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1. Introduction. The purpose of the present paper is to present a simple method
of deriving the unique minimum variance unbiased estimate (MVUE) of the
reliability function associated with a life distribution. The widely applicable
life distributions are the normal, one- and two-parameter exponential, gamma,
and Weibull distributions. A good deal of work has been done on this problem.
Barton [1] estimated the probability that a normal variable will take a value
between two points X; and X, in its range. Pugh [7] and Laurent [6] obtained
the MVUE of reliability under the one-parameter and two-parameter exponen-
tial life distributions respectively. Tate [8] considered the two-parameter ex-
ponential, gamma and Weibull distributions and obtained MVUE’s of some
functions of the parameters. Recently, Basu [2] put forward a method of deriving
MYVUE of reliability and verified these estimates. The methods used by most of
these authors consist of finding conditional distribution of a component of sam-
ple-observations given the sufficient statistics. In our present method, we find a
statistic which is stochastically independent of the complete sufficient statistics
and whose distribution can be very easily obtained. The MVUE is based on this
distribution.

2. A general theorem for finding the MVUE. Let X = (X1, X, -+, Xa)
be a random sample of size n from a distribution function F(z; 0), where 0
denotes a vector of parameters. Let & be a complete sufficient statistic for 0.
Let ¢(t, 0) be a parametric function, ¢ being a real number, and let

(2.1) UX) =2\ if Z(X) = ¢,
=0 otherwise,

for Z(X) a function of X and N any real number, be an unbiased estimate of
¥(t, 0). We introduce the following:
TuEOREM 1. If there exists a function V(Z, 8) such that
(i) 4t is stochastically independent of 8,
(ii) 4 is a strictly increasing function of Z for fixed 8, and
(iii) ts distribution function H(z) is such that

H(z) =0 forz < a,
=1 for z > b.
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aand b (a < b) being either finite or infinite, then the unique MVUE of ¢ (¢, 0)
8 given by

v, 8) =\ ¥Vt 8) < a,
(2.2) =N vepdH(x) ifas< V() b,
=0 if V(t, 8) > b.

Proor. Since U(X) is an unbiased estimate of ¢ (¢, 8) and & is a complete
sufficient statistic for 0, therefore, by the Rao-Blackwell-Lehmann-Scheffé
theorem, the unique MVUE of ¢(¢, 0) is

¥ (4, 0) = BIU(X) | 8]
= \ Prob [Z(X) = ¢| 8]
= N Prob [V(Z,8) = V(t,0)|8] by (ii)
= N Prob [V(Z,8) = V( 6)] by (i).
Hence by (iii) we get (2.2).

The steps in the application of this theorem are the selections of suitable func-
tions Z and V. Function V satisfying condition (i) can be obtained by making
use of the following

TueoreM 2. If V is any statistic (not a function of the sufficient statistic 8
alone) such that its distribution does not depend upon 0, then V s stochastically
independent of 8.

The proof of this theorem is given by Hogg and Craig [5] in Section 8.9.

3. Applications. The unique MVUE’s of reliability and its powers under vari-
ous life distributions are obtained in this section by applying Theorem 1 of the
preceding section.

Reliability at ‘mission time’ ¢ is defined by

R(t,0) = Prob [X = ¢|6] = [T dF(z;0)
where F(z; 0) is the underlying life distribution.

The following lemma will be frequently used to find the density function of V.

Lemma 1. If Xy, Xa, -+, X, are independently and identically distributed
with the density function

f@) = 67T (p)e™ %", @ =z 0;p, 6 > 0,
then the random variable

E= X/ (Xi+ XhaXy),
where D" denotes the sum of m terms (0 < m < n), has the beta density function
(3.1) f(x) = 87 (p, mp)a” (1 — &)™
for 0 = z = 1 and O otherwise.

The proof of this lemma is simple; hence it is omitted. The density function
(3.1) will be denoted by B(p, mp).
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The steps in the derivation of the MVUE’s of reliability function associated
with the normal, gamma, one-parameter exponential and Weibull distributions
are given in Table 1. Similar steps for obtaining the MVUE’s of powers of re-
liability function, associated with the two-parameter exponential distribution

f(z) = (1/6:) exp [—(x — 6:1)/6:)8(x — 61), 6.2 0,6,> O,
where s(w) =1 yw=0
=0 otherwise

using only r (r = n) smallest observations (censored sample) are shown in

Table 2. In order to apply Theorem 1 effectively to this distribution, the follow-
ing transformation (Epstein and Sobel [4]) from X’s to ¥’s is made:

Y'i = (n -1 + 1)(X(’i) - X(i—l))) X(O) =" 0’ 1= 1} 2) ) 7'.

Here X ; is the 7th smallest observation. The Y’s are then mutually independ-
ent. The density function of Y; is

f(z) = (1/6:) exp [— (z — nb1) /0], x = nby,
and that of YV, (¢ = 2,8, ---,r),is
f(x) = (1/6,) exp [—z/62], z = 0.
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