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THE CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS!

By R. M. LoynEs?
Florida State University

1. Introduction and summary. The results described here have their roots in
two areas, for in a certain sense we combine on the one hand the work of Girshick,
Mosteller and Savage [5] and Wolfowitz [11] and [12] on sequential estimation of
the binomial parameter, and on the other the result of Hoeffding [7] concerning
the consistency of U-statistics. The link between the two is the Blackwell [2]
procedure for obtaining another (better) estimator from a given one by taking
expectations conditional on a sufficient statistic.

The main result is that if from a given estimator 7 of § = ET we construct new
estimators by the Blackwell procedure corresponding to a sequence of stopping-
rules N, then this sequence of estimators is consistent provided N; tends to
infinity in probability; in fact it has also to be assumed that the N; have a certain
structural property.

2. Notation, terminology and universal assumptions. We suppose X1, Xa, - - -
to be a sequence of independent identically distributed random variables, taking
their values in a space .

A stopping-rule or stopping-time N is a random variable defined on the sequence
X;, X,, --- whose possible values are the positive integers, with the property
that for each n = 1 the event {N = n} is determined by conditions on X;, X,
-+, X, only. We assume that all stopping-times are finite with probability one.

For brevity we occasionally denote the ordered n-tuple (Xi, Xs, -+, Xa)
by X". By Z, we mean the order-statistic calculated from X". If the X are real-
valued this is just the usual order-statistic; otherwise we can regard it as the
function from % to the integers which describes how many of Xy, X, -+ X,
are equal to a given z in . (The deseription in these terms I owe to L. J. Savage).
It is important to note that Z,41 can be calculated from a knowledge of Z, and
Xn+1.

There are various assumptions to be made which we shall label Al, A2, etc.

A1l: For each n a statistic V, is given which is sufficient for X™. It is not sup-
posed that V, is real-valued.

A2: For each n V, is a function of Z,.

Assumption A2 will certainly be true if V,, = Z, or if V, is a minimal sufficient
statistie.

When a stopping-rule N is given we shall write Vy for the random variable
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which equals V, when N = n; when no confusion can be caused we shall merely
write V¥ = V. When, as in Section 4, we deal with a sequence of stopping-rules
N, we shall write V* rather than Vy,.

We suppose that for some parameter § we have constructed an unbiased es-
timator T (defined on the sequence X, X2, - - - ) which will remain fixed through-
out the discussion.

A3: E,T = 0; in particular EeT exists.

The estimator T will be assumed to depend on a finite (but not necessarily
bounded) number of observations only: there is a stopping-rule M for T such that
if M = n, T is a function of X1, Xz, - -+, X, only. Any such estimator we call a
sequential estimator; a fixed sample-size estimator, depending on a fixed number
of X, will be a special case of this obtained by putting M = m with probability
one for an appropriate integer m.

A4: Any stopping-rule N or N, considered satisfies N = M or N; = M with
probability one.

The function of A4 is, in conjunction with Al, to ensure that the quantities
U(N) and U(N;) defined in (3.1) and (4.1) are functions of the observations
only.

If A is an event, we shall often use the notation 7(A4) for the indicator function
of A, which is unity on A and zero elsewhere.

3. Construction of the Blackwell estimators. Given the estimator T and a
stopping-rule N we define the new estimator U = U(N) as the conditional
expectation of T given N and V.

(3.1) U(N) = E[T|N, Vyl
Equivalently U = U,(v) when N = n and V, = v where
(32) U,(v) = E[T|N = n,V, =] = E[TI(N = n)|V, = 1]
ABII(N = n) |V, =}

Assumptions Al and A4 clearly imply that U.(v) is a function of X, Xz,
.+« , X, only, so that U is indeed a statistic with stopping-rule N. Then U is
also unbiased for 8, and has at least as small a loss as T for any convex loss func-
tion (indeed unbiasedness is not necessary for this property.)

As a particular case we may take V, = Z,, which would lead in the case of
fixed M and N to U-statistics (see e.g. Fraser [4]), and we may therefore regard
such estimators as generalised U-statistics. We observe that in any case, because
of A2, U is a symmetric function of Xy, X5, -+, Xx.

The obvious question, though not particularly relevant to the present in-
vestigation, is when is U the unique minimum variance unbiased estimator for
the given N. It will of course be unique when the pair (N, V) is complete, but
this is no more than a restatement of the question in different terms. Lehmann
and Stein [9] have some results, but the problem seems to be appreciably more
difficult to treat than in the fixed sample-size case.
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Blackwell [2], in a paper apparently directly inspired by the sequential bi-
nomial estimation procedures developed by Girshick, Mosteller and Savage [5],
gave an almost identical discussion, except that he imposed an unnecessary
further condition on N.

4. The consistency of certain sequences of estimators. Wolfowitz [12] showed
that if a sequence of estimators were constructed in the binomial case by the
method of Section 3 corresponding to a sequence of stopping-rules N; satisfying
a certain condition, it would be a consistent sequence. His condition was that
No,; — © as ¢ — ©, where ng ; is the smallest value of n for which P[N; = n] > 0.
It will be shown here that even in the general case consistency follows from
weaker and more appealing conditions on the N;.

We shall write

(4.1) U' = U(N;) = E[T|N;, V.

TuroreEM 1. Suppose that assumptions Al to A4, and in addition the following
conditions Cl and C2 are satisfied. C1: For any fired k, PIN; < k] > 0asi— «.
C2: There exists an integer \(i, k), which is monotone in k and which tends to o
if 1 and k both tend to <« , such that for each k, N; = k if and only of N; = k and the
set of random variables Zxcky , Xo a1, - - - , Xi Satisfies some condition (depend-
g of course on © and k).

Then U* converges to 0 in probability and in the mean of order 1 as i — .

Remarks. (i) Cl states that N; — « in probability. Wolfowitz’ condition
implies that N; — « with probability 1.

(ii) C2is not necessary, since for example it obviously need only be required to
hold for large 7, but some condition obviously is. Its function is (effectively) to
ensure that 7" and N; are nearly independent when < is large. (We do not need to
make this precise, but the intention is to exclude stopping-rules such as N; =
[2X4].) The form chosen here is a convenient one which is reasonable for most
(though not all) applications. A somewhat simpler condition which implies C2 is

C2': For each k, N; = k if and only if N; = k and Zy satisfies some condition.

This is very similar to the extra condition imposed by Blackwell [2]. As ex-
amples the stronger condition C2’ is satisfied by the stopping-rules (a) stop when
> ™ X, first crosses a barrier, (b) stop when the estimated variance of the sample
mean s*/n first becomes smaller than some prescribed value, and (in the binomial
case), (c) stop when the point whose co-ordinates are number of successes and
number of failures first enters a region E. An example in which C2 is satisfied
but not C2', is given by defining N; = n if X, is the first X; for which X; >
max (Xl, Xg, cety X@).

It would be straightforward to prove the theorem if Wolfowitz’ condition were
satisfied, and the main difficulty is in fact in taking advantage of the fact that it
is almost satisfied. By C1 there exists an increasing sequence of integers m,,
tending to « with ¢, with the property that

(4.2) PIN; < mj] — 0.
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For convenience we shall write

(4.3) E; = {N; = mi,

and

(4.4) k; = N1, m;) so that k;— o«

and

(4.5) P(E;) — 1.

Define

(4.6) Wi = E[B[T |1(E:), Zi;, Xea, Xniz, -1 Ne, V7,

then when N; = jand V; = v
(4.7) Wi = EEIT|I(E:), Zi;, Xeera, - MNs = J) |V, = 1]
AB[I(N: = )|V, =9} "

Now if j = m, it follows from C2 that N; = jif and only if N; = m, and the set of
random variables Zy,, Xi.41, -+, X; satisfy some condition; consequently if
JZmi

Wi = E[E[TI(N; = j)|I(E:), Zi;, Xeia, -1 V; = 1]
(4.8) ABII(N: = )| V; =}
= B[TI(N; = j)|V; = o{BI(N: = j) |V, = o}
because of A2. Hence W; = U’on {N; = m.} and by (4.5)

(4.9) W; — U’— 0 in probability.
Now write

(4.10) Yi = BT |I(E), Zu,, Xess, -]
so that

(4.11) Wi = E[Y:|N:, V.

Then when N; = m,, or I(E;) = 1,
(412) i = BITI(ES) | Zey, X 1, - WEL(BD | Zis, Xuor, -1}
We have
El1 — EI(E:) | Zy;, X, - -1l]
= E[|E[l — I(E)|Zi;, Xiypr, -]l £ E[1 — I(E:)] — 0
so that the denominator of (4.12) tends in the mean of order 1 and a fortior: in

probability, to 1. If now we write
(4.14) 8i = E[T|Zx;, X1, -]

(4.13)
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it follows similarly that the difference between the numerator of (4.12) and S;
tends in probability to 0, and hence finally, recalling C1,

(4.15) Y; — 8;— 0 in probability.

Now the S; form a backwards martingale, so that by Theorem 4.2 of Chapter
VII of Doob [3] S; converges with probability 1 and in the mean of order 1 to
a limiting random variable with expectation ET = 6. From the zero-one law of
Hewitt and Savage [6] it follows that the limit is in fact constant, and therefore
equal to 6 with probability 1.

(4.16) S; — 6.
Hence by (4.15) and (4.16)
(4.17) Y;— 0 in probability.

Now, if e > 0, writing Y,/ = ¥; — 0 we have

B|Y: — ol = ElY: — 0I([Y!| > )] + E[Y: — 0I(|Y{| = o]
< E[E(T — 0| |I(E)Zui, Xiga, - MY > o] + ¢
(4.18) = BIET — o0I(|Y!| > &|I(E), Zn;, Xiwa, -1l + ¢
= BT — 0I(|Y{| > )] + ¢
—0

asi— « and then e — 0, by (4.17). Consequently from (4.11)

(419) E|W, —o|) = E[E[Y: — 0[N:, V| < EEY: — 6/|N:, V]
= E[|Y: — o)) -0,

and a fortiori W, converges to 8 in probability, so that by (4.9)

(4.20) U’— 6 in probability.

That U® also converges to 0 in the mean of order 1 follows, by applying an
argument exactly parallel to that in (4.18).

Intuition suggests that almost sure convergence of U “ to 6 ought to hold, pro-
vided the requirements on N ; are strengthened: possible conditions which suggest
themselves are N; — o with probability one, or N1 = N for all 7. Attempts to
prove this have, however, been unsuccessful, except in the following non-se-
quential but otherwise rather general case. (It is sometimes possible to deal with
the sequential case by special arguments—see Examples 3 and 4 in Section 5.)
Suppose T is a function of X™ for some fixed m and that for each n V, is a func-
tion of V. and X, (which again will be true if V,, = Z, or if V, is minimal);
we shall without loss of generality suppose N; = 1 for each ¢. Then E[T | V,,] — 8
with probability one. For if n = m

(421) E[Tl Vn] = E[Tl Va ) X'n+1 ’ Xn+2: o '])
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and these variables therefore form a backwards martingale which converges
with probability one. If we set V,, = Z, we have a proof of the almost sure con-
sistency of U-statistics (see Hoeffding [7]), modelled closely on Doob’s proof of
the strong law of large numbers ([3], p. 341]. The same proof was given by Berk
[1].

6. Examples. We give five examples. The first two are entirely concerned with
fixed sample sizes. All except the fifth have T depending only on a fixed sample
size. All except the fourth satisfy C2'.

(1) Suppose that X; are normally and independently distributed with mean u
and variance 1, that T = X,* — 1 so that 6 = 4% that N; = 1, and that we use the
minimal sufficient statistic ¥, = >." X;. Then we find

(5.1) U= (DI X)% =0

which converges to 6 in probability and in the mean of order 1 according to the
theorem, and with probability 1 according to the remarks at the end of Section 4
(and in any case of course according to the strong law.) As a matter of interest
the variance of U’ is

(5.2) 20% 4 4,
whereas that of the U-statistic associated with 7T is
(5.3) 2 4 4u

(2) Suppose that the X; are independently distributed, uniformly on (0, 26),
that T = X, that N; = ¢, and that V,, = M, , where

(54) M,,, = max (Xl,Xz, ,Xn)
the minimal sufficient statistic. Then
(5.5) U = (54 1)(2)7'M,,

whose behaviour is in general terms the same as that in example (1).

(3) Let the (real) X; be independent and identically distributed with con-
tinuous distribution extending to +«, let V, = Z,, and let N; be the first n
for which M, > 7; again suppose T = X;. Thenif N; = 1, U* = X; ; otherwise,
fN;,=n=2andZ, = (21,22, +++,2,) where X, = 2z, > tandz < 2 < ---
< 2,1, we have X = z; with probability (n — 1) foreachj (1 £j < n — 1).
Thus

(56) U =2a=2X if N.=1
=2 "e(n — )7 =2 X(n — 1) if Ni=nz 2

By the theorem U’ converges to § = EX in probability and in the mean of order
1. In both this example and the next we can also show that convergence with
probability 1 occurs, for Theorem 1 of Richter [10] applies.

(4) Suppose T, X;, and V,, are as in example (3), and let N; be the firstn > ¢
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for which M, > M ;. Then when N, = n and Z, = (21, 22, - -+, 2,) we have
X, = 2., and 2z,_; occurs among X;, Xz, - -+, X;; thus T = 2,; with probability
i, and T = z; with probability (¢ — 1)/(n — 2)ifor1 < j < n — 2. It follows
that

(7)) U =czoi '+ (1 — )i ar + 20+ -+ + 2a2)(n — 2)70

The convergence behavior is as in example (3).

(5) Suppose the situation is as in example (3), except that T = Xy, , and
consider as before the case when N; = nand Z, = (21,22, * - -, 2,). Then clearly,
ifn=1,Ny=1;ifn>1landz, < 1,Ny =n;andifn > landzy < 2. < -+ 2,

<1< 2u< - <2, Xy, = 2 with probability (n — r — 1) forr + 1
<7 =mn — 1. Thus

Ui=21=X1 ifn=1
(5.8) =z,= X, ifn>1and 2,4, =1

=G+ Faa)—r—=DTifn>1land 2 =1 <2z

and convergence occurs in probability and in the mean of order 1 to § = ET.
Presumably convergence with probability 1 also occurs, but in this example it
does not seem obvious.
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