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0. Introduction and summary. Interpolation and extrapolation of stationary
stochastic processes has been extensively studied by Kolmogorov, Wiener and
Masani, Krein and many others. Rozanov [3] has formulated many of their re-
sults and some of his own in a very neat form. In this paper some of the basic
concepts and theorems related to interpolation are investigated in the more
general setting of homogeneous random fields on locally compact abelian groups.

In the stationary case, the regularity and singularity of the process is deter-
mined by its behavior on the class of intervals (— =, ¢]. Here, since the group
is not necessarily ordered, this class is replaced by an arbitrary family, I, of
non-empty Borel sets of the group. Regularity and singularity are then defined
in terms of the behavior of the field on the sets of I.

Theorems 4.1 and 5.1 generalize Kolmogorov’s minimality problem [1] and
an interpolation problem studied by Yaglom [6] to groups. Theorem 4.1 is also
seen to include the result of Wang Shou-Jen on interpolation in Rg [5]. The
family I, , introduced in Section 5, provides a natural generalization of the in-
tervals (— o, ] for certain processes.

1. Background. Let G be a locally compact abelian (LCA) group and G*
the dual group of G. Then G* is also a LCA group under the compact-open topol-
ogy ([2], [4]). Because of the duality between G' and G* (Pontrjagin’s duality
theorem [2], [4]) we will denote the characters of G by (g, z), g @G, z & G*.
The Borel field, ®, of G is the minimal o-field generated by the closed subsets
of G. Similarly, ®* is the Borel field of G*. If G is discrete, G* is compact and
the characters of G* are orthonormal in L(G*), the space of all complex-valued,
absolutely integrable, ®*-measurable functions.

Let (Q, & P) be a probability space. For all g ¢ G, let X(g) € Ly(Q, §, P).
Then X (g) is a random variable on € with finite second moment. We will assume
that the first moment vanishes for all g. L.(2) is a Hilbert space with the inner
product

(1) (fuf2) = Efife
= [ @@ P@), fifiela,
where E is the mathematical expectation. Let H(X) be the linear completion of
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{X(g):g ¢ G} in Ly(2). If the correlation function

(2) B(g,¢) = (X(9), X(¢))

depends only on g — ¢’, X(g) will be called a homogeneous random field (HRF)
on G.

The correlation function of a HRF is a positive-definite function on G. If
B(g) is continuous on @ there exists (Bochner’s theorem for LCA groups [4])
a unique, finite, nonnegative regular measure 7, called the spectral measure of
X(g), on ®* such that for g ¢ G,

(3) B(g) = [e+ (g, x)F(dz).
Then, [§]

(4) , X(g) = [o+ (9, 2)Z(dw)
where Z is an orthogonal measure on ®&* such that

(5) ‘ (Z(E), Z(E')) = F(EnE')

for all Borel sets E, E’ of G*. Z is called the spectral stochastic measure.

Henceforth, we will assume that X (g) has a continuous correlation function.
The Radon-Nikodym derivative f(z) of F with respect to the Haar measure
z(E) on G¥, if it exists, is called the spectral density of X (g).

2. Linear transformations. Denote by L.(F) the Hilbert space of complex-
valued measurable functions p(z) on G* which are square-integrable with respect
to the measure F. Then

Lemma 2.1. There exists an isometric correspondence between the elements of
H(X) and those of Lo(F) given by

(6) p(z) o b = [op(2)Z(de).
Proor. Define
T:(g,z) < X(g9), geG.

Then T is easily seen to be an isometry on the set of characters onto { X (g):g ¢ G}.
T is extended to an isometry on the linear hulls of these sets and hence to an
isometry on their closures. The closure of the latter set is H(X ) and the closure
of the former is L;(F). Hence the proof is complete.

A HRF Y(g) is said to be obtained by a linear transformation from the HRF
X(g) if there exists a p(z) € L:(F) such that for all g ¢ G

(7) Y(9) = [o p(2)(g, ©)Z(dx)
when Z is the spectral stochastic measure of X. Following Rozanov [3] we easily
prove

TureOREM 2.1. Let X(g) and Y(g) be HRF on G which are mutually homoge-
neously correlated. Then (7) holds if, and only if, for all E ¢ ®*

(8) +  Fvy(E) = [&|p(@)[F (dv), Frx(E) = [zp(2)F(dv)
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where Fyy is the spectral measure of Y (g) and Fyx s the measure associated with
(9) Byx(g) = (Y(g+ ¢, X(¢)) by (3).

Another set of necessary and sufficient conditions for (7) is given by the fol-
lowing theorem.

TraEOREM 2.2. Let X(g) and Y(g) be HRF on G. Then (7) holds #f, and only
if H(Y) € H(X) and X(g), Y(g) are mutually homogeneously correlated.

Proor. If (7) holds, the necessity is clear. Assume now that for all g ¢ G,
Y(g) e H(X). Then by Lemma 2.1, for all g there exists a function
p(z, g) € Lo(F) such that

(10) Y(9) = [op(, 9)Z(dz).
Since Y (g) and X(g) are mutually homogeneously correlated

Y(9), X(g')) = (¥Y(0), X(¢g' — 9)).
Hence, using (10) and (4) we have

S o p(2, 0) (=4, ©)F(dz) = [ p(z, 0)(g — ¢, 2)F(dz).
Then |

fG* (_g,) x)[P(x, g) - Z’(x, 0)(9, x)]F(dx) = 0} g, ¢ G7

so that for g G ([4], p. 17) p(z, g) = »(z, 0)(g, ). Hence, letting p(z) =
p(z, 0), (7) holds.

3. Regularity and singularity. Now let I be any family of non-empty Borel
sets of G. The HRF Y (g) is said to be I-subordinate to the HRF X (g) if
(i) Y(g) comes from X (g) by a linear transformation,
(i) H(Y; A) c H(X; A) for all A ¢I where H(X; A) is the Hilbert space
generated by X(g), g 4. A HRF X(g) is called I-singular (deterministic with
respect to I) if forall A ¢ I, H(X; A) = H(X). That is,

(11) S = NaesH(X; A) = HX).
The field is called I-regular (purely non-deterministic with respect to I) if
S = (0).

If the family I is closed under translations for all e G, (ie., f A eI, ge@,
then A + g = {g + g:¢ ¢ A} € I) then we have the following decomposition
theorem.

TuaroOREM 3.1. Let X(g) and I be as above. Then there exists a unique decompo-
sition of X (g) in the form

(12) X(g) = Y(g9) + W(g)
where
1) Y=Y{)and W = W(I) are HRF on G,
(ii) Y and W are I-subordinate to X,
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(iii) Y and W are uncorrelated,
(iv) Y s I-regular and W 1is I-singular.
Proor. Since I is closed under translations it is easily shown that U,S = S
where U, is the unitary shift-operator:

UsiX(g) = X(g+4¢).
Define
W(g) = X'(9,8) eS8, Y(g) =X(g) —X'(g,8) LS

where X' (g, 8) is the projection of X (g) onto S. Let H(W) = S. Then H(Y) =
H(X) — 8, the orthogonal complement of S with respect to H(X).
The details of the proof are easily supply supplied (see [3], p. 54).

4. Iregularity and singularity. Suppose that @ is a discrete group and I,
the family of complements of singletons of G. Then a HRF X(g) is either I-
singular or Ip-regular. Kolmogorov’s theorem on the minimality of a stationary
stochastic sequence [1] is extended to groups by

THEOREM 4.1. Let G be a discrete LCA group and X(g) a HRF on G. Then
X(g) s Lo-regular if, and only if, the spectral density f(x) exists and its reciprocal
belongs to L(G™).

Proor. Set p (z) = 1/f(z), f(z) > 0,
=0, f(z) = 0.
Then p(z) € Ly(F) and if for g ¢ G, we set
Y(g) = [e (g, 2)p(2)Z(dz),
then Y (g) is obtained from X (g) by a linear transformation. Moreover
Y@ = [er Ip(2)'F(dz) = 0.
If welet A(g) = {g’ € G:g' % g} ¢ I, then, using the compactness of G* we have
(Y(9), X(¢") = [o (g, 2)p(2) (=, 2)f () }dz
=[olg—¢,2)dz
=0
so that ¥ (g) is orthogonal to X (¢'), g’  ¢g. Thus forg ¢ G
0 Y(g9)eH(X;A(g)).

Clearly then S # H(X) and so X (g) is not Io-singular. Hence X (g) is Ip-regular.
Conversely, if X (g) is Iy-regular we may write

(13) X(g) = X'(g9) + W(g)

where
X'(g9) e H(X;A(9)), W(g) L H(X; A(g)).
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It is easily calculated that
(W(g), W(g')) =0, g=g, and (W(g),X(g)) =0, g =4,

’

(14) =d'>0, g=g¢, =d, g=4.

Then W(g) is a HRF and is mutually homogeneously correlated with X (g).
By Theorem 2.2 there exists a function p(z) ¢ Lo(F) such that W(g) =
f e (g, z)p(x)Z(dz). Moreover, from (8) Fyx(E) = [ & p(x) F(dz). From
(14) it is seen that (W(g), X(¢")) = & [e (g — ¢, ©) dz. But we also have
(W(g), X(g)) = [e (g — ¢, 2)Fwx(dz) so that Fyz(E) = d’z(E). Clearly
z(E) = 1/d* [z p(z)F(dz). Thus the derivative dz/F(dz) = p(z)/d® is
finite almost everywhere with respect to F and hence is finite almost everywhere
with respect to the Haar measure z. Then f(x) exists, is positive almost every-
where and 1/f(z) & L(G™).
If ¢ is the error of interpolation, we have

o = || X(g) — X' (I

= [|[W () '

= d?

= p(z)f(z).

However, we also have
IW(DI* = [or Frw(dz)

= [ |p(z)['F(dz)
= [ |&/f(=)['F(dx)

= d*[ o (1/f(2)) da.
Hence _
(15) @ =d = ([o (1/f(z)) da)™
Then,

X'(g) = Jo (1 — 6/f(2)) (g, 2)Z (da).

b. I.-regularity and singularity. Assume that G is discrete and that the
spectral density, f(z), exists. Let I, be the family of complements of finite
subsets of G. Set I = {A} where A eI,and G — A = {go, - - - , ga}. Then

TaEOREM 5.1. X(g) 48 I-non-singular if, and only if, there exists a non-zero
trigonometric polynomial p(z) on G* of the form
(16) p(z) = 2ioc(ge, z)

such that
) . Ip(2)*/f(z) & L(G¥).
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Proor. It is clear that the HRF X(g) is I-non-singular means that there is a
gz A, say go, such that X (go) £ H(X; A). Then we may write (see (13)).

(18) X(go) = X'(g) + W(go)
where W(go) = 0.

In Ly(F) this becomes
(19) (90,2) = ¢'(2) + g(x)
where d () e Ly(4), g(z) L Li(4).

(L2(A) is the linear completion of {(g, ):g ¢ A} in Ly(F).) Then for all g ¢ 4

J o a(2)(—g, 2)f(2) dz = (q(z), (g, 2)) = 0,
so that

f@)g(x) = k=0 a(k)(gs , z)

where
a(k) = [o ¢(@)f(2)(—gs , z) de.

Since a(0) = [lg()|* = 0, p(z) = f(x)q(x), is a non-zero polynomial of the
desired form. Moreover,

Jor (p@)[/f(2)) dz = [or lg(2)[(2) d= = llg(=)]

so that (17) holds.

Conversely, suppose there exists a non-zero trigonometric polynomial satis-
fying (16) and (17). We may assume that the coefficient of (go, z) is 1. Let
(18) and (19) hold. If ¢(z) can be shown to be non-zero, then X (go) 2 H(X; A)
and X (g) is not I-singular.

Following Yaglom [6] we let @ be the set of all A(z) € Ly(F) such that h(x) L
Ly(A) and llh(x)ll — (h(z), (go%)). Since, for h(z) € Q, || (g0, ) — h(z)|* =
1 — ||a(z)|? g(z) is that element of Q of maximum norm. Let ¢ be a constant
such that 0 < 1/c = [ (|p(z)*’/f(2)) de < « and set h(z) = ep(z)/f(x).
Then h(z) is easily shown to be a non-zero element of Q. Thus [|g(z)|| = ||h(z)]|
and g(z) s 0. This completes the proof.

The proof of the following result is immediate.

CoroLrarY. A HRF X (g) is I-singular if, and only i,

(20) lp(=)I*/f(z) £ L(G*)

for all non-zero trigonometric polynomaials go , g1, -+ , gn -

This will be true if the spectral density f(z) has zeros of sufficiently high orders.
It is also possible to derive a formula for the error of interpolation in this case.
It turns out that

= [|X(g0) — X'(go)|I* = (min [ (|p(2)[*/f(2)) dz)™
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where the minimum is taken over those trigonometric polynomials p(z)
in go, *++, go whose coefficient of (go, ) is unity. This is simply the group
analogue of the result obtained by Yaglom [6].

The main result of this section follows easily.

TrarvorEM 5.2. A HRF X(g) on a discrete LCA group is I.-singular if, and
only f, |p(x)[*/f(x) £ L(G*) for all non-zero trigonometric polynomials p(x) on
G*. X(g) is I.-regular if, and only if for all go € G, there is a trigonometric poly-
nomial p(x) € Lo(F) which s mot orthogonal to (go, x) and is such that
lp(z)[*/f(z) e L(G").

Proor. X(g) is I.-singular whenever the field is completely determined
when X (g) is known at all but a finite number of elements of G, say go, - - , gn .
By the previous corollary then, |p(x)|*/f(x) is not integrable for all non-zero
trigonometric polynomials in go, «+*, g . Since go, ***, ¢g» and n were arbi-
trary the first part of the theorem is clear.

X (g) is I,-regular means that S(I,) = (0). This can happen only if for all
¢ in G, there is a subset 4 ¢ I, such that X(g) e H(X;A).Clearlyge G — A =
{go, -+, gn}. Assume g = go . By the preceding corollary, there exists a non-
zero trigonometric polynomial p(z) in go , - - - , g» such that |p(z)[*/f(z) & L(G*).
Moreover (p(z), (go, )) cannot be zero since p(z) is non-zero.

Conversely, if p(z) satisfies the conditions of the theorem let p(xz) have the
form D _p ci(gr z).Set A = G — {g,, -+ ,ga} . Then p(z) is a non-zero trigo-
nometric polynomial in g,, - , gn . Since [p(z)[*/f (z) ¢ L(G*) , X(g,) #
H(X; A) and the field is regular.

CoroLLARY. If X(g) is I.-singular it is Io-singular and of Lo-regular it is I-
regular.

6. Concluding remarks. When G is the additive group of integers, ¢ is a
LCA group. We may compactify G by adding the point at infinity, «. The
neighborhood system of « consists of all subsets of G u { ©} containing the point
» whose complements, as subsets of G, are finite. We then have

8 = 8(Is) = NeH(X; (—,t)u (s, »)).
Ordinary regularity and singularity are determined by
8 =N HX; (=, 1)).

There are many stochastic processes for which § = §’. For these, the concepts of
I ,-regularity and singularity coincide with the ordinary concepts. It would be
interesting to find necessary and sufficient conditions for the equality of S and
S'. In the following three cases this relation holds:

(1) when X(¢) = X(—t),

(ii) when X (¢) has a spectral density such that there exists positive con-

stants m and M such that m < f(z) £ M a.e,
(iii) when there exists T > 0 such that fort = T, B(¢) = 0.
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