1,
2, -+, k;m= 1,2, --. . According to the procedure we start by taking one
observation from each population m;, m, -, 7 and compute Y,; for each <.
If for any 7, we find that

(5) Ya £ max,Yy — (6%)7In (k — 1)(1 — P*)7,

we eliminate 7; from further consideration and take observations at the next
stage on the remaining populations only. We carry on this procedure computing
at each stage the sums Y, on the populations not yet eliminated, and removing
those populations 7; from further consideration for which

(6) Yim < max,Yem — (6%) ' In (k — 1) (1 — P*)™.

We shall terminate the procedure at the stage when only one population has not
been eliminated and select it as the best. We now prove that the above procedure
guarantees (3).

For simplicity of notation, we relabel the populations so that ; is associated
with the value 7(; . With this convention the ranked values of 7,’s can be denoted
by 71 £ 72 < --- = 7. Let A denote the condition 7, = i8N ,i=1,2 -,
k — 1. We then have

Pr {incorrect selection | A}
Pr {7 is eliminated | A}

(7) < Pr{foratleast one valueof 2(¢ = 1,2, -+ [k — 1), Vi £ Vin

— (8" In (k — 1)(1 — P*)™ for some value of m < o | A}
S Pr{supm(Yim — Yim) = (6%) " In (& — 1)(1 — P*)7| A}.

IIA

Therefore using (2) we have

Pr {incorrect selection | A}

(8) = didexp{—(m — r)(")In(k— 1)(1 — P*)7}
< (k—1)exp{—In (k — 1)(1 — P*)7}
< 1-— P%
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and thus the assertion is proved. We observe that using this procedure no upper
bound can be given to the maximum number of observations which will be taken
before the procedure terminates. (Bechhofer, Kiefer and Sobel [1] have shown
that in general no procedure using a finite number of stages can guarantee (3)
for all the members of the Koopman-Darmois family when the measure of dis-
tance between two populations ; and =; is taken to be |7; — 7,]). It can be shown,
however, that the above procedure terminates with probability one. Finally
we should remark that the procedure extends with obvious modifications to the
case of ranking Koopman-Darmois processes as well.

3. Certain simple modifications of the selection procedure when k& = 2, 3,
4 or 5. From the preceding section we observe that the above procedure guaran-
tees the probability requirement (3) but because of the number of inequalities
used in its construction the exact probability of correct selection will always
exceed the nominal probability requirement. The amount of overprotection for
low values of P* may be considerable. It is possible to achieve slightly better
approximations to the probability of correct selection than is given in (8) by
strengthening one of the inequalities given there for ¥ < 5. This improvement
in turn leads to certain modifications of the procedure which result in some reduc-
tion in the amount of overprotection. We describe below the modifications which
are essentially based on the following inequality.

Let {X.}, {Yi}, {Z)} be three independent sequences of random variables
such that {X,} and {¥} have the same distribution. Then

(9) Prisupi(X;— Z:) > cand sup:;(Y: — Z;) > ¢} = Pr’ {sup:(X: — Z:) > ¢}.
In order to prove (9) it is enough to note that for all M/
Pr {maxocicu(X: — Z;) > ¢ and maxoci < u(Y; — Z;) > ¢}
E[Pr {maxoci< u(X: — Z;) > ¢ and maxoci<n(Y: — Z;) > ¢ | {Z}}]
= E[Pr’ {maxec; < u(X: — Z:) > ¢ | {Z}]
> EPr{maxoc; < u(X: — Z:) > ¢ | {Z3}}]
= Prz{maxk.-gm(Xi — Z;) > d.
Now replacing (0™) " In (k — 1)(1 — P*) by cin (7), we obtain

|

(10) Pr{incorrect selection | A} = Pr {for at least one value of

7= 1,27"‘,13—1, )r}cmé Yim-c|A}.

inequality to the right hand side of (10), we have

Denoting the event {sup,.(Y i — Yin) = ¢| A} by A and applying Bonferroni’s

(11) Pr {incorrect selection | A}

< DEPr (A — 2 Pr(didy) + Dicia Pr(4:4;4)).
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In Section 2, we considered only the first term in the right hand side of (11).
Here we shall obtain some improvement by considering the additional terms.
First considering the case k = 3, we have from (9) and (11) that

(12) Pr {incorrect selection | A}

< 20 iaPr(4;) — Pr(dids) £ 250 Pr(4:) — P17 (4y).
Now from (2) and (7), we have
(13) Pr(d;) =7,

and since 2Pr (4;) — Pr’(4;) is a strictly increasing function of Pr (A;) it fol-
lows that

(14) Pr {incorrect selection] < 27" — ¢™2™
Therefore by taking
(15) Cc = ——(6*)—1 ln (1 . (P*);),

we guarantee a probability of correct selection of at least P*.

By applying the further inequality Pr (4,4 ;4;) < Pr(4.4;), for k = 4 and
5 we obtalin similar results, which are shown in Table 1. This method does not
lead to an improvement when & > 5.

The entry against the modified procedure when & = 2 was not derived by us;
for this case elimination of one population is equivalent to making a terminal
decision, and the Bechhofer-Kiefer-Sobel procedure [1] when applied to this
case leads to a stopping boundary (1/6%) In (P*/(1 — P*)).

4. Determination of the exact operating characteristics of the selection
procedure in a special case. It is possible in some special cases of the Koop-
man-Darmois family to derive the exact operating characteristics of the pro-
cedure when &k = 2; see Bechhofer, Kiefer and Sobel [1] for these computations.
When & = 3 the problem becomes much more complicated because it then
typically involves computation of multi-dimensional absorption probabilities.
One way out is to perform Monte-Carlo computations. This has been done to
some considerable extent by Ramberg [5] for Paulson’s procedure. In this section
we give a numerical method for the determination of the exact values of the

TABLE 1

imE max; YVem—c

Original Procedure Modified Procedure
2 6*)'In (1—-P*)! 6*)71 In P*(1—P*)~1
3 6*)™11n 2(1—P*)"? —(6*)" In (1—(P*)t)
4 6*)™11n 3(1—P*)1 —(*)1In ¢ — (1 4 8P*)})
5

(6*) ' In 4(1—P*)! —@*)'In 1 — A + P*)hH)
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operating characteristics of the procedure when k¥ = 3 and the three populations

are Poisson processes. The computation for these processes appears to be reason-

able because at any moment of time a jump can take place for one process only.
The Poisson process X (¢) is given by

(16) PriX(t) = a} = ¢ "(6t)°/2), =012 -,
= exp (v Iln 66 — 6t — In x!).

We now define 7 = Q(6) = In 6. Suppose that we have three Poisson processes
Xi1(t), X2(t) and X3(¢) in the least favorable configuration and let their param-
eters be 6, 0 and 9¢”", respectively (8% > 0). We then have

(17) T3 — T1 = 0.

Let

(18) Yi(t) = Xi(t) — Xs(2), 1=1,2,
(19) 5= ¢,

and

(20) p = 1/(2 +9).

Then each jump of the stochastic vector (Y1(¢), Y»(¢)) takes place in accord-
ance with the following probability distribution:

Magnitude of Jump in Probability
Yi(t) Ya(¢)
(21) 1 0
0 1
-1 —1 op

Now let
a = () In(k— 1)(1— P*)if (") In(k— 1)(1 — P*)isan
(22) integer
= [(6")In (k — 1)(1 — P*)™] + 1 otherwise.

Representing (Y1(t), Y2(t)) as a random walk in the two-dimensional plane,
it is easy to see that an incorrect decision is made when Y1(¢) = a or Y2(?) = a.
A qualitative description of the random walk goes as follows:

«A two-dimensional random walk W starts at the origin (0, 0); in any one
transition, it can move one step to the right with probability p, one step vertically
upward with probability p and one step back and diagonally downwards with
probability §p. When the process hits either of the lines Yi(t) = a, Y2(t) = ait
is absorbed. If W hits one of the lines Y1(¢) = —a or Y1(¢) — Yau(t) = —a, it
can move thereafter one step up and one step down (on or parallel to the line
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Y1(t) = —a), with probabilities 1/(1 + &) and §/(1 + &), respectively. More-
over if W hits one of the lines Y3(¢) = —a or Y1(¢) — Y.(f) = a, it can move
thereafter one step to the right and one step to the left (on or parallel to the line
Y,(t) = —a), with probabilities 1/(1 + &) and §/(1 + &), respectively.”

It can be seen that the absorption of this random walk at the line Y1(¢) = a
or Y3(t) = a before the occurrence of any of the following events gives rise to an
incorrect selection in the corresponding ranking problem:

E, : W hits the line Y;(¢) = —a and then the point ( —a, —a);

E, : W hits the line Y»(¢) = —a and then the point ( —a, —a);

E; : W hits the line Y1(¢) — Y3(¢) = —a and then the line Y,(¢) = —a;
E, : W hits the line Y1(¢) — Y.(¢) = a and then the line Y;({) = —a.

Let P(z, y) denote the probability of absorption at Y:1(¢) = a or Y2(t) = a
before E; , E, , E; , or E4 occur when the random walk starts from the point (2, y).
(P(0, 0) then gives the desired probability of incorrect selection.) It is clear that
P(z, y) satisfies the following difference equation, (see Feller [2], p. 314):

(23) P(z,y) =pP(x+1,y) + pP(z,y +1) + opP(z — 1,y — 1)
with boundary conditions:
(24) P(a,y)= 17 y:():""a)

TABLE 2

Comparison of Exact Probability of Correct Selection in the Least Favorable Configuration
With the Nominal Probability for Selecting the Best of Three Poisson Processes

=1

Nominal value of P* Exact Probability of correct

. lection in the least f bl
e corresponding to @ selec 1oné(1)1n f g?l r;aéonavora €
1 .400 .576
2 .729 .794
3 .900 .913
4 .963 .966
6 .995 .995
%= 2
. ’ Exact Probability of correct
a I\lg?g%ﬁ%ﬁe (&f) 5* selection in the least favorable
P g configuration
9 .669 767
11 778 .831
15 .900 .915

19 .955 .960
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(25) P(z,a) = 1, z=0,-,a,
(26) P(—a,y) = h(y), y=—a,—a+1---,0,
(27) Py —a,y) = h(y), y=1-,a,
(28) P(z, —a) = h(x), x=—a —a-+1,---,0; and
(29) P(z,z — a) = h(z), z=1--,a,

where h(t) = (67 — 8"*)/ (67 — 1).

It is difficult to obtain analytical expressions for the solution of the difference
equation, but a numerical solution for particular values of 8* and P* using stand-
ard relaxation methods can be easily obtained. This technique consists of initially
setting P(x,y) = 0 and then applying (23) to obtain a new set of values for each
P(z, y) using (24)-(29). Successive iterations are then performed until a con-
vergence is obtained for the successive values of P(0, 0). It can be easily shown
that the solution to the above difference equation is unique and this method will
provide a convergence to the unique solution.

In Table 2 we compare the nominal value of P* with the exact probability of
correct selection for several choices of a and 8 = .2 and 1. The table also shows
the amount of overprotection resulting from use of the procedure.

The expected number of transitions for arriving at a terminal decision as well
as the probability of correct selection in other configurations can be obtained in a
similar way. Also for any particular value of 6 the expected time to termination
can be easily calculated.
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