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THE REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING
STOCHASTIC PROCESSES

BY WALTER PrILIPP'

Unaversity of Illinois

1. Introduction. Let (z.,n = 1, 2, - - -) be a sequence of independent random
variables centered at expectations and uniformly bounded by 1 almost surely.
It follows from the Berry-Esseen theorem ([2], p. 288) that

(1) P(sy anN T, < ) = ¢(z) + O(sy '

where we set sy° = Donsw E(z,}) and ¢(z) = (21)_; [ ¢ " dt. The constant
implied by O is numerical. As is well known, in general, the order of magnitude
of the estimate of the remainder cannot be improved.

In a paper to appear shortly [3] I investigated the central limit problem for
mixing sequences of random variables; in particular, necessary and sufficient
conditions were given for the central limit theorem to hold. In the present paper
a modest attempt is made to estimate the remainder for such mixing stochastic
processes. Unfortunately I was unable to show the central limit theorem in the
above strong form (1) but could prove only that the order of magnitude of the
remainder does not exceed sy ! log® sy in case the random variables are uni-
formly bounded almost surely and satisfy a certain additional condition. Since
in this direction nothing appears to be known and since the proof of the above
statement turned out to be not quite so simple as I first anticipated I felt that
it might be worthwhile to supply the details. Moreover, in a subsequent paper
[5] the results are used to prove the law of the iterated logarithm for mixing
stochastic processes.

2. Preliminaries and statement of the theorems. Let (z.,n = 1, 2, ---) be
a sequence of random variables centered at expectations with sup, E(z,’) < 1
and sy’ = E(Q .<ny2.)’ — ». Denote by M, the o-algebra generated by the
events {z, < a},1 £ a =n = b £ ». We shall be concerned with the following
two mixing conditions:

(I |[P(AB) — P(A)P(B)| < ¢(n)P(A)P(B)
for all A ¢ Mys, B & Mipn,o with ¢(n) | 0 asn —
(I1%) SUD: SUPBeATs 4, [P (B | M) — P(B)| S o(n) | 0

with probability 1. (II*) is equivalent to (for a proof see [1])
(IT*") For any events A & My, and B & Myyn,. We have
|[P(AB) — P(A)P(B)| < ¢(n)P(4).
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TaEOREM 1. In addition to the standard hypotheses let {x.) satisfy condition
(IT*) with o(n) = ¢ where X\ > 0 4s a constant. Moreover, suppose that the .,
are uniformly bounded by 1 almost surely and that

(2) ZnM:§+1 “ L ”4 < E(ijgﬂ wn)z
untformly in M = 0,1,2, --- . Then
P(sy ™ Xngwa < @) = é(z) + O(sy  log’ sv).

(Here we use the Vinogradov symbol < to indicate an inequality containing
some unspecified positive constant factor.)

TuporEM 2. If in Theorem 1, instead of (II*), condition (1*) is satisfied with
Y(n) = €™ (N > 0) condition (2) can be relaxed to -

(3) M Ble,| <« B 2,)
and the conclusion of Theorem 1 remains valid.

As will be clear from the proof of the theorems one could prove theorems of
the above type assuming e.g. Zﬁ(n) < o and

(4) it el < (B za)®), 1 £ac=2

However, this would affect the estimate of the error term in the central limit
theorem. Similarly, if the assumption of the z, being uniformly bounded is
dropped, Theorems 1 and 2 would continue to hold with an error term O(sy >"°).

(see Theorem 4).
In a later application [4] we shall be confronted with a more general situation.
Let @yn,n = 1,2, -+, N; N = 1,2, ---) be a double sequence of random

variables centered at expectations with

sup..x E(zi,) £ 1 and sy = E(Dnsnan)’ — .

Denote by 913’ the s-algebra generated by the events {&y, < @}, 1 < a =n

b < N. We shall employ the following mixing conditions.
(I) For any events A ¢ i}’ and B e Mty v we have

|P(AB) — P(A)P(B)| = ¥(ny~)P(A)P(B)
with y(n) | 0asn— « and a constant yx» > 0.

(I1) Sup; SuPzan ™) o |P(B|oni’) — P(B)| < o(ny)

IIA

with probability 1 where ¢(n) | 0 asn — « and y¥ > 0 is a constant. Again
(II) is equivalent with
(IT") For any events A e MY and BemY, v we have

|[P(AB) — P(A)P(B)| = ¢(nvny)P(4)
TrEOREM 3. Let (Txn) be as above with supa,x |Twalle = 1. Suppose that
(5) i |lzalls < BQonitia xa)
uniformly in M = 0, 1, 2, --- and that the {xy.) satisfy condition (II) with
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o(nyy) = Lfor 1 £ n = 41og sy and o(nyy) = sye " fordlogsy <n = N
where 0 < N £ 1 15 a constant. Then

P(sy ' Dnen@nn < ) = ¢(x) + O(sy * log’ sw).

TureorEM 4. Suppose that in Theorem 3, instead of SUp..x ||Twnlle = 1 we only
assume SUPn.x BE(zx.) < 1 then

P(SN_1 anyx;v,, <z =¢(x) + O(SN_-2/5).

We now state a result analogous to Theorem 3 assuming that, instead of (I*),
condition (I) is satisfied.

THEOREM 5. Let (xx.) be as in Theorem 3 but suppose that, instead of (5),
condition (3) holds and that, instead of (I1), condition (1) s satisfied with
Y(nyy) = 1for 1 £ n < 41log sy and Y(nyy) = sye " fordlogsy <n <N
where 0 < N =< 1 15 a constant. Then the conclusion of Theorem 3 remains valid.

Simalarly Theorem 4 remains true if we replace condition (I1) by (1) in the
hypotheses.

Again as in Theorems 1 and 2 there are several variations of the hypotheses
possible with some of them affecting the estimate of the remainder. I shall prove
Theorem 3 only and indicate the changes necessary for the proofs of the other
ones. Finally two applications are given.

3. Some lemmas.
Lemma 1. Suppose that condition (II) is satisified and that & and n are random
variables measurable over MY’ and MY, y respectively. If

Egf < © and El|°< o with p,q>1,p +q¢ =1
then
B (¢n) — E©)E()| = 2(e(ny))lléllsllnlle -
Moreover, if £ and n are both essentially bounded then
|E(gn) — E(&)E()| £ 4e(nyw)|E]|oln]lo-

For a proof see [1].
LemMA 2. Under the hypotheses of Theorem 3 we can represent Xy in the form

Xy =D nsnTwn = Yy + Zy= Disuiyni + Disiewg

subject to the following conditions:

Ym = Twi+ o0+ Tang, 21 = Tanr T 000 T+ Tangtk,
Yvi = Twppra + 000 Tppns 2N = Tpprnr o0 Ty
YN = Twpe1 T o000+ Taw,

where we set p; = min (N, D ,<i (hy + k))
(6) E(yfvj) = sy* + O(log sw), E(yfvz+1) < sy + O(log sx)
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uniformlyin 1 £ j £ 1. Here 0 < a < 2 denotes a constant to be chosen later. More-
over, there 1s a constant ¢ > 0 such that for all 1 = 7 =1

(7) ki = csy*(log sy) ),

(8) k =[S\ log sl

(9) L= sy 4+ 0(ss" " log sw),
(10) E(Y,?) = sy’ + O(sx" “ log sw),
and finally

(11) E(Zy") < sy “log sw.

Proor. In what follows we shall drop the index N-.in xy,, y~; and zx;. We
choose 7; to be the largest integer 2 < N such that

E(anh xn)2 = SNa-

Next we choose & as in (8) which determines the random variable z; . In general,
we define h; inductively as the largest integer # < N such that

E( ZZ’;};H $n)2 < sy".

It might happen, of course that 4,1 = 0 or that even zy; consists of less than
[8 7! log sy] terms. To prove (6) we remark that as a consequence of Lemma 1

(12) |E(z.z,)| £ 20 (myw) E(@))E(x’) £ 260 — ulyw).

(The reason why we do not make use of the boundedness of the zx, is that we
want (12) to continue to hold under the hypothesis of Theorem 4). Hence

E(y) = B(X )t < sv® < E(y; + w,)°
with p = p; + h; + 1. But
E(y; + 2,)" £ BE(y) + 22506 (wlp — v)) + 1 = E(y") + O(log sv)
proving (6). On the other hand with I; = [p; + 1, p; + A; + 1]
o S By + 2,)° £ Do, B) 4 4 Ducper; & (vwlo — 0)) £ (b + 1)
+ O(h; log sy)

which proves (7). The proofs of (9)—(11) are similar to those of formula (3.9)
and corollary to Lemmas 4 and 5 in [3] so that we can deal with them briefly.
In what follows a summation or a product of terms involving the y; or the z;
is always extended over all possible values of 7, e.g. Z y; stands for EKH—I Yi o
As in [3] we expand

s =E(Xy + 22)
= 2 EW) + L EED) + 22 E(yws) + 22 i E(zzy) + 22 E(yz))
— Z(l) _|_ . _I_ Z(S)
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and obtain
> = Isy® + O(l log sy) + O(sy%),
Z@) LIk < llog sy,
> < 8- 5y D s logey e,
¥l and 29«1
which proves (9). (10) follows from E(Yy) = 2 4+ 2@ and (11) from

E(Zy) = 2% + X%

We set
gv' = 8sv ' 2 Elyf).
LemMa 3. For large N we have uniformly in 0 < t £ 2¢y °
I E(exp Gty,sx™)) — €7 < 285" + O(sx™™ log sw))e ™

The proof follows exactly Lo&ve [2], p. 286. In case that tgy = 1 it is enough to
show that for large N

ITI E(exp (ty,;sv))| < exp (—3£5).
From Lemma 2 we infer that uniformlyinl <5 =1
|E(exp (ity;sv 1)) = 1 — 3t sy + O(sw ° log sy)) + LE|y|sy
and
|E(exp (ityrasy )| < 1+ £-0(sy* " log sv) + $Elyllsy .

Using the estimate 1 4+ 2 < ¢° and taking the product over 1 = j <1 4+ 1 we
get from Lemma 2 for large N

ILI1E(exp (ityssv )| < exp (—3£(1 + o(1)) + 39y’) < exp (—3f)
If, on the other hand tgy < 1 thenforl =57 =141
E(exp (itysy ) = 1 — 3E(y/)sy " + 3By |sy

1 — .

Here and below [§] < 1 denotes a constant not always necessarily the same. Since
lyillz = llyills = 3gnsw we get |rj] < § and thus

log E(exp (itysy™")) = —r; + orf = —3E(y)sv ° + 63 Ely|sv

using the identity (a + b)* = a® + b(2a + b). Summingover 1 <j < I+ 1
we obtain from Lemma 2

log J1 E(exp (styjsy 1)) = —18(1 + O(sy “log sy) + (116/144)Fgx".
The lemma follows now from the fact that ¢® = 1 + fae’® with

a = ££-0(sy ®log sy) + (11/144).
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LemMma 4. Under the hypotheses of Theorem 3 we have uniformly for 0 <t £ 1
E(exp (itYwsy ') — I E(exp (ityssv ")) < £

Proor. From Lemma 2 we get

[E(exp (itYnsw ")) — 1 E(exp (ityjsy V)|
< 31+ o(1) + 3(1 4 0(1)) < £,

since
11 (1 — 30,E(y")sv — 3 205y sy " Iliss (1 — 30.Ew)sy ®)
— 3 2 0B s

The following lemma says that Bernstein’s inequality holds for the random
variables z; (1 £ j £ 1). Again we follow Logve [2], p. 254.
Lemma 5. We have

P{|Zy] = 16 N 'sx' " log® sy} < sy .

It

I

Proor. Since ||zj]le < 8\ log sy = Cy we have for 1 < j £ 1
and 0 < ¢t < Cy !

E(exp (127)) <1 + (FPE(z)/2)(1 + Cn/3 + £Cx'/34 + +-+)
<1+ (FC/2)(1 + 1Cy/2) < exp (£CX).
Applying Lemma 1 [ times we obtain
E(exp (tZ)) — I1E(exp (2))] = 4111 E(exp (27))-o(vwhs).
Hence it follows from (7) and (9) that
E(exp (tZy)) < [] E(exp (tz;)) <K exp (£Cx’sy" ).
Therefore setting ¢ = 2\sy 7*? log sy
P{|Zy| = 16 Nsy' ™ log® sy} < exp (—tsy' *? log® sy + £fCx"sx" %) <K sy .

4. The normal law for Yu/sy. In order to apply what in [2], p. 285, is called
the basic inequality we have to estimate

[3 |E(exp (itVusy ")) — et dt
< [T |T1 Eexp Gitysw™)) — & “Plt " dt
+ (Je + [l + D E(exp (itYwsy ™) — T E(exp (itysse )¢ dt

where we set to = sy *and T = min (2 gy °, sv"). Call these integrals I, - - - , I
respectively. By means of Lemma 3

LK gy’ [0 at + sy log sy [ te="* dt < gn* + sy *log sw.
As a consequence of Lemma 4

L < [ |T] ECexp (dtyssv™)) — E(exp (itYusy )| dt < [§¢dt < sy
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For the estimate of I3 we apply Lemma 1 [ times to obtain
(13) |E(exp (itYwsv ")) — 1 E(exp (ityssw )| < 4 lo(vnk)
and hence by Lemma 2
L= [1 ] dt < to ' lo(vwh) << sw
Io = [T |- dt << log T lo(vwk) < su "
Adding all the estimates we obtain with T = min (2 gy 5 sy) and 0 < a < 2
[§ |E(exp (itYwsy 1)) — P dt << gx® 4 sw " log sw .
From the basic inequality in [2], p. 285, we conclude that
(14) P(Yysy™ < ) — 6(z) K gn’ + sy log sw.

5. Proof of Theorem 3. We now apply Lemma 10([3])—or rather a slightly
modified version of it—with H = h;, A; = Ay = 40\ log sy. Then P(H) =
P(h;) < sy* and from the hypotheses of Theorem 3E(y!) < sx°". Hence
Elyf| = Jwilld < s+ and from Lemma 2 we get

(15) gy <K sy

/2—1

From Lemma 5 we obtain setting ey = 16 N w2 log® sy
PlXysy ' < ) = P(((Yw + Zn)sy " < ) n (|Zulsy ™ 2= ex))
+ P(((Yx+ Zw)sy ' <) (|Zulsy < ex))
= P(Vysy "<z +ex) + O(sv )

which, if we set @ = 1, together with (14) and (15) implies the result.

In the proof of Theorem 4 we cannot apply Lemma 5 since the z,, are no longer
assumed to be essentially bounded. We shall replace it by Chebyshev’s inequality
and get

P(|Zy] 2 ex(EIZ¥)Y) < e .
Setting ev = sx*'° log"/® sy and using (11) we obtain
(16) P(|Zysy Y| = sv P log™ sy) = sy log ™ sy .
If we set o = 6/5 Theorem 4 follows from (14)-(16).

For the proof of Theorem 2 we apply Lemma 9 [3] instead of the modified
version of Lemma 10 [3]. Theorem 1 is a corollary of Theorem 3.

6. Some applications. In this section we shall sketch the proofs of two special
cases that were already considered in [3].

TuEOREM 6. Let (E,, n = 1,2, ---) be a sequence of events with P(E,) — 0.
Let M be the o-algebra generated by the E, (a < n < b) and suppose that (i)
is satisfied with y(n) = ¢ (A > 0). If

¢(N) = anNP(En) — ®©
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then
(17) P(SN—I(Zn§N<Pn - ¢(N)) < fl:) = (271’).‘%[?—” 3_12/2 dt —I‘ O(SN_% 10g3 SN)

where ¢, is the indicator of E, and sy° = E(Enémp,. — (N

If, in particular,
(18) EnéN PZ(En) < ¢’3/4(N)
then
(19) P((6(N)HXnzven — ¢(N)) < 2)

= (2r) 7 [Z,e " dt + 0(67H(I) log’ &(N)).

It follows from the proof of Theorem 8 [3] that the hypotheses of Theorem 2
are satisfied and hence the first part of the theorem follows. We also know
from the very same proof that sy° = ¢(N)(1 4+ o(1)). In order to show (19)
we have to improve upon this last relation and then to show that the order of
magnitude of the error term does not increase if we replace sy by (¢(N N

on the left hand side of (17).
In the proof of Theorem 8 [3] we set M = 0 and obtain

8% = $(N) = Tagw P(Fa) + 0 Lncnzw P(En)P(E)e™

with 8] £ 1. Substituting the inequality P(E,)P(E,) < P*E,) + P’(E,)
in the double sum we conclude from (18) that sy* — ¢(N) K Dn<y P*(E,)
& ¢*(n). Hence as a consequence of (17)

P((N)H X nswon — ¢(N)) < )
= P(sy (Lnenen — ¢(N)) < 2(1 + ¢ 4(V)))
= (2n) [Z 6" dt + 0(¢7HV) log® 6(n))

which is (19). We observe that condition (18) is certainly satisfied if, for ex-
ample, P(E,) < n"*. In fact, we then have setting for a moment a, = P(E,)
and Ay = anNP(En)

2 2 N 2 —2/5 N -

ZnéN Qp = EngAN“‘ Qn -+ Zn>.41v5/4an <<En§AN5“n + Zn>AN5’4 a'n'AN 4
3/4
K 45"

The second applications deals with stationary processes.

TraroreM 7. Suppose that {(x,,n = 1,2, ---) s a weak sense stattonary process
with E(z,) = 0 and sup, E(z.') = 1 satisfying condition (I1*) with ¢(n) =
e(x > 0). Then

b = E(2®) + 2D w1 B(2011)
exists. Moreover, if ¢ #~ 0
PN Y avan < ) = (2r)? [Zw ¢ dt + O(N* log® N).
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The theorem follows immediately from Theorem 1 and the proof of Theorem
9 [3].
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