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1. Introduction. In this paper we discuss a number of problems which have
their origin in statistics but whose main interest is measure-theoretical. It is to
the statistician interested in abstract harmonic analysis and to the harmonic
analyst interested in statistics that the paper is addressed.

Let ® = {P} be a family of probability measures on an arbitrary measurable
space (X, @). The set A ¢ @ is called ‘@-invariant’ (in preference to the more
familiar expression ‘similar region’) if P(A) is a constant in P. The class G(®)
of P-invariant sets contains all sets that are ®-equivalent to the empty set or the
whole space, and is closed for complementation and countable disjoint unions.
In general, @(®) is not a sub-c-field of G.

The set. A ¢ @(®) is ‘non-trivial’ if A is not ®-equivalent to the empty set
or the whole space. If every member of @(®) is ‘trivial’ then we call the family
‘weakly complete’. The name is suggested by the fact that ‘completeness’ =
‘bounded completeness’ = ‘weak completeness’.? That weak completeness
does not imply bounded completeness is seen from the example where X con-
sists of only three points with a probability distribution 6, § and 1 — 26, where
0<6<4

If ® is not weakly complete, i.e., if there exist non-trivial ®-invariant sets,
then we call the family of measures ‘weakly incomplete.” If ® consists of a finite
number of non-atomic measures, then its weak incompleteness is an imme-
diate consequence of a well-known result due to Liapunov [12]. In this situation
the class @(®) is very wide and contains sets of all ‘sizes.’

Our main concern is with the weak incompleteness of families of probability
measures. Here, we restrict ourselves almost exclusively to the particular situa-
tion where @ is a translation parameter family of probability measures. At the
risk of some repetitions, this paper brings together a number of results some of
which have been noted elsewhere.

2. Notations and a few basic propositions. For the sake of simplicity of ex-
position we consider the case where X is the additive group of real numbers.
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3 @ is complete if [ fdP = 0 for all P ¢ ®@ implies f = 0 a.e. ®@. @ is boundedly complete
if f is bounded and [ f dP = 0 for all P ¢ @ implies f = 0 a.e. ®.
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TRANSLATION-PARAMETER MEASURES 163

But most of the results of this section are true for arbitrary locally compact
commutative groups. We shall consider this general setting in a later section.

We take @ to be the o-field of Borel sets and we denote the Lebesgue measure
by M. Though our main interest is in probability measures it is necessary for
certain results to consider the class M of all bounded signed measures. M will
be equipped with a topology in the usual way by setting norm of u ¢ M as
supa |u|(4). With this norm and convolution (denoted by *) as multiplication,
M becomes a Banach algebra. We denote by M , the class of probability measures.

For each u € M we have the translation parameter family [u] = {us| 6 ¢ X}
where up(A) = u(4 — 0) and A — 6 = {x — 0| z ¢ A}. Let @[u] stand for
the class of [u]-invariant sets, i.e., the class of sets A with the property us(4) =
u(A) for all 6. We shall write f(z) to denote f(—zx).

A class of sets ® is translation invariant if Be 8@ = B + { ¢ 8. We state
below a number of results with a sketch of proof where necessary..

LEmMA 1. Q(u) 18 a translation invariant monotone class which s closed with
respect to complements and countable disjoint unions and contains the empty set
and the whole space X.

Lemma 2. If A e @ and ¢(0) = pe(A) then N(A)u(X) = [ #(8) dr(8).

Proof of Lemma 2 is an easy application of Fubini’s theorem. Alternatively
one may state the above lemma as: “For all unitary measures u the convolution
M = N If AM(A) = o but u(X) = 0 we take N(4)-u(X) as zero.

LemMA 3. If A ¢ Qu] and u(X) % 0 then N(A) = 0 or infinity according as
uw(A) = 0or 0.

This lemma implies that for a probability measure p a non-trivial [u]-invariant
set has infinite Lebesgue measure.

LemMma 4. If A € Q[u] then A € Q[uxv] and (uxv)(A) = u(A4)v(X).

COROLLARY. If u and v are unitary and A belongs to both Q[u] and Q[v] then
p(4) = »(4).

Proor. u(4) = (u*v)(4) = (v#u)(4) = v(4) by Lemma 4.

For each measurable set A let M (A ) be the family of measures u such that A
is [u)-invariant. M (A ) always contains the null measure. The relation between
A and M (A) is a dual of the relation between u and @[u]. The following theorem
is essentially a restatement of the preceding results.

TueoreM 1. Let A be a fixed set in G.

(i) M(A) s a closed ideal of the Banach algebra, M, i.e., M(A) is a closed
linear subspace of M which is closed with respect to convolution with every » € M.

(ii) If M, is the class of probability measures, then M(A) n M, is a (possibly
empty) closed convex subset of M and u(A) is a constant for all u in M(A) n M,
and this common value is zero or positive according as N(4) = 0 or «.

The following two lemmas prove that we are not working in a vacuum and
that weakly incomplete translation parameter families do exist.

LemMA 5. If u be the (normalized) restriction of the Lebesgue measure \ to the
interval J = [a, a + &) then

(1) A £ Q] if and only if A is an essentially periodic set with period §, i.e.,
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AN (A + 8) is a Lebesgue null set.
(1) @Q[u] contains sets of all sizes.
(iil) @[u] 7s a sub-o-field.
Proor. If A ¢ G[u] and I, be the indicator of A then, from the fact that

§7 I.(z) d\(x) is a constant in 0,

it follows that I,(8 4+ 8) — I.(8) = O for almost all (a.e. [\]) values of 6.
And this in turn implies the essential periodicity of A with period 8.

To prove the ‘if’ part of (i) let us first note that if A be essentially periodic
with period §, then, for each integer n, A is essentially equal to A 4 né. Also
note that, for each 6 ¢ X, the sequence of sets {J + 6 + nd}, n = 0, £1,
+2, - - - is a partition of X. The [u]-invariance of A then follows from the fol-
lowing chain of equalities.

ou(A —0)

M4 —6)nJ] = NAn (J + 6)]

= D> uNAn (J +0)n (J + ns)]

= Y N4 —nd)n (J + 6 —nd) nJ]
daNAnJn (J 46— nd))
MAnJ) = su(A).

Now, if 0 < a < 1 and 4, be a sub-set of J such that A\(4,) = «é and 4 =
U.(A4y + n8) then it is clear that A & @[u] and that u(A) = «. This proves
(ii). The proof of (iii) is elementary and hence omitted. In a later section we
shall indicate how to generalize the ‘if’ part of (i) to general topological groups.
It is easy to see how the lemma may be generalized to an arbitrary Euclidean
space.

Let us contrast Lemma 5 with the following:

LeEMMA 6. If p be the uniform discrete distribution over the two points a and @ =+ 6
then

(1) the empty set and the whole space are the only trivial [u]-invariant sets;
(il) A s a non-trivial member of @[u] of and only if A and A + & are comple-
ments of each other; all such sets are of size ;

(iii) @[u] is not a sub-o-field.

A detailed proof of the above lemma is perhaps unnecessary. Only observe
that A is a non-trivial [u]-invariant set if and only if, for every z it is true that A
contains exactly one of the two elements « and z 4 6. Now, for each z let S; =
{r +né|n =0, &1, ---} and let B be a set that has exactly one point in
common with each S, . For instance, we may take B to be the interval [a, @ + §).
It is now easily seen that the set A = u(B + md) where m runs through the
set of even integers is a typical non-trivial member of ®[u].

Lemma 6 tells us that the translation parameter family [u] generated by
any uniform two-point discrete distribution u is weakly incomplete. It is of some
interest to note that if u is not uniform then the family [u] is boundedly (hence
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weakly ) complete but is incomplete. The generalization of Lemma 6 to the case
where u is a uniform discrete distribution on a finite number, say n, of points in
an arithmetical progression is almost immediate. In this case we have non-
trivial [u]-invariant sets of sizes ¢/n (¢ = 1,2, .-, n — 1).

We thus see that weakly incomplete translation-parameter families do exist
and that if [u] is weakly incomplete then so also is [»] if u is a ‘factor’ of » (i.e.,
if v = pxa).

In the next section we consider the case where [u] is a dominated family of
measures.

3. The dominated case.

3.1. Miscellaneous results.

LemMA 7. If the translation-parameter family [u] is dominated by a o-finite
measure o then it is also dominated by the Lebesgue measure \.

The proof is given by Ferguson (Lemma 2 in [8]).

In view of the above lemma in the dominated case we may take A as the domi-
nating measure.

LemMA 8. If u be a probability measure dominated by N then given ¢ > O there
exists 8 > 0 such that sup4 [u(A — 6) — u(A — 0')| < e whenever |8 — 0| < &.

The above lemma holds for an arbitrary bounded signed measure by splitting
it up into its positive and negative parts. This result is well-known, Rudin
([18], p- 3). This lemma was also proved by Ferguson [7] but there is a gap in
his proof; he wrongly asserts that NJAA (4 — 6)] — 0 as § — 0 which is true
only if N(A) < . It is possible to construct an alternative proof by construct-
ing a sequence of continuous probability densities p. — du/dX a.e. and applying
Scheffé’s theorem [19].

The above lemma gives us an insight into how to construct a set that is ap-
proximately [u]-invariant. If A be a periodic set with period & then note that so
also is the function ¢(8) = u(A — 0). If we choose & sufficiently small then A
would be approximately [u]-invariant. The above considerations lead to the
following generalization.

TuroreM 2. Let {f(x, 0)} be a family of probability density functions with respect
to the Lebesgue measure \ on the real line X and let 9 be real valued. If, for each
z & X, the function f(z, ) is continuous in 0, then given any 0 < o < 1, ¢ > 0
and 0 < K < o there exists a set A such that |Ps(A) — a| < efor |6] < K.

In the case of a dominated location-parameter family we may take K = o«
and drop the assumption of continuity for f.

The first part of the above proposition follows from Liapunov’s theorem and
Scheffé’s convergence theorem. It is implicitly stated in a paper of Dvoretzky,
Wald and Wolfowitz [7]. The second part follows from the remarks preceding
the theorem.

The following characterization of bounded completeness, vide [9], is a reformu-
lation of a famous Tauberian theorem of Wiener.

TueorEM 3. (Wiener) Let u be dominated by the Lebesque measure. Then [u]
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is boundedly complete iff the Fourier transform [Zoe™™ du(z) = f(t) does not
vanish anywhere.

Wiener’s theorem leads to an interesting necessary condition for weak in-
completeness.

TuroreM 4. If u s dominated by the Lebesque measure N then a necessary condi-
tion that [u] be weakly incomplete is that f.(t) vanishes at an infinite number of points.

Proor. Let du = fd\, f e Li(\). We shall show that if i(¢) = O only at a
finite number of points, then [u] is weakly complete. Let i(t) = 0 iff ¢t = ¢,
-+, tn and define

M=1{y; veL.(\), ¢(z)= 2 ar"" ae ).

Let N be the closed ideal in L;()\) generated by f. By Wiener’s theorem ([18]*
7.24),N = {¢; 9 Li(\), (t) = 0if t = &, - -+ , tm}. Suppose fAf(x —6)d\ =
¢. Then [Z, (Iu(z) — ¢)¢p(z) d\ = 0 if ¢ ¢ N. Since M is finite dimensional
it follows that I, —ce M, ie., I.(z) =c+ > ae”® ae (\). Since
every open set has positive N\-measure, the continuous funetion ¢ + > ajet®
can only take the values O or 1. Finally, R being connected, this implies that
either I,(z) = 0 ae. (A)orls(z) =1 a.e. (X).Thiscompletes the proof.

Theorems 3 and 4 allow us to construct easily a u such that [u] is weakly
complete but not boundedly complete. For example let du = :1;2(21r)-’e—"2’2 d.
Then i(t) = (1 — tz)e_tz/2 which vanishes iff { = 1.

3.2 Sufficiency and Neyman structure. We continue to consider the class of
dominated measures. Equivalently we consider the class of Lebesgue integrable
functions Ly (X).

Let u be a given dominated probablility measure with du = fd\. A natural
thing to look for is a {u}-invariant set with Neyman structure. A set 4 has Ney-
man structure if there exists a sufficient sub-o-field @; for {u} and P,(4 | @1) =
constant. As the following theorem, Theorem 4 shows there exist no such non-
trivial sets.

Let @, be the minimal sufficient o-field which exists by Bahadur’s theorem [1].

THEOREM 5. G, = @ wrt ), i.e., for any A € @ there exists B ¢ Q, such that
AMAAB) =0.

The above theorem follows from a more general result of Pitcher [17]. This
theorem may be interpreted as saying the minimal sufficient sub o-field is the
maximal invariant sub o-field under the group of transformations (in fact iden-
tity only) which leave each Py invariant. In this form the theorem is true for
any separable, locally compact abelian group G in place of R, with mo = A
taken as the Haar measure.

3.3 Characterisation of some weakly incomplete families. We confine attention
to all x dominated by \ and identify u; with f where f ¢ Li(A) and du = fdA.

Two of our main problems are to characterise M (A ) where M (A) is the class
of all u; with A & Q[us] (at least for some sets A ) and to give conditions under
which G[y] is a o-field. We shall throw some light on these questions by solving a
related problem.
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Consider the following problem: given a translation invariant sub-c-field
@, of @ characterize all f &€ Li(\) such that @ C @Q[u] where du = fdA\.

Obviously unless @ is a proper sub-c-field no such f can exist.

Before this problem can be solved it is necessary to know the translation in-
variant proper sub-c-fields. We do not know if the following method is the only
way of generating them.

Take any countable closed subgroup X; of the reals i.e., X; = {#né; n = 0,
1,2, ---}, 8 > 0, and consider all members A ¢ @ which are invariant under
translations by elements of X; . Any X;-invariant Borel set is obtained by taking
a Borel set 4 in [0, ) and then forming the union U= 41,...(A + n3). The class
of such Xj-invariant sets forms a translation invariant proper sub-s-field of @,
isomorphic to the class of Borel sets in [0, ). We shall denote this class by Gx, .
We can prove the following:

TareoREM 6. If @1 s a countably generated translation invariant proper sub-o-
field of @, then either Gy s the trivial o-field or there is a subgroup {X: = +né;
n=20,1,2--- 186 > 0 such that G, is the class of all Xi-invariant sets of Q.

Proor. Let A denote an atom of @;. Let X, = {z; 2z ¢ X, z + A = A}.
Then it is easy to check that X 4 is a subgroup of X not depending on A and that
in fact X4 is the atom containing the origin. By [3], Theorem 3, @; contains all
X 4-invariant measurable sets. Hence by [16], Theorem 7.2, X, is closed. So
X4s=Xor{0} or{ns;n =0, 1, ---}, 8 > 0. The theorem follows from this.

In the following we write @; for @x, .

Unfortunately, though @ itself is countably generated its sub-o-fields need
not have the same property. It is true that to any sub-o-field of @ there corre-
sponds countably generated sub-s-field equivalent with respect to A but we are
unable to prove the conjecture this suggests, namely, that if & is any translation
invariant sub-s-field of @ then 8 = @ or @, or the trivial o-field wrt \. It may be
interesting to observe that if ® has in addition the property that there exists a
set B ¢ ® with0 < A(B) < «, then ® = @ wrt \; for define du = (Iz(x) d\)/
A(B) and apply Theorem 5. (Alternatively this result can be directly proved
and Theorem 5 derived from it.) Also see Theorem 13 in this connection.

Let us notice that the [u]-invariant sub-o-field of Lemma 6 is equivalent to
@y wrt A.

In the following we write us for u to indicate du = f d\ but if there is no fear
of confusion we shall use u instead of uy .

TuEoREM 7. Let X1 = {£nd; 8 > 0,n =0, 1, 2, ---} and @, the sub-o-field
of all X1-invariant sets of G@. Then G C Quy] iff f lies in the closed ideal in L;(N\)
generated by fs = characteristic (= indicator) function of the interval [0, §).

Proor. Without loss of generality we take § = 1. That @; C @[u,] if f lies
in the closed ideal generated by fi follows from Theorem 1 and Lemma 6. We
now prove the converse also holds. Suppose @1 C G[us]. Then

f(2nr) = [Z, e du
Seo E“(e—znﬂz | @1) dllr
= u(X)[2 €2 f d.
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Since B, (¢ 7" | @&1) = ¢*"* and by Lemma 5
w(A)w(X) = v(A)u(X) where dv = fid\,
= u(X)f5 e dx

= 0 if = is any non-zero integer.

t

Since fi(¢) = 0 iff £ = 2nx where n is any non-zero integer, f lies in the closed
ideal generated by f; according to Theorem 7.2.4 of Rudin [18].
TueoREM 8. Let @, be as in Theorem 7. Then

@1 = @[uys] (up to \-null sets) if f(t) = 0 for t = 2nx/s, n = x1, £2, -
# 0 otherwrse.

ProoF. Suppose f(t) satisfies the given condition. Then f; and f generate the
same closed ideal, where f; is defined in Theorem 7. Hence Glus] = Qluy,] = G1
upto A-null sets.

A referee has pointed out that the converse is not true, and conjectures that
the theorem remains true if f(¢) = 0 at ¢ = 2nx/8, n = +1, £2, and at a
finite number of additional points.

THEOREM 9. Let 0 < &' < & and 6'/6 be an irrational number, A = {x + ns;
0=z<d&,n=0,41, £2---}. Then the class M(A) of all pa such that A ¢
Q[u] is the closed ideal generated by f5 , where f; is the indicator function of the inter-
val [0, §).

Proor. It is well-known that the set of all numbers of form m -+ n§, m, n
integers £ irrational, is dense in X. Using this and Lemma 1 one can show that if
weM(A) then G[u] contains the field generated by sets

A={z+n50<8 <z<8 <8n=0 %1, =2 -},

and hence being monotone G[u] D @; . The result now follows from Theorem 7.

It will be noticed that Theorem 8 gives sufficient conditions for @[u] to be a
given sub-o-field (of certain structure) and Theorem 9 characterizes M (A ) for a
particular type of A. An f satisfying the conditions of Theorem 8 is f = ¢*f;
where f; is the indicator function of [0, 1) and ¢ is the standardized normal den-
sity. Both f and f generate the same ideal in Li(\).

4. A more general formulation. Let us consider these problems in a somewhat
more general setting. Instead of X we may work with any locally compact
group. But it will be sufficient for our purposes to consider a separable locally
compact abelian group G. In particular this implies G is o-compact and hence
the Haar measure, to be denoted by m, , is o-finite.

The method of constructing weakly incomplete families in the preceding
section can be generalized as follows. Let G: be a countable subgroup. Suppose
there exists a measurable subset Gy of G such that it has one and only one ele-
ment from each coset of G;. Note that me(Gy) > 0. For G = U,.4,(Go + g)
is the countable union of disjoint sets of equal measure mo(G,). We further
assume mg(Gy) < « and let fo = I4,/mo(G,) where I stands for indicator func-
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tion. Then it is easily checked that if A is any Gi-invariant set then I,%f, =
constant. As before we can construct new weakly incomplete families starting
with fo . But in this general setting it can be shown that not all weakly incomplete
families are obtainable in this way; see for example the next section on the cir-
cle group. [Also Lemma 7 shows that if the real line X is given the discrete
topology then there exist weakly incomplete families but none obtainable by
what we have called above the method of 3.3. However in this case the group
is not even o-compact.] The known structure of locally compact abelian groups
should make it quite easy to give necessary and sufficient conditions under which.
we can construct a weakly incomplete family as in Lemma 6.

We conclude this section with a simple result.

TuareorREM 10. If a measurable Gy exists then Gy is closed and [u] 7s constant on all
Gr-invariant sets; then (G, Qu, [u]) is isomorphic to (G/Gy, ®, m1) where G is .
the class of Gi-invariant sets of @, ® is the class of Borel sets of the quotient G/Gy
and my 1s the normalized Haar measure on G/Gy .

Proor. The first part follows from Theorems 5.2, 7.2 of Mackey [16]. The
second part follows from Lemma 5 by taking dv = fo dmy where f is as in the
discussion preceding this theorem.

This result shows translations on (G, G1, [u]) do not provide really new ex-
amples of measure preserving transformations.

b. Circle group. It is natural that we should try to study convolutions by
using Fourier transforms. The difficulty here is that if G is non-compact then the
indicator function of a non-trivial [u]-invariant set does not belong to L;(my).
In order to overcome this difficulty we may work with a compact group. In
this section we work with the circle group.

Let G be the group of complex numbers of modulus one with multiplication
as the group operation or equivalently the additive group of reals modulo 2r;
we follow the second interpretation henceforth.

Since G is compact the closed countable subgroups are the finite groups, in
this case the cyclic groups of the form

G1={27I'K/no; K=0,1,"’,no—1}.
A typical Gi-invariant set is
A = {z + K2r/no ; 0<z<a, K=01--,n—1

where 0 < a < 27/n, .

Let Go = {z; 0 £ 2 < 27/ne} and fo = Ig,/(27/no). As before we as-
sume dp = f(z) dm, .

In this case we can offer a different proof of Theorem 9 (and hence of Theorem
7) which is illuminating.

If A is [u]-invariant, then

Lin)fn) =c if n=0
=0 if n#0
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where ¢(n) for ¢ & Li(mo) denotes the Fourier transform of ¢ at =, ie.,
3" ¢(x)e™"™ dr/2r and ¢ denotes the complex conjugate of ¢.

f(n)y =0 if I,(n)#0 and n 0.

Take A = {z + 20K/np; 0 < 2 < a, K =0,1,---, np — 1} and
0 < a < 2x/n, with a/7 and hence any/2x an irrational number. Then

Iin) =0 if n= xKn,, K=1,2,-.
Therefore if [u] is constant on A, then

(1) f(n) =0 if n=+Kng, K=12---.
Also, it is easily checked that
(2) fo(n) =0 iff n= +Kn,, K=1,2, -

The desired conclusion namely that f lies in the closed ideal generated by I,
follows from (1) and (2) by Theorem 7.2.4 [18].

To show that the above result about M (A ) is not true for all A ¢ @ we cons1der
the following example suggested by the preceding arguments. Let
X={2+K2r/n;0<2<a,K=0,1,:-,np— 1} where 0 < a < 27/ng
and a/~ is irrational. Let fi = I4/mo(A4 ). Then [u] generated by f1 is invariant
onA = [0, 2r/n,). But since fi(n) # 0ifn = +Kno, K = 1,2, - -+ , it follows
that fi cannot be obtained by convolution with a uniform distribution on
[0, 27/n,) for any n, . Incidentally by Pitcher’s theorem [17] the minimal suffi-
cient sub o-field for [u;] is properly contained in @ and A is not merely [ui]-
invariant but also has Neyman structure.

Theorem 3 holds for any locally compact abelian group and Theorem 4 for any
locally compact connected abelian group. In particular we get

TurorEM 11. If (1] 45 weakly incomplete then f(n) = 0 at an infinite number of
points.

In this case one can give an elementary proof not using Wiener’s theorem.

Proor. Suppose if possible f(n) vanishes at a finite number of points. Hence
if I, »f = constant, then I4(n) # 0 only at a finite number of points. Hence in-
version is possible and we get

Lu(z) = 22 ¢™1a(n)
which is a continuous function of z. Hence
A ={z:I,(2) =1} = {z: L.(z) #= 0}
is both open and closed. Hence A = G or ¢ i.e., [uy] is not weakly complete.

6. Compact groups. This section contains some remarks on other compact
separable groups.

For compact groups it is easy to characterize all translation invariant sub-o-
fields. However we do not know to what extent Theorems 7, 8 and 9 hold.

TueoreM 12. If G is separable and compact and @y s a translation tnvariant
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sub-o-field then there exisis a compact subgroup G, such that G, differs from the class
of Gy-invariant sets by mo-null sets.

Proor. For f & Ly(mg) let wf = Emy(f| @1). Then it is easily seen that = com-
mutes with translations. Hence by Theorem 3.8.3 of [18] nf = f * uo where
fo(y) = 1or 0,y eI and I is the dual of G. Let I'y be the set of all y such that
bo(y) = L.If y eI'1, my = v * po = v. Hence since = is a conditional expectation
operator, #(fy) = yxf if ¥ ¢ I, . Since this holds for all f ¢ Ly(m,) this means if
veTi,v(z) = 1 a.e. po. Since T is countable and hence Iy, we can choose a
uo-null set No such that y(z) = 1if z 2 No and v ¢ I', . From this it easily follows
that I') is a subgroup of I'. Hence if G, is the anihilater of I, then the uniqueness
of Fourier transforms implies po is the normalized Haar measure corresponding
to G . The required result now follows gince En, (f| 1) = f*po = E,,(f | @)
where @, i8 the class of Gi-invariant sets of Q.

It will be noticed that the main part of the above proof consists in giving a
different and much simpler proof of Theorem 1.1 of Pitcher [17] for the compact
abelian case. A proof for compact monothetic groups can be found in [1], pp.
356, 357.

If f has Fourier transform that vanishes at a finite number of points, then the
problem of deciding whether [u] is weakly incomplete can be reduced to a
question on finite groups. We shall not give the details since the answer is not
known even for finite groups. Instead we content ourselves with stating the
following which essentially shows how the reduction can be effected.

Let T be the dual of G.

TuroreM 13. Suppose f vanishes at a finite number of points. If [u] 4s weakly
incomplete then

(i) the smallest subgroup A of T' containing zerog of f is finite,

(i) G/H 18 finite where H s the anthilator of A,

(iii) there exists a set A consisting of some of the cosets of H suchthat I, »f = C,
0<C<1l

The proof i omitted. It depends on Theorem 3.3.2 of Rudin [18].

We conclude this section with two equivalent formulations of the problem of
characterizing all weakly incomplete families of probability measures.

First ForMuLaTION. Which subsets N of I' have the property (W) that
N = {y; I.(y) = 0} for some get A with 0 < mo(4) < 1? [u] is a weakly in-
complete family of probability measure iff No = {v; }(v) # 0, v = 0}, where 0
stands for the identity element of T, is a subset of some N with property (W).

Seconp ForMuLATION. Given Ny = {y; f(v) = 0 or ¥ = 0} where O is the
identity element of T, can one construct ¢ &€ L:(I') such that ¢ = 0 outside N,
and ¢(y) = 1 or O for all v but not equal to the indicator of G or the empty
set? If one can, then 4 = {z; ¢(z) = 1} is non-trivially [u)-invariant. In the
case of finite groups the problem thus becomes one of characterizing the support
of idempotent measures.

It seems that even for finite groups, worse still even for finite cyclic groups,
the problem of characterizing all weakly incomplete families is extremely hard.
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It is interesting to note that if G is a cyeclic group of order p where p is a prime
number, then the Haar measure is the unique weakly incomplete family.

7. A maximal property of the maximal invariant sub s-field. In this section we
consider an application of the concept of weak completeness to solve a problem
raised by Basu [6].

Suppose Yi, - -+, Y, are real valued iid with density f(x — 6) (wrt Lebesgue
measure), —» < 6 < »;let (X, @™, ®™) denote their joint distribution
and, without loss of generality, the basic space on which they are defined. Thus
dPy'™ = JIf(z: — 6) d\™” where A is the n-dimensional Lebesgue measure.
Clearly if @; is the maximal invariant sub-o-field induced by Y. — Y1, -+,
Y. — Y1, then @; is ®™-invariant. But even in the case of normal density
with unknown mean 6 and known variance it can be shown that @ does not con-
tain all @™ -invariant sets [14], p. 227. Basu [6] has raised the question whether
@r is a maximal ®™-invariant sub-o-field, i.e., whether @; is not contained in
any ®™-invariant sub-o-field ® which has at least one set B such that
Pi”(4A A B) = P™(4 A B) > Oforall A £ @;. Our theorem in this section
gives a necessary and sufficient condition for maximality. It leads to an example
showing that in general @, is not even maximal. Also as a corollary we have an
easily verifiable sufficient condition.

Let the conditional density of ¥; wrt A = X be fo"* (21| Ys — Y1 = A\,
1= 2,---,n). We shall write it as fo(x1 — 6; A2, - -+, \»). In the following
@™ = @ the class of linear Borel sets.

THEOREM 14. @; is @ mazimal @™ -invariant sub-c-field iff there does not exist
any family of sets A(N2, -+ , \s) € @ for all (n — 1)-tuples (\z, - - - , \a) satisfy-
ing

(i) [acgaw folZ — 03 0a, -+, M) AN = ¢(Aa. =+, \a)
where ¢c(Ag, ++ , M) s free of 0 and 0 < ¢ < 1 on a set of (N2, -+, N\n) having
positive measure under Py¥* Y1 YT,

(i) A ={(x1, -, Zn); 1A — Z1, -+ ,Ta —T1)} 1SAQ
set.

The first condition says the family of conditional densities is weakly incom-
plete for a set of (A2, - -+ , \s) of positive probability. Condition (ii) implies these
sets can be combined in a ‘“measurable’” way.

Proor. Suppose (i) and (ii) hold. Then Py(A | @;) is free of 6; hence Py(B)
is free of 0 for B ¢ F where ¥ is the class of finite disjoint unions of sets of form
DinD,,D, = A,A°or R and D; € G; . Let B be the smallest o-field containing
F. Then ® is ®™-invariant. Also by (i) 4 # @; and so @ is a proper sub-c-field
of ®.

Conversely, suppose @; is contained in a®™-invariant sub-s-field ® with a
set B ¢ ® such that P, (4 A B) = P (4 A B) > Ofor all 4 £ G; . Then

(1) P”(AGr) =C(Ye— Yy, -+ , Y, — 1)

is strictly between 0 and 1 with positive probability under Py™. Then for
each 6, .

™ _measurable
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(2) fA(Xg.---.M)fO(xl - 0; A2 y T )‘”) d\ = C()‘Z y " >\n)

a.e. PoYr 1T for @ being ®™-invariant we may take P, (4 | @;) =
Py (A | @r). Hence there exists a set N of measure zero under P,"* "1+ "1
such that if (A2, -+, \x) & N then (2) holds for all rational 8; by Lemma 9.
(2) holds for all 6 if (A2, - -+, A\x) 2 N. This completes the proof.

COROLLARY. G; is a maximal @™ -invariant sub-o-field if

2 € (@ s A, o, M) AN Z O

for any t for almost all Ay, - -+ , \,) under Pp* Y1 Y771,
The sufficient condition for maximality given in the corollary holds for the
case of normally distributed random variables with mean 6 and variance unity.
To show that G is not always maximal consider the following example: Let
fo(x) = 1if 0 = z £ 1. Then

fo(@s N, oo M) = (@ —a) if aa <<y

where a1, a» are functions of (A2, --+, M) and a1 < @ with probability one
under P,"2 Y1 vY1 Let the sample space of Y; be divided up into left closed
right open intervals [¢\, (¢ + 1)\) where 2\ = @y — ay, 7 = 0, £1, £2, --- .

Let ANz, -+, \x) be the union of those intervals that have an even 7 in their
left end point. Then A(\s, - -+, \.) satisfies (i) and (ii) of Theorem 15 with
C(A\s, -+, \) = % for almost all (Ag, - -+, \,) under Pp"2 ¥4 Yo",

For this example we can construct the unique maximal @™ -invariant sub-o-
field containing @;. Consider the class of all A £ @™ such that Py(A4 | @;) is
free of 0 and call it ®. It follows from Lemma 5 and the proof of Theorem 15
that @ is the unique maximal ®™-invariant o-field containing @ ;. We conjecture
that ® is in fact the class of all ®™-invariant sets.

The conjecture suggests the following general question. When is the class of
all ®™-invariant sets a o-field? For Y1, - - - , ¥, normally distributed with mean
— o < § < o« and unit variance, our corollary shows the answer is no. But as
we have seen even for n = 1 the general problem is hard to solve.

8. Problems and speculations. We have already mentioned a few problems
above. We list some more below. We confine ourselves to the real line unless
otherwise stated. Also we assume [u] is dominated.

The main problem is to produce at least one weakly incomplete dominated
family of probability measures [u;] which is not of the kind considered in 3.3. If
no such example exists most of the questions asked below would have a trivial
answer.

Let E be a set with finite positive Lebesgue measure and p the normalized
restriction of Lebesgue measure to E. When is it true that [u] is boundedly
(weakly) complete? If E is an interval (parallelogram if we are on the plane)
then we know from Lemma 5 that [u] is weakly incomplete. What is the state of
affairs if E is a circle or a triangle on the plane?

What are the translation invariant sub-o-fields not covered by Theorem 6?

5
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What are the analogues of Theorems 7 and 8 for such sub-o-fields? If [x] has non-
trivial invariant sets of all sizes then does @[u] include a translation invariant
sub-o-field? Does it have a factor which is a uniform distribution over some
interval?

What is the class of all sets A with non-empty M(4) n M, ? What are the
extreme points of M (A4 ) n M, for such an A?
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