NOTES

THE EXPECTED COVERAGE TO THE LEFT OF THE *i*th ORDER STATISTIC FOR ARBITRARY DISTRIBUTIONS

By Barry H. Margolin¹ and Frederick Mosteller

Yale University and Harvard University

1. Introduction. The *coverage* of the *i*th order statistic $X_{(i)}$, $i=1, 2, \cdots$, n, in a sample of size n drawn from the continuous distribution F is $F(X_{(i)})$. The distribution of $F(X_{(i)})$ is well known ([2], p. 236) to be a beta distribution with parameters i and n-i+1, and the expected coverage

(1)
$$E(F(X_{(i)})) = i/(n+1).$$

We want a definition of coverage of the *i*th order statistic that has expectation i/(n+1) in the general case where the parent distribution may have atoms.

A natural way to define coverage in the general case involves the Scheffé-Tukey transformation [1], described below, plus a special randomization when the *i*th ordered observation falls at an atom. This approach generates coverages distributed according to the same beta distribution as the usual coverages generated by samples from a continuous distribution. Instead of using this approach for the general case, we introduce below a *modified* definition of coverage that avoids randomization and nevertheless has expected coverage equal to i/(n+1). For a continuous parent distribution F, the modified definition agrees with the usual one; if the parent has at least one atom, the distribution of the modified coverage is not beta-distributed, but also has at least one atom.

2. The modified definition of coverage and its expectation. Let X be a random variable (whose distribution is continuous, discrete, or mixed), and let

(2)
$$F^{-}(x) = \Pr\{X < x\}, \qquad F(x) = \Pr\{X \le x\},$$

$$p(x) = F(x) - F^{-}(x) = \Pr\{X = x\}, \quad V = \{x \mid p(x) > 0\}.$$

In a random sample of size n from F, let $X_{(i)}$ be the ith ranked observation in ascending order of magnitude, so that $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(i)} \leq \cdots \leq X_{(n)}$. If there are ties in the sample, we may not be able to say which of the tied observations is the ith, only that it lies in a particular clump.

Received 30 October 1967; revised 29 July 1968.

¹ The first author's research was supported in part by the Army, Navy, Air Force and NASA under a contract administered by the Office of Naval Research. The second author's research was facilitated by a National Science Foundation grant (GS-341). Reproduction in whole or in part is permitted for any purpose of the United States Government.

For given values of i and n, suppose that in the sample

 T_i observations have values less than $X_{(i)}$,

(3) W_i observations have values equal to $X_{(i)}$,

$$n - T_i - W_i$$
 observations have values greater than $X_{(i)}$.

 T_i may take on the values $0, 1, \dots, i-1$, and consequently W_i can take on the values $i-T_i, \dots, n-T_i$.

Definition. The modified coverage of $X_{(i)}$ for a sample of size n is defined as

(4)
$$C_i(X_{(i)}, T_i, W_i) = F^-(X_{(i)}) + (i - T_i)(W_i + 1)^{-1}p(X_{(i)})$$

where T_i and W_i are described in (3).

We use $X_{(i)} \in V$ to mean that the value of $X_{(i)}$ is an atom. If $X_{(i)} \in V$, then since $1 \leq i - T_i \leq W_i$

$$(5) F^{-}(X_{(i)}) < C_{i}(X_{(i)}, T_{i}, W_{i}) < F(X_{(i)}).$$

Note that if in a sample $X_{(i)} \not\in V$, then $p(X_{(i)}) = 0$, $F^-(X_{(i)}) = F(X_{(i)})$, $W_i = 1$ and $T_i = i - 1$ with probability 1, and the modified coverage $C_i(X_{(i)}, T_i, W_i) = F(X_{(i)})$, the usual coverage for the continuous case. In a random sample of size n, we have the

THEOREM.

(6)
$$E(C_i(X_{(i)}, T_i, W_i)) = i/(n+1).$$

PROOF. Our proof uses the Scheffé-Tukey ([1], p. 189) transformation which we now describe. Let X^* be a random variable having a uniform distribution on the interval from 0 to 1. Let U denote the cumulative distribution function of X^* , i.e., if x^* is a value of X^*

$$U(x^*) = 0$$
 if $x^* < 0$
= x^* if $0 \le x^* \le 1$
= 1 if $1 < x^*$.

Recall that F is the cdf of the random variable X. Consider the transformation $X^* \to g_F(X^*)$ such that

$$F(g_F(X^*) - 0) \leq U(X^*) \leq F(g_F(X^*) + 0).$$

Observe that if $F^-(x) < x^* \le F(x)$, then $g_F(x^*) = x$, where $x \in V$. Scheffé and Tukey observed that to every x^* , $-\infty \le x^* \le \infty$, there corresponds at least one $g_F(x^*)$ and that this $g_F(x^*)$ is unique unless it lies in an interval to which F assigns zero probability. In this case they (and we) assume that some value in the interval is designated to be $g_F(x^*)$; which value is immaterial for our purposes. Scheffé and Tukey proved that $g_F(X^*)$ has the cdf F and can thus be identified with the random variable X.

A random sample X_1^* , ..., X_n^* from U transforms into a random sample X_1, \dots, X_n from F. For fixed i, consider those samples from U in which:

 T_i observations are less than or equal to $F^-(X_{(i)})$,

 W_i observations have values in the interval $(F^-(X_{(i)}), F(X_{(i)})]$,

 $n - T_i - W_i$ observations are greater than $F(X_{(i)})$,

$$T_i = 0, \dots, i-1, \quad W_i = i - T_i, \dots, n-T_i,$$

i.e., for these samples the ith order statistic from the uniform sample, $X_{(i)}^*$, falls in the half-open interval $(F^-(X_{(i)}), F(X_{(i)})]$. The conditional distribution of $X_{(i)}^*$, given $X_{(i)}$, T_i , W_i for $X_{(i)} \in V$ is that of the $(i-T_i)$ th order statistic of a sample of size W_i from a uniform distribution on the interval $(F^-(X_{(i)}), F(X_{(i)})] = (F^-(X_{(i)}), F^-(X_{(i)}) + p(X_{(i)})]$. Thus from the well-known theorem on order statistics from the uniform distribution, the expected value of $X_{(i)}^*$, given $X_{(i)}$, T_i , W_i , for $X_{(i)} \in V$, is

(7)
$$E(X_{(i)}^* | X_{(i)}, T_i, W_i) = F^-(X_{(i)}) + (i - T_i)(W_i + 1)^{-1}p(X_{(i)})$$

= $C_i(X_{(i)}, T_i, W_i)$.

This is obviously true as well for $X_{(i)} \not\in V$. We conclude that

(8)
$$E(C_{i}(X_{(i)}, T_{i}, W_{i})) = E(E(X_{(i)}^{*} | X_{(i)}, T_{i}, W_{i}))$$
$$= E(X_{(i)}^{*}) = i/(n+1).$$

COROLLARY 1. If the distribution F has at least one atom then

(9)
$$E(F^{-}(X_{(i)})) < i/(n+1) < E(F(X_{(i)})).$$

PROOF. This follows from the strict inequalities of (5). COROLLARY 2.

$$(10) \quad (i+1)^{-1} p_* P_i(V) \leq E(F(X_{(i)})) - i(n+1)^{-1}$$

$$\leq (n-i+1)(n-i+2)^{-1} p^* P_i(V)$$

where $P_i(V) = \Pr \{X_{(i)} \in V\}, p_* = \inf_{x \in V} p(x), \text{ and } p^* = \sup_{x \in V} p(x).$ Proof. For $X_{(i)} \in V$,

$$F(X_{(i)}) - C_i(X_{(i)}, T_i, W_i) = [1 - ((i - T_i)/(W_i + 1))]p(X_{(i)}),$$

$$T_i = 0, \dots, i - 1, W_i = i - T_i, \dots, n - T_i,$$

and for $X_{(i)} \not\in V$

$$F(X_{(i)}) - C_i(X_{(i)}, T_i, W_i) = 0.$$

Hence for all $X_{(i)}$

$$F(X_{(i)}) - C_i(X_{(i)}, T_i, W_i) = [1 - ((i - T_i)/(W_i + 1))]p(X_{(i)})I_v(X_{(i)})$$

where $I_v(x)$ is the indicator for the set V .

Let $R_i = W_i + 1 - (i - T_i)$. Then as W_i goes from $i - T_i$ to $n - T_i$, R_i goes from 1 to n - i + 1. Now

$$1 - ((i - T_i)/(W_i + 1)) = 1 - ((i - T_i)/(i - T_i + R_i)),$$

and is monotonically increasing in both R_i and T_i . Hence

$$1/(i+1) \le 1 - ((i-T_i)/(W_i+1)) \le (n-i+1)/(n-i+2).$$

Therefore,

$$(i+1)^{-1}p_*I_v(X_{(i)}) \leq F(X_{(i)}) - C_i(X_{(i)}, T_i, W_i)$$

$$\leq (n-i+1)(n-i+2)^{-1}p^*I_v(X_{(i)}).$$

Taking expectations gives

$$(i+1)^{-1}p_*P_i(V) \le E(F(X_{(i)})) - i/(n+1)$$

$$\le (n-i+1)(n-i+2)^{-1}p^*P_i(V).$$

COROLLARY 3.

(11)
$$(n-i+2)^{-1}p_*P_i(V) \leq i/(n+1) - E(F^-(X_{(i)}))$$

 $\leq i(i+1)^{-1}p^*P_i(V).$

PROOF. Similar to that for Corollary 2.

Remark. Corollaries 2 and 3 are probably more useful for the special case of a discrete distribution F, for which $P_i(V) = 1$, than for the mixed case.

3. Acknowledgment. The authors wish to express appreciation for discussions with Paul Holland and I. R. Savage and for suggestions from the referees.

REFERENCES

- [1] Scheffé, H. and Tukey, J. W. (1945). Non-parametric estimation. I. Validation of order statistics. Ann. Math. Statis. 16 187-192.
- [2] WILKS, SAMUEL S. (1962). Mathematical Statistics. Wiley, New York.