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A NOTE ON CHARACTERISTIC FUNCTIONS

By K. G. Binmore anxp H. H. StraTTON
State University of New York at Albany and Royal Holloway College,
Land University; and State Unwversity of New York at Albany
1. Let F(f) be a probability distribution function. Let ¢(z) be its characteristic
funection, given by
d(z) = [Zo€™ dF (1),
and define
(1.1) y(z) =1 — ¢(z).

" We obtain some elementary inequalities for ¢(X) from which we deduce a
number of facts about characteristic functions. To provide an application of these
results, we prove the following theorem. For « = 1, this theorem is contained
in a theorem of Pitman [6] and the proof of Boas’ Theorem 1 of [1] yields the case
0 < a < 1. See also Pitman [7].

TueoreM 1. If 0 < a < 2, a necessary and sufficient condition that

(12) 0" [iu>s dF(t) = o(1) (v— )

18 that

(1.3) (1 = ®e(u))/u® = o(1) (u—0+).
Boas’ method, in fact, establishes that, for 0 < o < 1, (1.2) is equivalent to

(14) (1 — ¢(u))/u® = o(1) (v —0+)

and so conditions (1.3) and (1.4) are equivalent for 0 < a < 1.

CoROLLARY 1. Let S, denote the sum of n independent random variables each
with distribution F(t). If a > 0, then (1.4) is a necessary and sufficient condition
that

(1.5) n *8n —, 0 (n— o).
ReMARkS. (1) Theorem 1 remains true if the o in both (1.2) and (1.3) is
replaced by O.

(2) If « = 2n + B, where n is a positive integer and 0 < 8 < 2, a necessary
and sufficient condition for (1.2) is that

®®” (0) — @™ (u) = o(u’) (u— 0+).

(3) If 0 < & < 1 in Corollary 1, then condition (1.4) may be replaced by
(1.3). If @ = 1, this is not true. If « > 1, (1.3) implies the existence of the
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mean p of the distribution F(¢) and (1.4) in Corollary 1 may be replaced by
(1.3) as long as S, is.replaced by S, — nu. If « = 1, (1.3) does not imply the
existence of u. (See e.g. Lukacs [5], p. 29).

2. An elementary property of characteristic functions is that they are positive
definite, i.e.

E;{ka o(t; — tr)zz = 0,

for any real ¢, , ts, - - - t» and complex 21, 22, -+ - 2, . Since ¢(0) = 1, it follows
that

12712’ 2 2iam ¥(t; — b2,
where y(z) is defined by (1.1). But ¢(—z) = ¢¥(z), and so
(2.1) 312l 2 /{2 vt — t)za.
Wetaken =3, =t — b,y =t —f,andz +y =t —&.If 2 > 0and
y > 0, the choice s = y,2s = —(z + y) and 2; = 2 yields
(2:2) ®Y(z +y)/(x + y) < ®Y(x)/z + ®¥(y)/y,

i.e. the function 2 '®¢(z) is subadditive on (0, « ). For any non-negative
function h(z) which is subadditive on (0, » ) we have that

(2:3) yh(y) = 2 [§h(z) do (y > 0).
In particular, therefore,
(2.4) ®Y(y) < 2 [Lz7'RyY(x) da.
The choicezy = 1,2, = — (1 + r¢”) and 25 = re®, where
r = {®¥(2)/0(y)}} and 6 = arg{¥(z + y) — ¥() — ()},
yields that
(2.5) W@ +y) = ¥(z) — ¥(¥)| < 2{qw(=)-apy)}h

(If ®¢(x) = 0 or ®’¢(y) = O, the inequality follows trivially from (2.1) with
n = 3). From (2.5) we deduce that

(26) (W + 9 = W) + vyl

i.e. the function |Y(z)|! is subadditive on (—®, ® ). A similar argument estab-
lishes that {®y¢(z)}! is subadditive on (— ®, « ). As an application of (2.6), we
have the following.

(2.7) limes [W(£)|/8 = SUP_ocicw [W(E)|/".

(See Theorem 7.1.11 of Hille and Phillips [3], p. 250). The following well-known
result is a corollary of (2.7). If ¢(z) = 1 + o(z*)(z — 0), then ¢(z) = 1.
In view of the inequality of the arithmetic and geometric means, we obtain
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further from (2.5) that '
W(z + ) = ¥(@) = ¥@)| < (@) + CH(y).

This, in turn, implies that Ry (z) + RyY(y) = 3®¢(z + y), an inequality which
is well-known for the case £ = y (see e.g. Lukacs [5], p. 60).

3. Proor oF TueorREM 1. Using the notation
Qa(v) = vp(la| > v) = v* [14>0 dF(2),
we have the following. Suppose 0 < a < 2, and

(3.1) lim Supy.e Qu(v) = L
Then
(3.2) lim supusos ¥ *®¥(u) £ 22/ a(2 — a).

From (2.4) we have that
®Y(u)/u* < 20~ [§ QY(x)/x dx

= 2u™® [2,dF(t) [¢ (1 — cosat)/x dx

= 2u™ [2.dF(t) [¢' (1 — cosy)/ydy

=2f0 (1 — cosy)y “Qaly/u) dy.
Since 0 < a < 2, (1 — cosy)/y' " £ £(0, = ). Hence

lim SUPusos % “@¥(u) < 205 (1 — cos y)/y' " dy

oy ™ dy + 4[5y " dy
2" a(2 — a).

I\

—a—1

(For an exact formula for f{,” ¥ (1 — cos y) dy see Feller’s “An introduction
to probability theory” vol. II p. 542).
From the Truncation Inequality (see e.g. Lotve [4], p. 196), we have that

[1se dF(t) < 140[3"” QY(u) du (v > 0).
It follows immediately that, if « > 0, and
lim supu.o+ % “RY(u) = m,
then
lim SUPsew Qa(v) = 14m.

Theorem 1 is now an immediate consequence of the above results.
Before proving Corollary 1, we require a lemma.
Lemma 1. If a < 3, and Q.(v) — 0(v — «), then

w e Y tdF () — w % Im d(u) — 0 (u— 04).
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VPROOF. We show that, if (3.1) holds and o < 3, then
(3.3) lim supu.oq [u ™ [Xu t dF(£) — 4™ gm o (u)|
= (7 = 2a)/(6 — 2a))L
We have that
w Im d(u) = w " [X}y sin ut dF () + u* [ o>y sin ut dF(f),
and so
(3.4) lim supu.ot [~ gm &(u) — w* [1%, sin ut dF (t)| < 1.
But, writing F(t) 4+ F(—t) = f(t), we have
[~ [Xu ¢ dF () — ™ 2%, sin wt dF(t)] = | 3™ (ut — sin ut) dF(t)|
= lu_“f},/" dF(t) ¢ (1 — cosy) dy
= |~ [5 (1 — cos y) dy[3/u dF ()|
< [5(1 — cosy) y*Quly/u) dy.
Since a < 3, (1 — cosy)/y”* € £(0, 1). Hence
(3.5) lm Supu.oq [ [X%u t AF(8) — w® [24Y, sin ut dF(¢)|
S 101 — cosy)/y*dy < 1/2(3 — a).

Inequality (3.3) now follows from (3.4) and (3.5).
Proor oF CoroLLARY 1. Heyde and Rohatgi [2] have shown that, for 0 <
a < 2, (1.5) is equivalent to the following pair of conditions:

(3.6) W MU tdF (1) — 0 (u — 04+);
(3.7) Qa(v) =0 (v— ).

For 0 < a < 2, the corollary is therefore obtained from Theorem 1, Lemma 1
and the above result. If & = 2, we noted in section 2 that (1.4) cannot hold
unless ¢(2) = 1, and this is also true of (1.5) by the Central Limit Theorem.

ReMarks. (1) Heyde and Rohatgi note that, for « < 1, (3.6) is implied by
(3.7). We note that, if « > 1, then (3.7) implies the existence of u. An easy
argument, similar to that employed in the proof of Lemma 1, shows that, if
a > 1 and (3.7) holds, then

(3.8) U — U Im p(u) > 0 (w — 04).

This result, together with Lemma 1, imply that (3.6) may be replaced by the
condition 4 = 0, as long as @ > 1.

(2) From Boas’ proof of his Theorem 3 in [1], we have that, for 0 < o < 2, a
necessary and sufficient condition that [2, |¢|* dF(¢) be finite is that

(3.9) ®y(z)/z* e £(0, 1).



A NOTE ON CHARACTERISTIC FUNCTIONS 307

Taking h(z) = 27 "'®¢(z) in (2.3), we see that (3.9) implies that 2™ *®y(z) —
0(xz — 04). It is also true that, for 0 < a < 2,

(3.10) Y(z)/z*™ e £(0, 1)

implies that z~*Y(z) - 0 (x = 04). When 0 < a < 1, there is nothing to
prove (see comment after Theorem 1). When & = 1, then p exists and z Y(z) —
—ip (x — 0+4). Therefore, from (3.10), u = 0. This deals with the case @ = 1.
For a > 1, we need to show that 27* 9m ¥(z) — 0 (z — 04 ). This follows
from (3.8).

Finally, we would like to thank Professors Katz and Smiley for their helpful
suggestions and criticism.
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