A NOTE ON CHARACTERISTIC FUNCTIONS

BY K. G. BINMORE AND H. H. STRATTON

State University of New York at Albany and Royal Holloway College, Land University; and State University of New York at Albany

1. Let F(t) be a probability distribution function. Let $\phi(x)$ be its characteristic function, given by

$$\phi(x) = \int_{-\infty}^{\infty} e^{ixt} dF(t),$$

and define

$$\psi(x) = 1 - \phi(x).$$

We obtain some elementary inequalities for $\psi(X)$ from which we deduce a number of facts about characteristic functions. To provide an application of these results, we prove the following theorem. For $\alpha = 1$, this theorem is contained in a theorem of Pitman [6] and the proof of Boas' Theorem 1 of [1] yields the case $0 < \alpha < 1$. See also Pitman [7].

THEOREM 1. If $0 < \alpha < 2$, a necessary and sufficient condition that

$$(1.2) v^{\alpha} \int_{|t| > v} dF(t) = o(1) (v \to \infty)$$

is that

$$(1.3) (1 - \Re \phi(u))/u^{\alpha} = o(1) (u \to 0+).$$

Boas' method, in fact, establishes that, for $0 < \alpha < 1$, (1.2) is equivalent to

$$(1.4) (1 - \phi(u))/u^{\alpha} = o(1) (u \to 0+)$$

and so conditions (1.3) and (1.4) are equivalent for $0 < \alpha < 1$.

COROLLARY 1. Let S_n denote the sum of n independent random variables each with distribution F(t). If $\alpha > 0$, then (1.4) is a necessary and sufficient condition that

$$(1.5) n^{-1/\alpha} Sn \to_p 0 (n \to \infty).$$

Remarks. (1) Theorem 1 remains true if the o in both (1.2) and (1.3) is replaced by O.

(2) If $\alpha = 2n + \beta$, where n is a positive integer and $0 < \beta < 2$, a necessary and sufficient condition for (1.2) is that

$$\Re \phi^{(2n)}(0) - \Re \phi^{(2n)}(u) = o(u^{\beta}) \qquad (u \to 0+).$$

(3) If $0 < \alpha < 1$ in Corollary 1, then condition (1.4) may be replaced by (1.3). If $\alpha = 1$, this is not true. If $\alpha > 1$, (1.3) implies the existence of the

Received 18 March 1968.

mean μ of the distribution F(t) and (1.4) in Corollary 1 may be replaced by (1.3) as long as S_n is replaced by $S_n - n\mu$. If $\alpha = 1$, (1.3) does not imply the existence of μ . (See e.g. Lukacs [5], p. 29).

2. An elementary property of characteristic functions is that they are positive definite, i.e.

$$\sum_{j,k=1}^n \phi(t_j - t_k) z_j \bar{z}_k \ge 0,$$

for any real t_1 , t_2 , \cdots t_n and complex z_1 , z_2 , \cdots z_n . Since $\phi(0) = 1$, it follows that

$$\left|\sum_{j=1}^n z_j\right|^2 \geq \sum_{j,k=1}^n \psi(t_j - t_k) z_j \bar{z}_k,$$

where $\psi(x)$ is defined by (1.1). But $\psi(-x) = \bar{\psi}(x)$, and so

(2.1)
$$\frac{1}{2} \left| \sum_{j=1}^{n} z_{j} \right|^{2} \ge \Re \left\{ \sum_{j < k} \psi(t_{j} - t_{k}) z_{j} \bar{z}_{k} \right\}.$$

We take n = 3, $x = t_1 - t_2$, $y = t_2 - t_3$, and $x + y = t_1 - t_3$. If x > 0 and y > 0, the choice $z_1 = y$, $z_2 = -(x + y)$ and $z_3 = x$ yields

$$(2.2) \qquad \Re \psi(x+y)/(x+y) \le \Re \psi(x)/x + \Re \psi(y)/y,$$

i.e. the function $x^{-1}\Re\psi(x)$ is subadditive on $(0, \infty)$. For any non-negative function h(x) which is subadditive on $(0, \infty)$ we have that

(2.3)
$$yh(y) \le 2 \int_0^y h(x) dx$$
 $(y > 0).$

In particular, therefore,

$$\Re \psi(y) \leq 2 \int_0^y x^{-1} \Re \psi(x) \, dx.$$

The choice $z_1 = 1$, $z_2 = -(1 + re^{i\theta})$ and $z_3 = re^{i\theta}$, where

$$r = \{\Re\psi(x)/\Re\psi(y)\}^{\frac{1}{2}}$$
 and $\theta = \arg\{\psi(x+y) - \psi(x) - \psi(y)\},$

yields that

$$(2.5) |\psi(x+y) - \psi(x) - \psi(y)| \le 2\{\Re\psi(x) \cdot \Re\psi(y)\}^{\frac{1}{2}}.$$

(If $\Re \psi(x) = 0$ or $\Re \psi(y) = 0$, the inequality follows trivially from (2.1) with n = 3). From (2.5) we deduce that

$$(2.6) |(\psi(x+y)|^{\frac{1}{2}} \le |\psi(x)|^{\frac{1}{2}} + |\psi/y||^{\frac{1}{2}},$$

i.e. the function $|\psi(x)|^{\frac{1}{2}}$ is subadditive on $(-\infty, \infty)$. A similar argument establishes that $\{\Re\psi(x)\}^{\frac{1}{2}}$ is subadditive on $(-\infty, \infty)$. As an application of (2.6), we have the following.

(2.7)
$$\lim_{t\to 0} |\psi(t)|/t^2 = \sup_{-\infty < t < \infty} |\psi(t)|/t^2.$$

(See Theorem 7.1.11 of Hille and Phillips [3], p. 250). The following well-known result is a corollary of (2.7). If $\phi(x) = 1 + o(x^2)(x \to 0)$, then $\phi(x) \equiv 1$.

In view of the inequality of the arithmetic and geometric means, we obtain

further from (2.5) that

$$|\psi(x+y)-\psi(x)-\psi(y)| \leq \Re \psi(x) + \Re \psi(y).$$

This, in turn, implies that $\Re \psi(x) + \Re \psi(y) \ge \frac{1}{2} \Re \psi(x+y)$, an inequality which is well-known for the case x=y (see e.g. Lukacs [5], p. 60).

3. Proof of Theorem 1. Using the notation

$$Q_{\alpha}(v) = v^{\alpha}p(|x| > v) = v^{\alpha} \int_{|t| > v} dF(t),$$

we have the following. Suppose $0 < \alpha < 2$, and

(3.1)
$$\lim \sup_{v \to \infty} Q_{\alpha}(v) = l.$$

Then

(3.2)
$$\lim \sup_{u \to 0+} u^{-\alpha} \Re \psi(u) \leq 2^{3-\alpha} l/\alpha (2-\alpha).$$

From (2.4) we have that

$$\Re \psi(u)/u^{\alpha} \leq 2u^{-\alpha} \int_{0}^{u} \Re \psi(x)/x \, dx$$

$$= 2u^{-\alpha} \int_{-\infty}^{\infty} dF(t) \int_{0}^{u} (1 - \cos xt)/x \, dx$$

$$= 2u^{-\alpha} \int_{-\infty}^{\infty} dF(t) \int_{0}^{ut} (1 - \cos y)/y \, dy$$

$$= 2 \int_{0}^{\infty} (1 - \cos y)y^{-(1+\alpha)} Q_{\alpha}(y/u) \, dy.$$

Since $0 < \alpha < 2$, $(1 - \cos y)/y^{1+\alpha} \varepsilon \mathfrak{L}(0, \infty)$. Hence

$$\lim \sup_{u \to 0+} u^{-\alpha} \Re \psi(u) \leq 2l \int_0^\infty (1 - \cos y) / y^{1+\alpha} \, dy$$
$$\leq l \int_0^2 y^{1-\alpha} \, dy + 4l \int_2^\infty y^{-1-\alpha} \, dy$$
$$= 2^{3-\alpha} l / \alpha (2 - \alpha).$$

(For an exact formula for $\int_0^\infty y^{-\alpha-1}(1-\cos y) dy$ see Feller's "An introduction to probability theory" vol. II p. 542).

From the Truncation Inequality (see e.g. Loève [4], p. 196), we have that

$$\int_{|t| > v} dF(t) \le 14v \int_0^{1/v} \Re \psi(u) \, du \qquad (v > 0).$$

It follows immediately that, if $\alpha > 0$, and

$$\lim \sup_{u\to 0+} u^{-\alpha} \mathfrak{R} \psi(u) = m,$$

then

$$\limsup_{v\to\infty} Q_{\alpha}(v) \leq 14m.$$

Theorem 1 is now an immediate consequence of the above results.

Before proving Corollary 1, we require a lemma.

LEMMA 1. If $\alpha < 3$, and $Q_{\alpha}(v) \rightarrow 0 (v \rightarrow \infty)$, then

$$u^{1-\alpha} \textstyle \int_{-1/u}^{1/u} t \, dF(t) \, - \, u^{-\alpha} \, \operatorname{Im} \, \phi(u) \to 0 \qquad \qquad (u \to 0+).$$

PROOF. We show that, if (3.1) holds and $\alpha < 3$, then

(3.3)
$$\limsup_{u\to 0+} |u^{1-\alpha} \int_{-1/u}^{1/u} t \, dF(t) - u^{-\alpha} \, \mathfrak{I}_m \, \phi(u)|$$

 $\leq ((7-2\alpha)/(6-2\alpha))l.$

We have that

$$u^{-\alpha} \, \mathfrak{I}_m \, \phi(u) = u^{-\alpha} \int_{-1/u}^{1/u} \sin \, ut \, dF(t) + u^{-\alpha} \int_{|t| > 1/u} \sin \, ut \, dF(f),$$

and so

(3.4)
$$\lim \sup_{u \to 0+} |u^{-\alpha} \mathcal{G}_m \phi(u) - u^{-\alpha} \int_{-1/u}^{1/u} \sin ut \, dF(t)| \le l.$$

But, writing F(t) + F(-t) = f(t), we have

$$\begin{aligned} |u^{1-\alpha} \int_{-1/u}^{1/u} t \, dF(t) - u^{-\alpha} \int_{-1/u}^{1/u} \sin ut \, dF(t)| &= |u^{-\alpha} \int_{0}^{1/u} (ut - \sin ut) \, dF(t)| \\ &= |u^{-\alpha} \int_{0}^{1/u} dF(t) \int_{0}^{ut} (1 - \cos y) \, dy| \\ &= |u^{-\alpha} \int_{0}^{1} (1 - \cos y) \, dy \int_{v/u}^{1/u} dF(t)| \\ &\leq \int_{0}^{1} (1 - \cos y) \, y^{-\alpha} Q_{\alpha}(y/u) \, dy. \end{aligned}$$

Since $\alpha < 3$, $(1 - \cos y)/y^{\alpha} \in \mathfrak{L}(0, 1)$. Hence

(3.5)
$$\limsup_{u\to 0+} |u^{1-\alpha} \int_{-1/u}^{1/u} t \, dF(t) - u^{-\alpha} \int_{-1/u}^{1/u} \sin ut \, dF(t)|$$

$$\leq l \int_{0}^{1} (1 - \cos y) / y^{\alpha} \, dy \leq l/2(3 - \alpha).$$

Inequality (3.3) now follows from (3.4) and (3.5).

PROOF OF COROLLARY 1. Heyde and Rohatgi [2] have shown that, for $0 < \alpha < 2$, (1.5) is equivalent to the following pair of conditions:

(3.6)
$$u^{1-\alpha} \int_{-1/u}^{1/u} t \, dF(t) \to 0 \qquad (u \to 0+);$$

$$(3.7) Q_{\alpha}(v) \to 0 (v \to \infty).$$

For $0 < \alpha < 2$, the corollary is therefore obtained from Theorem 1, Lemma 1 and the above result. If $\alpha \ge 2$, we noted in section 2 that (1.4) cannot hold unless $\phi(x) \equiv 1$, and this is also true of (1.5) by the Central Limit Theorem.

REMARKS. (1) Heyde and Rohatgi note that, for $\alpha < 1$, (3.6) is implied by (3.7). We note that, if $\alpha > 1$, then (3.7) implies the existence of μ . An easy argument, similar to that employed in the proof of Lemma 1, shows that, if $\alpha > 1$ and (3.7) holds, then

(3.8)
$$u^{1-\alpha}\mu - u^{-\alpha} \mathfrak{g}_m \phi(u) \to 0$$
 $(u \to 0+).$

This result, together with Lemma 1, imply that (3.6) may be replaced by the condition $\mu = 0$, as long as $\alpha > 1$.

(2) From Boas' proof of his Theorem 3 in [1], we have that, for $0 < \alpha < 2$, a necessary and sufficient condition that $\int_{-\infty}^{\infty} |t|^{\alpha} dF(t)$ be finite is that

(3.9)
$$\Re \psi(x)/x^{\alpha+1} \in \mathfrak{L}(0,1).$$

Taking $h(x) = x^{-\alpha-1} \Re \psi(x)$ in (2.3), we see that (3.9) implies that $x^{-\alpha} \Re \psi(x) \to 0$ ($x \to 0+$). It is also true that, for $0 < \alpha < 2$,

$$(3.10) \psi(x)/x^{\alpha+1} \varepsilon \mathfrak{L}(0,1)$$

implies that $x^{-\alpha}\psi(x) \to 0$ $(x \to 0+)$. When $0 < \alpha < 1$, there is nothing to prove (see comment after Theorem 1). When $\alpha \ge 1$, then μ exists and $x^{-1}\psi(x) \to -i\mu$ $(x \to 0+)$. Therefore, from (3.10), $\mu = 0$. This deals with the case $\alpha = 1$. For $\alpha > 1$, we need to show that $x^{-\alpha} \mathcal{G}_m \psi(x) \to 0$ $(x \to 0+)$. This follows from (3.8).

Finally, we would like to thank Professors Katz and Smiley for their helpful suggestions and criticism.

REFERENCES

- Boas, R. P. (1967). Lipschitz behaviour and integrability of characteristic functions. Ann. Math. Statist. 38 32-36.
- [2] HEYDE, C. C. and ROHATGI, R. K. (1967). A pair of complementary theorems of convergence rates in the law of large numbers. Proc. Cambridge Phil. Soc. 63 73-82.
- [3] HILLE, E. and PHILLIPS, R. Functional Analysis and Semi-Groups. A.M.S. Colloquium Publications, Vol. 21.
- [4] Loève, M. (1963) Probability Theory. Van Nostrand, New York.
- [5] LUKACS, E. (1962). Characteristic Functions. Griffen's Statistical Monographs and Courses. No. 5, London.
- [6] PITMAN, E. J. G. (1956). On the derivatives of a characteristic function at the origin. Ann. Math. Statist. 27 1156-1160.
- [7] PITMAN, E. J. G. Some theorems on characteristic functions of probability distributions. Proc. Fourth Berkeley Symp. Math. Statist. and Prob. 2 393-402. Univ. of California Press.