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ASYMPTOTIC PROPERTIES OF NON-LINEAR
LEAST SQUARES ESTIMATORS'

By RoBerT I. JENNRICH
University of California, Los Angeles

1. Introduction. The purpose of this paper is to set forth conditions for the
consistency and asymptotic normality of least squares estimators of non-linear
parameters and to show that the Gauss-Newton iteration method of estimation
is asymptotically numerically stable. Assume that

(a) a sequence of real valued responses y; has the structure
yt=f1(00)+et) t=1>2;3;“',

where the f, are known continuous functions on a compact subset © of a Euclidean
space and the e, are independent identically distributed errors with zero mean and
finite variance o> > 0. (The values of 6 and o are unknown.)

Any vector § in ® which minimizes

(1) Q.(0) = w7 0 (5 — £(6))?

will be called a least squares estimate of 6 based on the first # values of y, . It is
natural to ask if, under assumption (a), there always exists a least squares esti-
mator, i.e., a measurable function of y; , - -+ , y» whose values are least squares
estimates. As will be shown in Lemma 2, the answer is “yes.” We seek conditions
which will guarantee the consistency and asymptotic normality of a sequence of
least squares estimators.

The problem arises already in the case of elementary linear regression. Let
Z1, %2, - - - be a sequence of real numbers and let

y;=ﬁxt+e¢, t=1,-~,n.

Under the assumption of normally distributed errors the least squares estimator
B of B is also normally distributed. Most of us believe that for large n the same
result holds, at least approximately, even if the errors are not normally dis-
tributed. But this is not automatic. If for example x; = 1/¢ and the e; have a
uniform distribution, the estimator 3 fails to be consistent and fails to be asymp-
totically normally distributed. On the other hand if z; = 1, and the e; have any
distribution satisfying assumption (a), then 8 is consistent and asymptotically
normally distributed.

Results for linear least squares estimation are given by Eicker [3] and by
Grenander and Rosenblatt ([4], p. 244). These authors make weaker assumptions
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634 ROBERT I. JENNRICH

about the errors e, . Relaxing the assumption that the errors are identically dis-
tributed Eicker gives conditions on the functions f; for the asymptotic normality
of the estimators. Assuming the errors are weakly stationary Grenander and
Rosenblatt give conditions for asymptotic efficiency by which they mean con-
ditions under which the least squares estimates have the same limiting variance
as the Gauss-Markov estimates.

For the non-linear case Theorems 6 and 7 set forth sufficient conditions for the
consistency and asymptotic normality of a sequence of least squares estimators.
Under the same conditions Theorem 8 shows that the Gauss-Newton iteration
procedure is asymptotically numerically stable and that all sequences of least
squares estimators are tail equivalent ([7], p. 233).

Under the assumption of normally distributed errors least squares estimators
become maximum likelihood estimators. In this context Hartley and Booker [5]
have studied the asymptotic efficiency of an estimator § obtained by applying
a finite number of steps of the Gauss-Newton non-linear estimation procedure
to a consistent starting estimate 8*. They show that if an asymptotically efficient
maximum likelihood estimator exists then § is also asymptotically efficient. As
our first example shows, however, asymptotically efficient maximum likelihood
estimators do not always exist. Our first example also gives a counter example for
Hartley and Booker’s Theorem 6 which claims the consistency of their estimator
6*. Results related to those of Hartley and Booker are referred to at the ends of
Sections 4 and 5.

2. Tail products. Unless otherwise specified all limits will be taken as n — .
Let z = (x:) and y = (y:) be two sequences of real numbers and let (z, ¥). =
nt Dotz . If (z, y). converges to a real number its limit (z, y) will be called
the tail product of z and y. Let g and & be two sequence valued functions on ©. If
(9(a), h(B))n— (g(a), h(B)) uniformly for all « and 8 in O, let [g, 2] denote the
function on ® x O which takes (a, 8) into (g(a), A(8)). This function will be
called the tail cross product of g and 4. Note that if in addition the components
of g and & are continuous then [g, 4], as a uniform limit of continuous functions, is
also continuous.

For example let & be a Euclidean space, let § and 4 be bounded and continuous
functions on ¢ x O, and let ¢.(6) = §(z;, 0) and k(8) = A(z:, ) where
Z,2s, - - - is a sequence of vectors in X whose sample distribution function F, ap-
proaches a distribution function F completely. (F.(x) = k/n where k is the
number of points x; , - - - , Z. less than or equal to z.) Then

(9(a), h(B))n = [ §(z, @)h(z, B) dF ().

According to Theorem 1 below, which is a simple extension of the Helly-Bray
theorem,

(9(a), h(B))a — [ §(z, @)h(z, B) dF (z)

uniformly for all « and 8 in ©. Hence the tail cross product [g, A] exists.
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As a second example let z;, 22, - - be a random sample from a probability
distribution function F on . Then the sample distribution function ¥, — F with
probability one and hence [g, A] exists with probability one. A stronger result
however can be obtained. With regard to § and 4 assume only that §(z, 6) and
h(z, 6) are measurable in z, continuous in 6, and bounded uniformly in 6 by a
function of z which is square integrable with respect to F. Then by Theorem 2
below, which is a simple extension of the strong law of large numbers,

(9(a), h(8))n— [ (=, @)h(z, B) dF (2)

uniformly for all « and 8 in ® for almost every sequence z; , s, - - - . Thus [g, 4]
exists almost surely.

To prove Theorem 1 we need the following lemma.

Lemma 1. If g is a real valued function which is continuous on the Cartesian product
X x Y of two Euclidean spaces and if Y is a bounded subset of Y then
Supyer 9(x, ¥) s a continuous function of x.

Proor. Let Y be the closure of Y. Since g is uniformly continuous on compact
subsets of & x Y, for any z,in & and any ¢ > 0 thereis a é > 0 such that

g(@,y) —e< gz, y) <gl@,y) +e
for all y in ¥ and |# — x| < 8. Thus, for |z — x| < 8,
Supyer (2o, ¥) — € < SUPyer 9(T, ¥) = SuPger 9(z0, y) + e

Since ¢ is arbitrary sup,.r g(, ) is continuous at z = z, . Since z, is arbitrary it is
continuous for all z in .

TueoreM 1. If X 4s a Euclidean space, if © s a compact subset of a Euclidean
space, if g is a bounded and continuous function on X x ©,and if F1 ,F,, - -+ are
distribution functions on X which converge completely to a distribution function F then

[ 9(z, 0) dF.(z) — [ g(=, 0) dF (z)

uniformly for all 6 in 6.
Proor. Let

ha(6) = [ g(z, 0) dF.(z) — [ g(=, 0) dF (z)

and let N be a neighborhood of a point 6, in ®. (Unless otherwise specified a
neighborhood of a point in ® is a subset of ® which contains the point and is open
in the relative topology on ®.) Obviously

SupOeN hn(o) -_<—- f squeN g(x7 0) dF"n(x) - finfﬂeN g(x’ 0) dF(x)'

Since g is bounded sups.x g(z, 0) is a bounded and, by Lemma 1, continuous func-
tion of z. It follows from the Helly-Bray theorem that

iMoo SUPgen hn(0) = f (supeew gz, 0) — infen g(z, 0)) dF (x).

For each z the integrand above approaches zero as the diameter of N approaches
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zero and hence, by the dominated convergence theorem, for any ¢ > 0 there is a
neighborhood N of 6, such that

Hl?ln_wo SUPg:n hn(0) < e

It follows that © may be covered by such neighborhoods and, since it is compact,
by a finite collection of such neighborhoods. Thus £,(6) < 2e for all 6 when n is
sufficiently large or, in terms of ¢,

[ g(x, 0) dF.(z) < [ g(x, 0) dF (x) + 2¢
for all # when 7 is sufficiently large. The same argument applied to —g¢ gives
[ g(z,0) dF,(z) > [ g(z, 8) dF (z) — 2

for all @ when 7 is sufficiently large. The theorem follows from the fact that e is
arbitrary.

Theorem 2, given by Mickey ([8], p. 40), may be proved in a manner similar to
that of Theorem 1.

TuEOREM 2. Let g be a function on X x © where X s a Euclidean space and © s
a compact subset of a Euclidean space. Let g(z, 8) be a continuous function of 9 for
each x and a measurable function of x for each 6. Assume also that |g(z, 8)| < h(z)
for all x and 8, where h vs integrable with respect to a probability distribution function
FonX.If 1,z , - - - s a random sample from F then for almost every sequence(x.)

n~1 Z:;l g(xt ) 0) - f g(xy 0) dF(x)

uniformly for all 6 in ©.

For any sequence z of real numbers let |z|, = (z, ). and when it exists call
|z| = (=, ) the tail norm of z. Note that if [g, 4], [g, ¢, and [k, k] exist then
lg(@) — h(B)|» — |g(a) — h(B)] uniformly for all @ and 8 in ©.

3. Tail products and random samples. The following result, which is a strong
law of large numbers follows directly from a theorem by Chow [1]. Let ¢ = (e,).

TureoREM 3. If e satisfies assumption (a) and if the tail norm of a sequence x
of real numbers exists then (x, e), — 0 for almost every e.

This theorem extends to the following.

TuroreM 4. If e satisfies assumption (a), if g is a sequence of continuous
functions on ©, and if [g, g] exists, then for almost every e, (¢(0), €), — 0 uniformly
for all 6 in 6.

Proovr. Since g is continuous and |g(a) — ¢(8)|. converges uniformly in «
there is, for every ¢ > 0 and every 8 in ©, a neighborhood N of 8 such that
lg(a) — g(B)|» < € for all @ in N and all n sufficiently large. It follows from
Theorem 3 and the inequality

I(g(), e)a| = lg(a) — g(B)luleln + [(9(B), €)al,

that for almost every e, ® is covered by neighborhoods N such that |(g(8), e).| < €
for all 8 in N, when n is sufficiently large. Since ® is compact there is a finite
collection of such neighborhoods which cover ® and hence for almost every
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e, |(g(8), e),| < efor all §in O, when n is sufficiently large. The theorem follows
from the fact that e is arbitrary.

The following form of the central limit theorem follows easily from Theorem
2 of Eicker ([2], p. 444).

THEOREM 5. If e satisfies assumption (a) and the tail norm of a sequence x of
real numbers exists, then

£(ni(z, e)n) — N(0, |z|%).

Using 2c.4 (xi) of Rao ([9], p. 103), this theorem may be extended, as follows,
to the multivariate case.

CoROLLARY 1. If e satisfies assumption (a) and if all possible tail products of
the sequences 1, --- , &, of real numbers exist, then

(B ((21, ), 5 (@, €)n)) — (0, o ((x1, 7).

4. The asymptotic normality of least squares estimators. The following lemma
shows that assumption (a) is sufficient to guaranty the existence of (measurable)
least squares estimators in the non-linear case.

LemMMa 2. Let Q be a real valued function on ® x Y where ® is a compact sub-
set of a Euclidean space and Y is a measurable space. For each 6 in © let Q(6, y)
be a measurable function of y and for each y in Y a continuous function of 6. Then
there exists a measurable function  from Y into © such that for all y in Y,

Qb(y), y) = infe Q(6, y).

Proor. Let (0,) be an inéreasing sequence of finite subsets of ® whose limit
is dense in ©. For each 7 there is a measurable function 8, from ¥ into 0, such
that

Q(én(y)y y) = inf@e@,, Q(o; y)

for all y in Y. Let 8,; denote the first component of 8,. Let §; = lim,f.: and note
that 6; is measurable. For each y in ¥ there is a subsequence (8,,(y)), of (8.(y)),

which converges to a point § in © of the form (8:(y), 8z, - - - , 85).
infe, .00 Q((BL(Y), 62, -+, 65), y) = Q(6, y) = lim;Q(8a,(y), ¥)
= lim; infoc0n; @(8, y) = infy Q(6, y).
The last equality follows from the fact that lim, 0, is dense in ©. Thus
infe, ... 0,00 Q((61(y), 62, - -, 0,), y) = infsQ(6, y)
for all y in Y. Let
Q (01, -+, 0,),9) = QUb(Y), b, -+, 65),9),

then Q' (6, y) is a continuous function of 6 for all ¥ in ¥ and a measurable func-
tion of y for all 6 in ©. Applying the same argument to Q" that was applied to
Q gives a measurable real valued function 6, such that

inf(h.--nop)eGQ((él(y)y 52(11)7 0 y TNy 01’)7 y) = info Q(o: y)
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for all y in ¥. Continuing in this manner produces measurable real valued func-
tions 6y, - - - , 6, such that

Q((6u(y), -+, 6:(y)), y) = infs Q(6, y)

for allyin Y. Thus § = (6, ---, 6,) is a measurable function from ¥ into ®
with the required property.

Lemma 2 together with the familiar mean value theorem from advanced
caleulus gives rise to the following mean value theorem for random functions.

LemMma 3. Let f be a real valued function on Y x © where Y is a measurable
space and © 1is a convex compact subset of a Euclidean space. For each 6 in © let
f(y, 6) be a measurable function of y and for each y in Y a continuously differentiable
function of 6. Let 6, and 6, be measurable functions from Y into ©. Then there exists a
measurable function § from Y into © such that

() f(y, 6:(y)) — J(y, 6(y)) = (8/30)f(y, 6(y)) (Bx(y) — 6a(¥)),

(ii) 6(y) lies on the segment joining 61(y) and 6:(y),
forallyin Y.

Proor. Let D(y, 6) denote the distance from 6 to the segment joining 6:(y)
and 6,(y) and let

Q0,y) = iy, 6:(y)) — f(y, 62(y)) — (3/00)f(y, 6) (61(y) — 6:2(y))| + D(y, 0).

Viewing 6; and 6, as pointwise limits of sequences of simple functions and
(3/86)f(y, 6) as the limit of a sequence of difference quotients shows that @(6, y)
is a measurable function of y for each 6 in @. Since Q(6, y) is clearly a continuous
function of 0 for each y in ¥, Lemma 2 applies and hence there exists a 0-valued
measurable function § on Y with the property that for each y, 8(y) minimizes
Q(6, y) viewed as a function of 6. Moreover it follows from the mean value
theorem of calculus that when 8 = 6(y) the first and second terms in the defini-
tion of Q(8, y) are zero. The assertions of the theorem follow at once.

In addition to the assumptions on the functions f; given in (a) assume that

(b) the tail cross product of f = (f) with itself exists and that

Q(8) = |f(8) — f(60)|” has a unique minimum at = 6, .

Note that under assumptions (a) and (b), @ is continuous.

TureoreM 6. Let (6,) be a sequence of least squares estimators. Under assump-
tions (a) and (b), 8, and 6. = Qu.(6,) are strongly consistent estimators of 6o
and o°.

Proor. It follows from the strong law of large numbers and Theorem 4 that
for almost every e, || = ¢ and (f(8) — f(6o), €)» — O uniformly for all 6 in ©.
Choose such an e. Then

Qu(6) = If(6) — F(8) + ela’ — [7(80) — SO + ¢" = Q(6) +

uniformly for 8 in ©. Let 8, = 8,(f(60) + e), let ¢’ be a limit pomt of the sequence
(8,) and let (6,,) be any subsequence which converges to 6'. By the contmulty
of Q and the uniform convergence of @, to @ -+ o) Qu,(6,,) — Q') + o as
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t— oo.Since 6y, is a least squares estimate, @,,(6,,) < Qn,(60) = le|>, . It follows
by letting ¢ — o that Q(8') + ¢° < o". Hence Q(8') = 0. Since Q has a unique
minimum at 8, 8’ = 8,. Thus 6, — 6. Since this result holds for almost every
e, 0, — 6pand ¢,> = Q.(6,) — Q(6) + o* = o almost surely.

To establish the asymptotic normality of a sequence of least squares estima-
tors we need the derivatives

fi(6) = (8/06:)5.(6) and f1i;(0) = (3/30:)(8/06;).(6).
Let fi (f,,) fi; = (fiz;) and assume that fors,j = 1, -, p,
(e) the derwatives f vi and fis; exist and are continuous on @ and that all tail cross

products of the form [g, h), where g, h = f, i, fi; , exist.
For each 6 in © let

(2) anis(8) = (£(8),1/(8))n,  @u(8) = (anii(0)),
a5(0) = (57(0), 5/(0)), a(0) = (ai(9)),
and assume that
(d) the true parameter vector 8y is an interior point of ©® and the mairiz a(6,)
78 non-singular.
The following theorem provides conditions for the asymptotic normality of a

sequence of least squares estimators.
TurorEM 7. Let (8,) be a sequence of least squares estimators of 6o. Under

assumptions (a) through (d)
£(n} (6. — 80)) — (0, 2~ (80)).
Moreover a,(6,) is a strongly consistent estimator of a(6o).

Proor. Since 8, — 6o almost everywhere there is a sequence (6,) which is tail-
equivalent to (6,) and such that each 8, takes its values in a convex compact
neighborhood of 8, which is interior to ®. Letting 8, = (fu, - -, Oap) and
60 = (B, ---, Bop) it follows from Lemma 3 that there exists a measurable
©-valued function 8, such that
(f{(8a), y — J(B2))n — (f(80), y — f(60))n

= 22 ((55(8), y = @) — (Fi(), 17 (02))) (B — 605)
where |6, — 6| < |8, — 6o]. Multiplying by n! and using assumption (a) gives,
' (f7(80), €)n = 227 (7 (8a), 57 (82))
(3) — (F5(8n), 4 = £(8))a)n (B — 607)
+ 0} Bn), y — F(B))n
Note that the last term is a multiple of 8/36,Q.(8,). Since, almost surely,
8, = 6, when n is sufficiently large and since 9/30,Q,.(,) = 0 whenever the value

of 8, is an interior point of ® it follows from the strong convergence of 8, to 6
and from Theorem 4 that the inner products on the right converge to a:;(6o),
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0, and 0 almost surely. By Corollary 1 of Theorem 5 thle joint distribution of the
inner products on the left, i.e., n*(fi'(60), €)u, - - -, n*(f, (60), €)n , approaches
(0, a’a(6,) ). Since a(6p) is non-singular

£(n%(9n — 00)) —> E)l(O, O‘Za_l(eo)).

The first assertion of the theorem follows from the fact that (8,) is tail-equivalent
to (8,). The strong consistency of a,(#,) as an estimator of a(8,) follows from
the uniform convergence of a, to a and the strong convergence of 8, to 6, .

Under assumptions (a) through (d) a sequence of least squares estimators
will be asymptotically normally distributed but it will not, in general, be asymp-
totically efficient. If the errors e, are normally distributed, least squares estimators
become maximum likelihood estimators and although they may not be based on
a random sample (the y; not being in general identically distributed) they can
nevertheless be shown to be asymptotically efficient. This may be done, using
the definition of Rao ([9], p. 285), by showing that Rao’s condition (5c.2.6)
follows from equation (3).

6. Asymptotic numerical stability of the Gauss-Newton iteration. The Gauss-
Newton iteration procedure [5] consists of linearizing the functions f; about some
point 6 and finding a least square fit to the data by minimizing

ly — £(8) — £ (8) dor — -+ — £, (8) dbylw

with respect to df = (db, -- -, df,). Replacing 8 by 6 + df the entire process
is repeated until it, hopefully, converges. More specifically the iteration is of
the form 6% = ¢,(6"*) where the ¢th component of g, at 6 = (6;, -, 6,)
is given by

gni(8) = 0: + 2_;a."(0)(f/(8), y — f(8))n, @ =1, -, p.

Here a,”(6) is the ¢jth component of the inverse of the matrix a,(8). If the
sequence 6% converges then its limiting value will be called the Gauss-Newton
estimate of 6 based on the first n sample values and the starting value 6. In
general an iteration procedure of the form x,; = h(x) is said to be numerically
stable in a neighborhood N if the iteration converges to the same fixed point
whenever the starting value is in N. A sufficient condition for numerical stability
in a spherical neighborhood N of a fixed point is that

(4) Ih'(z)] < ¢ < 1,

for all z in N. Here h'(z) denotes the differential of 4 at = and |h’ ()| denotes
the norm, subordinate to the Euclidean norm, of h'(z) (ie., |h'(z)| =
sup {|h'(z) dz|:|dz| < 1}). This condition will be used to prove that the Gauss-
Newton iteration is asymptotically numerically stable.

TuEOREM 8. Let (6,) be a sequence of least squares estimators of 8y and let assump-
tions (a) through (d) hold. Then there exists a neighborhood N of 8y such that for
almost every y there 1s an my, such that the Gauss-Newton tteration will converge to
0,(y) from any starting value in N whenever n = n, .
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Proor. Let (a*) be the inverse of a matrix (as;) of functions of a real variable
o. When it exists

(d/da)a” = — D ria™((d/da)aw)a”.

Making use of this formula we find that when it exists the ¢kth component of the
differential g, (8) of g, at 6 is given by

(5)  guu(6) = (8/06)gns(8) = 2;a."(0) (f7:(8), y — F(6))n
— 2 itm @ (8) @i (8)a:"(8) (f (8), y — £(6))n
where
Animi(8) = (F1e(8), £ (8))n + (f1'(8), frus(6))n

By Theorems 4 and 6 there exists a set 4 of measure one such that for all y in 4
1) (0, y — £(6))n — (f7(8), £(80) — £(8)),
(ii) §f§'k(0), y — £(0))n — (F7:(8), £(80) — £(8)),
(iii) 6.(y) — 6o,
uniformly in 6 as n — . Since a is continuous and non-singular at 6, it is non-
singular on a compact neighborhood M of 6, . Since a, — a uniformly, a, is non-
singular on M when 7 is sufficiently large. Thus for any y in 4 and 6 in M,

gui(6) — 225 (0) (F:(0), £(80) — £(6))
— D ima” (0)aru(8)a™ (0) (f (6), F(6) — $(6))
where
ami(6) = (f1(0), ' (0)) + (S (), frn(6)).

Moreover, the convergence is uniform in 6. Since, by inspection, the limit of
it iS Zer0 at 0o the differential g,” = (¢gui) of g has norm lg.'| < 2 on a spherical
neighborhood L of 8y when n is sufficiently large.

Let r be the radius of L, let N be a spherical neighborhood of 8, of radius /2,
and let N, be a spherical neighborhood of 8, (y) of radius 3r/4. Since 8,(y) — 6o,
N C N, C L when n is sufficiently large. For large n, 8,(y) is a zero
of (8/36,)Q.(0) = —2(f;(6),y — f(8)), and hence a fixed point of g, . Thus for
n sufficiently large

(i) N C N,
(ii) |g.’(8)] < & for all @in N,

(iii) 6.(y) is a fixed point of g, .

It follows from (4) that the Gauss-Newton iteration converges to 8,(y) from
every starting value in N when n is sufficiently large. The theorem follows from
the fact that this last statement holds for every y in 4.

It follows from Theorem 8 that for any given starting value in N the Gauss-
Newton iteration will converge to a least squares estimate with probability
approaching one as n — . The result is of some interest since there exist ex-
amples with well behaved functions f; for which the Gauss-Newton iteration
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will not converge no matter how good the starting value. Theorem 8 implies
that such difficulties are not likely to arise when n is sufficiently large. Under the
conditions of Theorem 8 and using a fixed starting value in N, let 8,(y) denote
the converged value of the Gauss-Newton iteration if it converges and its start-
ing value if it does not. Then (,) is a sequence of estimators of 6, which is tail-
equivalent to any sequence (f,) of least squares estimators. Thus (4,) is, by
Theorem 6, strongly consistent and, by Theorem 7, asymptotically normally
distributed. Moreover, all sequences of least squares estimators are tail equiva-
lent.

Unfortunately, Theorem 8 requires that the starting value of the Gauss-
Newton iteration be sufficiently close to 6,. H. O. Hartley and Aaron Booker
[5] have suggested a solution to this problem which consists in replacing the
starting value by a consistent estimator of 6y. If follows, from Theorem 8, that
the probability that such a two-step procedure will produce a least squares
estimate approaches one as n — .

It is easy, in theory, to produce consistent estimators of 6, . Under assumptions
(a) through (d) a random search of n values of 6 for the one 6, which minimizes
Q. is a strongly consistent estimator. Starting values of this type are sometimes
used in practice.

6. Examples. Let f,(8) = 6:¢"*** where 6 = (6, 6,) ranges over the unit rec-
tangle ® and xi, 2., --- is a bounded sequence of real numbers whose sample
distribution function F, approaches a distribution function F completely.
Assume that 8, = (a1, a3) is an interior point of ® and that F is not degenerate.

If e, €2, - -+ are independent identically distributed errors with zero mean and
finite variance, assumption (a) holds for the model
Ye = fi(60) + e, t=1,2,3, ---.

Moreover the derivatives f:¢ , f1:; exist and are continuous on ®. By Theorem 1
all tail cross products of the form [g, A], where g, h = f, 1, fi;, exist. Hence,
assumption (c) holds. It is easy to show that

Q(0) = [ (c:e™ — 0:")? dF ().

This expression is zero if and only if ae™ = 6:¢”* on a set of = with dF measure
one. Since o; # 0 and since F is not degenerate this can happen only when
a = 6; and @y = 6,. Hence @ has a unique minimum at 6,. This establishes
assumption (b).

Let 8; and B; be any real numbers.

D i Biaii(60)B8; = f(ﬁx + Bauz)’e™* dF (z).

This expression equals zero only if 8; 4+ B:oux = 0 on a set of z with dF measure
one. Since oy # 0 and since F is not degenerate this can happen only when
B1 = B2 = 0. Thus a(6,) is non-singular. Assumption (d) follows at once and
with it the results of Sections 4 and 5.
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Alternatively in the previous example let z;, @2, --- be a random sample
from, say, a normal distribution. In this case the f;(8), in all probability, are not
bounded but using Theorem 2 it can be shown that assumptions (a) through (d)
hold for almost every sequence x;, %z, --- . Thus the results of Sections 4 and
5 apply not only to fixed sequences f of functions but also to sequences of func-
tions selected randomly from a suitable population of functions.
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