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NOTES

THE EXPECTED COVERAGE TO THE LEFT OF THE <th
ORDER STATISTIC FOR ARBITRARY DISTRIBUTIONS

By BaArry H. MARGOLIN! AND FREDERICK MOSTELLER

Yale University and Harvard University

1. Introduction. The coverage of the ¢th order statistic Xy ,72 =1, 2, ---,
n, in a sample of size n drawn from the continuous distribution F is F(X ).
The distribution of F(X () is well known ([2], p. 236) to be a beta distribution
with parameters © and n — 7 + 1, and the expected coverage

1) E(F (X)) =i/(n + 1).

We want a definition of coverage of the ith order statistic that has expectation
2/(n + 1) in the general case where the parent distribution may have atoms.

A natural way to define coverage in the general case involves the Scheffé-
Tukey transformation [1], described below, plus a special randomization when
the 7th ordered observation falls at an atom. This approach generates coverages
distributed according to the same beta distribution as the usual coverages
generated by samples from a continuous distribution. Instead of using this
approach for the general case, we introduce below a modified definition of cover-
age that avoids randomization and nevertheless has expected coverage equal to
i/(n 4 1). For a continuous parent distribution ¥, the modified definition agrees
with the usual one; if the parent has at least one atom, the distribution of the
modified coverage is not beta-distributed, but also has at least one atom.

2. The modified definition of coverage and its expectation. Let X be a random
variable (whose distribution is continuous, discrete, or mixed), and let

(2) F(z) = Pr{X < 4}, F(z) = Pr{X < 4},

p(z) = F(z) — F (z) = Pr{X =g}, V ={z|p(x) > 0.

In a random sample of size n from F, let X ;) be the 7th ranked observation in
ascending order of magnitude, so that Xy £ X = - = Xy £ -+ £ Xy -
If there are ties in the sample, we may not be able to say which of the tied ob-
servations is the 2th, only that it lies in a particular clump.
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For given values of ¢ and n, suppose that in the sample
T; observations have values less than X ,
(3) W ; observations have values equal to X ,
n — T; — W, observations have values greater than X, .

T: may take on the values 0, 1, - -+ , ¢ — 1, and consequently W, can take on
the values¢ — T, --- ,n — T;.
DgriniTioN. The modified coverage of X ;) for a sample of size n is defined as

(4) CXw,Ti, W) =F (X)) + (i = T) (Wi + 1) 7'p(X i)

where T'; and W, are described in (3).
We use X ;) € V to mean that the value of X ;) is an atem. If X ;) ¢ V, then since
1=2¢—-T.=2W;

(5) F(Xw) <CilX@, T, W:) < F(X@).

Note that if in a sample X ;) ¢ V, then p(X)) = 0, F (X)) = F( X)), W =
1 and T; = v — 1 with probability 1, and the modified coverage C;(X), Ts,
W) = F(X«), the usual coverage for the continuous case. In a random sample
of size n, we have the

THEOREM.

(6) E(CiXw, Ti, Ws)) =1di/(n + 1).

Proor. Our proof uses the Scheffé-Tukey ([1], p. 189) transformation which
we now describe. Let X* be a random variable having a uniform distribution on
the interval from 0 to 1. Let U denote the cumulative distribution function of
X%, i.e., if z* is a value of X*

U™ =0 ifz* <0
=¥ #fo=<z*=s1
=1 if1 < z*

Recall that F is the cdf of the random variable X. Consider the transformation
X* — gp(X™) such that

F(ge(X*) — 0) £ U(X™) £ F(g:(X™) + 0).

Observe that if F (z) < &* < F(z), then gx(z*) = z, where z ¢ V. Scheffé and
Tukey observed that to every ¥, — o < z* < <, there corresponds at least one
gr(z*) and that this gr(z*) is unique unless it lies in an interval to which ¥ as-
signs zero probability. In this case they (and we) assume that some value in the
interval is designated to be gr(z*) ; which value is immaterial for our purposes.
Scheffé and Tukey proved that g»(X™) has the cdf F and can thus be identified
with the random variable X.
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A random sample X1*, -+, X,* from U transforms into a random samplé
X1, -+, X, from F. For fixed 7, consider those samples from U in which:
T; observations are less than or equal to F (X)),
W observations have values in the interval (F (X)), F(X«4)],
n — T; — W, observations are greater than F(X ),
Ti=0,---,7—1, Wi=4—T;, - ,n—T;,

i.e., for these samples the 7th order statistic from the uniform sample, X &, , falls
in the half-open interval (# (X)), F(X«)]. The conditional distribution of
X5, given Xy, T, Wi for Xy ¢ V is that of the (i — T';)th order statistic of a
sample of size W; from a uniform distribution on the interval (F~ (X)), F(X ;)]
= (F (X@), F (Xw) + p(X@)]. Thus from the well-known theorem on order
statistics from the uniform distribution, the expected value of X ) , given X @)
T; s W, , fOI‘X(i) & V, is

(1) B(XG | Xa, Ta, W) = F (Xe) + (G~ T)(Wi+ 1)7p(Xe)
=Ci(Xu,T:, W,).
This is obviously true as well for X £ V. We conclude that
(8) E(Ci(Xw, Ti, Ws)) = E(B(X(| X, T, Wi))
= B(X(%) =i/(n+1).
COROLLARY 1. If the distribution F has at least one atom then
(9) E(F (Xw)) <t/(n+1) <E(F(Xw)).

Proor. This follows from the strict inequalities of (5).
COROLLARY 2.

(10) (i 4+ 1)7'puPi(V) £ E(F( X)) — i(n + 1)}
S(n—i+1)(n—1i+2)7p"PuV)

where Py(V) = Pr {Xu e V), px = inf,er p(x), and p* = SUpzv p(x).
Proor. For X, ¢ V,

F(X@) — Ci(X@, T, Wa) =1 — ((¢ = T) /(Wi + 1) Ip(X»),
Ti=0,--,i—1, Wi=i—Ts, -, n—Ti,
and for X 2 V
FXuw) —CiXwy,T:,W;) =0.
Hence for all X,
F(X@) —Ci(Xw, T, W) = [1— ((¢—T)/(Wi+ 1)) p(X)Iv(Xw)
where Iy(x) is the indicator for the set V.
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Let R, = W;+ 1 — (¢ — T;). Then as W, goes from ¢ — T'; to n — T,
R; goes from 1 ton — 7 + 1. Now
1= (@ —=T)/ Wi+ 1)) =1—((¢— T/ — T: + Ry)),
and is monotonically increasing in both R; and T'; . Hence
/E+1) =1 —-(G—=T)/ Wi+ 1)) s(n—i+1)/(n—1+2).
Therefore,
G4+ D7palv(X ) £ F(X@) — C(Xwy, T, W)
S(m—i+ )(n—i+2) D T(Xw).
Taking expectations gives
(i + 1)7psPi(V) £ E(F(X@)) — t/(n + 1)
< (n—i+ 1)(n—1i+2)7pPuV).
COROLLARY 3.
(11) (n— i+ 2)7pxPu(V) £ i/(n+ 1) — E(F (X))
< i+ D7 PL(Y).

Proor. Similar to that for Corollary 2.
ReMARK. Corollaries 2 and 3 are probably more useful for the special case of a
discrete distribution F, for which P;(V) = 1, than for the mixed case.
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