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PHASE FREE ESTIMATION OF COHERENCE!

By Ricuarp H. Jonms
University of Hawate

0. Summary. A phase free estimate of the coherence of a bivariate Gaussian
process is presented. The technique is based on the usual independent, complex
normal approximation to the distribution of the finite Fourier transform of a
multivariate stationary time series, and the complex Wishart approximation to
the distribution of spectrum estimates. If the spectral densities and coherence
can be assumed to be constant over a wider frequency band than the phase can
be assumed to be constant, the concept of inner and outer spectral windows would
seem appropriate. Maximum likelihood estimates of the coherence are obtained
using phase free marginal distributions at the inner window level. The results of
simulations are presented showing the likelihood for various inner windows.

1. Introduction. It has been noted in certain physical multivariate stationary
processes that estimates of coherence are biased towards zero because of varying
phase within the spectral window. While the spectral densities of the two com-
ponent processes and the coherence may remain fairly constant over a frequency
band, changing phase can cause the co- and quadrature spectrum to change sign
within a spectral window so that the smoothed estimates are badly biased. This
problem is discussed, with references, by Akaike and Yamanouchi (1962) and
Nettheim (1966). One approach is to shift the time axis of one series in order to
reduce rapid variation in phase. Tick (1967) suggests estimating the coherence
using a narrower spectral window than would be used on the spectral densities
and gives several methods of combining the high resolution estimates, introducing
the concept of inner and outer window. This paper derives maximum likelihood
estimates based on two levels of smoothing.

The derivation is based on the distribution of independent bivariate complex
normal variables which, as is well known, approximates the distribution of the
Fourier transform of the multivariate stationary process for large sample size
(Goodman, 1963).

2. The estimate. Let [z1, y1, 22, y2] be a four dimensional normal variable
with mean zero and covariance matrix
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Forming a complex random vector

21 21 + iyl
2.2 = = .
@ =[2]-[mtd)
the probability density function is
(2.3) p(2) = (#2707

E3 . o, . .
where ~ denotes complex conjugate transpose and the Hermitian covariance
matrix is

o g102( + iB)}

tTNz(a - iﬁ) . g2

(2.4) Ez* =3 = [

(see Goodman, 1963 and Khatri, 1965).

When referring to the background problem in stationary processes, ;" and
oy correspond to the spectral densities of the two component processes, the
coherence corresponds to

(2.5) R =d+¢
and the phase to
(2.6) 6 = arc tan §8/a.
Let 21, 22, --- 2, be an independent sample from this distribution. Let this
sample be divided into m groups of size ny = 2,
2.7 n= .
From each group obtain the sum of product matrix,
(2.8) Ap = D52z,

the sum being over the corresponding subgroup. It is well known (Goodman,
1963) that the distinct elements of A have a complex Wishart distribution

(2.9) P(Ar) = A" [aT (m) T (m — 1|27 ™74

Writing this in terms of the four distinct real elements, and dropping the sub-
script k& temporarily,

n—2

p(au s Qo2 y Quor , ) = (Onan — afm - afzr)
faT ()T (n — 1)(1 — R0y}

.ex _ 022a11 — 200109010 — 2601090101 + U12022
p (1 - R2)0'120'22 )

(2.10)

Introducing a change of variable, let

(2.11) Qe = |a| cos ¢,

(15054 lalzl sin ¢.
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The density function in terms of the variables au, az, I(Jtul2 and ¢ is, (the Jaco-
bian is 1)
p(au, ax, |al’, ¢)
(2.12) = (anom — |op/))" 20T (0)T(n — 1)(1 — R0y
cexp {— (1 — R Yano1 ™ — 2|aw|(o102) ™ R cos (0 — ¢) + amos 7J}.

Consider now the phase free marginal distribution,

(2.13) p(au, Gz, |aw’) = f%r p(au, ax, |ayl’, ) do.
This integral can be evaluated by noting that

(2.14) @2m) 7 [T e du = Io(z),-

a modified Bessel function of order zero.

Now

p(au, as, |¢112|2)
(2.15) = |A["Io(2Raxl/(1 — RYeow)[T(n)T(n — 1)|Z|"]
cexp (— (1 — R)Mau(or™) + azloz D)]).

This distribution eliminates phase at the inner window level and a1, @s2, and
laxs|® (which are sufficient for oi’, 02" and R® at the inner window level) will
be used as basic data when combining the inner window data to form the final

estimate.
Reintroducing the subscript & to denote the group, the likelihood is

(216) L = [Z[™(TTea (14T 7 (m) T (me — 1)I0(2Rai5’|/(1 — R*)o102)])
cexp (— (1 — R)™ X [ah/or® + as2 /07]).
The log likelihood is
(217) logL = K — nlog[oi’o2(1 — RO+ 2 malog Io (2R|as®|/ (1 — RY)o102)
— (1 — RY ' 2 lafe™® + ashos ),

where K is a constant which does not depend on the parameters o1, o5° and R%.
Setting the derivatives with respect to o1%, 02> and R to zero, and using

(2.18) (d/d2)Io(z) = Li(2),
gives
1 — B* + R(nows) ' i |aff | LI = (no) ™ 2 paal?,
(2.19) 1 — R + R(nows) " Dm |ofP| LI = (n0d)™ D ey ash,
1 — R*+ (1 + R)(nRovos) " D iy |as® [ Iy "

-1 (k) —2
="nNn Zk—l 01101 +a o2 ),
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where the arguments of Io( ) and I;( ) have been dropped for convenience and
are the same as in (2.17). The maximum likelihood estimates of o1* and ¢4 from
the entire sample (without grouping) also satisfy these equations.

(2.20) o =0 ) al?, 6 = n ) raasy
giving the following equation for R?,
(2.21) (néd162) " Dy |aS9 | LIy " = R.

The likelihood, evaluated at the maximum of ¢,® and ¢o’, as a function of R? is
(222) L « (1 — R) ™[I L(2R|a5]/(1 — R*)é:16s)]e ™4™

where the argument of I, has been returned. Since programs are available for
calculating modified Bessel functions, the maximum of (2.22) can be found by
numerical methods. Before pursuing this aspect, it will be shown that the re-
striction that the group size nx be two or more is not necessary.

3. Single observation for the inner window. It may seem surprising that an
inner window consisting of a single observation can be used, since the estimate of
coherence from one observation is always one. To show that an inner window
at the periodogram level is possible, we return to the complex normal distribution
of the observations. Equation (2.3) can be written

3.1) p() = («=)7"
exp (=27 (e’ — 2o10u®R(a* (e + B)z) + lealer’)),
where ®( ) denotes the real part. Transforming to polar coordinates
(3.2) 2 = piei, J=12
(3.3) p(p1, pz, b1, 02)
= pipor |2 exp (—[Z[(p’ds’ — 201020100k cos (0 + 6, — 61) + poib®).
The phase free marginal distribution is
(34) [3 [3" p(p1, p2, 01, B2) d6 db,
= 4p1p2|Z[ " Lo(2p1p2R /0102(1 — R”)) exp (— (1 — R*) H(p’ox " + po'o2")).
Again changing variables to be consistent with the last section, let
(3.5) an = po, an = ps
(36) plan, am) = |2[7To(2R (anam)’ /(1 — E')owo2)
-exp (—(1 — R) ™ (auor™ + amoz ).

This distribution is analogous to (2.15) with |aw| replaced by (anas)?. With
n = 1, the complex Wishart is singular since

(3.7) || = (auazz)é-
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Proceeding as before the remaining equations of Section 2 hold. It is not necessary
to remember (3.7) since if nr = 1, |aws| calculated from the data satisfies this equa-
tion.

4. The numerical problem. The maximum likelihood estimate of R’ is obtained
by finding the maximum of (2.22) in the range 0 < R =< 1. Letting

(4.1) Up = Iaig)l/&ﬁz, E=1m,

gives m sufficient statistics for R?, and the log of the likelihood evaluated at
g1 = é1and g3 = 9 18

(42) logL =K —2n(1 — R)™ — nlog (1 — R?)

+ Doitalog I2Ru/(1 — R)]
where K is a constant which does not depend on R”. The slope of (4.2) is
(43) [d/d(R)] log L = [A + R)/(1 — B))R™ Zimwl/Io — 7,

where, again, the arguments of Iy and I; have been deleted and are the same as in
(4.2). The series expansions for I, and I are,

(44) In(z) = 2500 (2/2)"(B1)7 L(z) = 2280 (2/2)" /(1) (k + 1L
The slope of (4.2) at R* = 0 is therefore
(4.5) 2w’ —

which can be positive or negative. It is possible, therefore, that the maximum
likelihood estimate of R’ is the endpoint R* = 0. The behavior of the log likeli-
hood as R* — 1 can be obtained using the asymptotic expression for the modified
Bessel functions, as z » «,

(4.6) In(z) ~ (2m2) %, L(z) ~ (2m) %"
Therefore,
(4.7) R mawdy/Io— D i w

as R* — 1. The behavior of the likelihood function as R* — 1 is determined by the
sign of

(4-8) Z;c”=l U — MN.

If (4.8) is positive, the likelihood diverges to 4+ « as R — 1. In this case the maxi-
mum likelihood will be B = 1. If (4.8) is negative, the likelihood approaches
zero as B — 1. (4.8) will take the value zero, even in the limiting situation when
the true value of R = 1, with probability zero. The possibility of a maximum at
both zero and one is ruled out by the following inequality

(4.9) m pw’ Z (e w)”.
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Fic. 1. Normalized likelihood as a function of R? evaluated at the maximum of the other
parameters for various groupings and the usual estimate using phase. The maximum likeli-
hood estimate is shown for each case together with the minimum length interval containing
909, of the area. The true R? is 0 and the sample size is 15.

5. Simulations. To obtain an idea of what is lost by grouping when it is not
necessary, simulations were carried out. Random samples from a complex normal
distribution with constant phase were generated and analyzed. The samples had
zero means, unit variances, zero phase and specified coherence. The means were
assumed known, corresponding to spectrum estimation, and the variances,
phase and coherence were assumed unknown. Since the distributions of the
estimated coherence do not depend on the actual variances and phase, the values
used did not affect the simulations. Sample sizes of 15 were used corresponding
to spectrum estimates with 30 degrees of freedom. Group sizes of 1, 3, 5 and 15
were used.

A group the size of the sample itself would not be used in practice, since in this
case the usual estimate would be used, but is presented for comparison. Various
values of coherence in the interval [0, 1] were used. In every case when the true
coherence was one, (4.8) was positive for all groupings so the estimated co-
herence was one. Results are presented for values of R’ equal to 0.0, 0.25, 0.5

and 0.75.
For each sample and grouping, the log likelihood was calculated from (4.2)
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F1G. 2. Normalized likelihood as a function of R? evaluated at the maximum of the other
parameters for various groupings and the usual estimate using phase. The maximum likeli-
hood estimate is shown for each case together with the minimum length interval containing
909, of the area. The true R? is 0.25 and the sample size is 15.

for 100 equally spaced values of R*, 1/200, 3/200, 5/200, - - - , 199/200. Standard
modified Bessel function routines are available for these calculations. The value
of K was arbitrarily put equal to 2n making the log likelihood equal to zero
at R® = 0. The likelihood was then calculated and normalized numerically to
have unit area by dividing each value by the mean of the 100 values. Bayesian
confidence limits, assuming a uniform [0, 1] prior on R® were calculated from
the normalized likelihood.

For comparison purposes, the normalized likelihood for the usual estimate with-
out grouping is presented. This is calculated from

(5 1) (1 — R2)—ne—2n(1*le§)/(1—gz)
where
(5.2) R = |aw|/(anas)?,

the usual maximum likelihood estimate of R. (5.1) is the likelihood function of
the sample evaluated at the maximum of o1%, o5° and 6. This is also presented
normalized to unit area.

Maximum likelihood estimates were calculated by first checking the endpoints
using (4.5) and (4.8). If (4.5) was positive and (4.8) negative, the slope at the
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Fia. 3. Normalized likelihood as a function of R? evaluated at the maximum of the other
parameters for various groupings and the usual estimate using phase. The maximum likeli-
hood estimate is shown for each case together with the minimum length interval containing
909 of the area. The true R? is 0.50 and the sample size is 15.
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Fia. 4. Normalized likelihood as a function of R? evaluated at the maximum of the other
parameters for various groupings and the usual estimate using phase. The maximum likeli-
hood estimate is shown for each case together with the minimum length interval containing
90% of the area. The true R? is 0.75 and the sample size is 15.
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midpoint, R® = % was checked using (4.3). By repeating this procedure ten times,
in order to locate the change in slope, the maximum likelihood estimate was taken
to be the center of the final interval which had length 27, giving three significant
figures. The results of the simulations are shown in Figures 1 through 4.

6. Conclusion. The Figures show a clear loss of precision when group sizes of
one are used. However, for an outer window of fifteen elementary frequency
bands, the groupings of size three or five are acceptable. Therefore, it is necessary
in & given situation, to decide whether the decrease in efficiency caused by group-
ing is worth the possible decrease in bias caused by varying phase.
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