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CONDITIONAL PROBABILITY ON 2-COMPLETE BOOLEAN ALGEBRAS'

By ArpEL J. BoEs
Purdue University and Colorado School of Mines

1. Summary. Probability as measure on a Boolean algebra was presented by
Kappos [5], but a treatment of conditional probability relative to a subalgebra
is missing. The Stone space of a s-complete Boolean algebra (see [10], p. 24)
enables one to apply the concepts of conditional probability for a s-algebra of sub-
sets of some space (see [2], pp. 15-28), but the problem deserves closer attention.

In this note we consider conditional probability with respect to a o-subfield of
the o-field generated by the open-closed subsets of the Stone space of a Boolean
o-algebra. We show that there is always a regular conditional probability (see
[4], p. 80) relative to a full s-subalgebra of Baire sets. With a modified definition
of probability on a Boolean algebra a treatment of conditional probability is
possible without reference to the Stone space. For this a generalized integral is
defined and the theory of integration is begun for it. A definition of conditional
probability on a ¢-complete Boolean algebra is given for which there is no regu-
larity condition. We conclude the discussion with a study of the relationship of
this theory with the conventional theory.

2. Introduction. Throughout this paper we will refer to a Boolean algebra
(e-complete Boolean algebra) whose elements are sets as a field (c-field). If 4 is a
o-complete Boolean algebra, there is an isomorphism 8 such that §(4) = § is the
class of open-closed subsets of a perfect reduced field of subsets of a space Y. Y
is called the Stone space of A. & forms a s-complete Boolean algebra but only
finite supremum and infimum correspond to set-theoretic union and intersection,
respectively. Let ® (&) be the o-field generated by &. B ¢ ® (§) can be represented
by

2.1) B=EAI

where F is an open-closed set and I is a set of the first category in Y.
We will take \ to be a strictly positive probability on A. Define u on & by

w(E) = \@(E)), Ees.

In view of the isomorphism, p is a finitely additive, strictly positive probability
on &. Define u on ®(8) by

uw(B) = u(E), Be®(8),
where F is given by (2.1). Then u is a probability measure (s-additive) on & ().
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For details of some of the preceding remarks, the reader may refer to[5]and
[10].

In order to study conditional probability on a Boolean algebra we assume the
Boolean algebra of events ise-complete even though some of theory can be carried
out in greater generality (see [11]).

Let B be a o-complete Boolean algebra and let B denote the set of real numbers.
Bold faced letters such as f, g are used consistently in this paper to denote func-
tions with values in B and domain R. f is a random variable if thefollowing con-
ditions are satisfied:

i) fa)l as af,
(2.2) (i) Vaf(@)=1 and A.f(a) =0,
(iii) Vpsaf(B) = f(a) forevery « in R.

Notice that if B is a o-field of subsets of a space X, a correspondence between
random variables f and measurable real valued functions f is given by f(a) =
{z:f(x) > a}. This motivates the definitions of order, arithmetic operations, ete.
for the class of random variables on B (see [8]).

3. Conditional probability on the Stone space. In this section the basic prob-
ability space is the space referred to in (2), namely (Y, ®(8), u). The sets of
® (&) are called Baire sets and ® (& )-measurable functions on Y are called Baire
functions. Let @ be a o-subfield of ®(8) which is full, i.e. for each A in @ the
open-closed set of & which is u-equivalent to A is also in @. Assume that (u| @)
is complete, where (u | @) denotes the restriction of u to G.

TurorEM 3.1. There is a regular conditional probability c (-, - ®8(8),@) =c¢ (-, -)
on ®(E) x Y.

Proor. Choosep (B, - | ®(8), @) = p (&, - ) so that p (E, - ) is an @-measurable
function for which 0 = p (%, -) = 1 and for every 4 in @,

(3.1) pEnA) = [4pE -)du|c).
For each n, consider
X 0=/ 2%auy) k=120 +1),
where
Apg = {y:(k — 1)/2" = p(B,y) < k/27}.
There is E,, ; in 8(2.1) suc‘h that u(An, xAE,, 1) = 0. If we define
en(Byy) = 220k — 1)/2%z,, () (B =1,---,2" + 1),

then ¢, (E, - ) converges uniformly to a function ¢ (E, - ). ¢(E, - ) is a continuous
version of the functions defined by (3.1) because each ¢, (¥, - ) is continuous and
@ is full.

Thereis N in @, u(N) = 0, for which ¢(B1, y) + ¢c(B2, y) = c(Bru By, y)
for y in N and E, , E, disjoint. But these functions are continuouson Y, so ¢ (-, y)
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is a finitely additive probability on & for fixed y. We can extend c (-, y) to &(8)
because & is perfect. There will be no confusion if we denote this extension by
4 (' Y ) .

Let ® denote the class of all B in ®(8) for which ¢ (B, - ) satisfies (3.1). Then
® = ®(8&) and the proof is completed.

For any integrable function f on Y, let E (f, - ) be an @-measurable function for
which [4fdu = [JE(f, -)d(u|@) for all 4 in @. If f = x5, we may take a
version E(xz, ) = ¢(B, -). Then E(xs, -) = [sc(dy, -) = [rxsc(dy, -).
Proceeding in a standard manner, we obtain the following theorem.

TrEOREM 3.2. If f 7s integrable on Y, then there is a version of E (f, - ) for which
E(f,-) = [vfe(dy, -). (cf. 2], p. 27).

4, Integration. The notion of probability on a Boolean algebra is modified
here in order to investigate conditional probability without reference to the

Stone space.
Let B be a o-complete Boolean algebra and let Q[B] be the set of random vari-
ables (2.2) with values in B. A mapping ® with domain B and range a subset of

i) 0=®@) =1 forevery @ in B,
(i) @®(@) =0 if and only if @ = 0,
(4.1) (@) @®(1)=1
iv) ®avd)=d@)+ o0), if anb=0, and
(v) ®(@.) |0 if a.]O.

In order to define the integral of a random variable f with respect to ®, we re-
quire a little notation. A characteristic function a for an element a of B is given
by

a(e) =1, a<0
= q, 0=ax<l1
= 0, 1

«.

IIA

If o is a real number, let @ denote the random variable given by
(Y(ﬁ ) = ]-} 6 < [s4
= 0, a = 6.

Generally, ¢ and N denote random variables whose “jump” occurs at a small
positive and a large real number, respectively.
If s = away + - - - + ana, is a simple function, define

(4.2) [sd® = ax®(ar) + -+ + a®(a,).

We see that the integral of a simple function is a linear combination of random
variables.



CONDITIONAL PROBABILITY 973

By f. — f we mean An(Vmzafn) = Va(Amzafn) = f, where (Auf,)(a) =
Vi Aufn(a+ 1/m) and (Vafo)(e) = Vafu(a). If £, < g, V.f, is a random variable,
and if f, = g, A,f, is a random variable.

Iff = 0, s, is a sequence of simple functions such that 0 < s, < f, and s, T f,
define

(4.3) [fd® = Vv, [s.do.

A random variable f is bounded above (below) if there is a such that f (o) = 0
(f(a) = 1). If we extend this definition to apply to integrals of non-negative f,
we see that if the integral in (4.3) is bounded, it is a random variable.

ReEMARk. Ifa = b,b=a v (b —a). Then®(a) < ®() by 4.1).

TuroREM 4.1. If s and t are simple functions wzth 0 < s = t, then
[sde < [tde.

Proor.Ifs = aandt = b forsomea, bin B, fsdd) ®(a) andftdtl) @)
by (4.2).If a < b, we seethat [ad® < [b d® by the remark. In order to com-
plete the proof we point out that if s and t are simple functions, there is a common
decomposition.

In definition (4.3) we use s, T f so in view of Theorem 4.1 we write
lim, [ s,d® = V., [ s,d®. :

Using a common decomposition and the distributive laws (see [8]), the follow-
ing theorem is apparent.

TureorEM 4.3. If 0 < s and 0 =< t are simple functions and o is a positive real
number, then [ asd® = o [ sd® and [ (s + t)d® = [sd® + [ tde.

TuEOREM 4.4. If 1, and s, are sequences of simple functions with0 =< r, T f and
0 <s, 1 f, then lim, [ s,d® = lim, [ r,d®.

Proor. Forr, ,0 = r, < f and lim, s, = r,. Since (V. A [tn, s.])(a) =
Vo (@) A su(a)) = tu(a), it follows that A[tm, s.] T rm. Then
Ln — Alln,S;] = t, | 0. The t, are simple functions so if

N = sup {a:ti(a) > 0},

thent, = N for all n. Let ¢ > 0. Thent, =< ¢ + N«,, where 7, = t.(¢). By the
previous theorems, [t,d® < [ed® + [Nz, d® = & + N@®(t.(c)). But
ta(e) | 050 ®(t.(e)) | 0. Thuslim, [ (tw — A[rm, S.]) d® = 0 and [ r,d® =
lim, [ Aftn, s d® < lim, [ s, d®. Similarly, [ s, d® < lim, [ r, d®.

A random variable f is integrable in case the integrals of f% and f~ (see [8])
are bounded and

Jtde = [fdo — [{ do.

Linearity of the integral can be established using techniques analogous to
those in standard measure theory. Theorems important to probability theory
such as a monotone convergence theorem and dominated convergence theorem
now can be easily obtained.

6. Conditional probability. Let B be a os-complete Boolean algebra. Let
[0, 1] denote the class of random variables which assume only the 0 and 1 of B.
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Thus if fisin Q[0, 1] and 0 < f < 1, thereis 0 = « =< 1 such that f(8) = 1 if
B<aandf(@) =0if 8 = a. If ® is asin (4.1) with range [0, 1], ® is a prob-
ability and we denote it by u. If n is a mapping of B into Q[0, 1], n is absolutely
continuous with respect to u in case, given any ¢ > 0, there is § > 0 such that
|n(a)] < & whenever u(a) < 5, for a in B.

If [,fdu = [ afdy the following Radon-Nikodyn theorem can be provea
using a method similar to that of [8], pp. 186-190.

TurorEM 5.1. If n 25 absolutely continuous with respect to w, there is a unique
random variable £ such that n(a) = f,, f du. Conversely, for a random variable £, if
na) = f,, f du, then n 7s absolutely continuous.

Let A be a Boolean s-subalgebra of B and let (u | 4) denote the restriction of
u to A. Then if f is integrable, there is a random variable £, (f) with values in 4

for which
(5.1) JeEiE)d(u|A) = [.fdy

for every a in 4. E 4 (f) is the conditional expectation of f given A. The properties
of conditional expectation are analogous to those in [2], p. 23.

If f = b for some b in B, E4(b) is written u4 (b) and is the conditional prob-
ability of b given 4. Notice that (5.1) becomes

faua®)d(u|A) = [obdy = u(a A b)

and let u4 denote the mapping which takes b into u4 (b).
Theorem 5.2. u4 takes values in Q[A] and satisfies:

(i) 02 us®) =1 forewery b in B,
(ii) pa®) =0 dfandonlyif b =0,
(5.2) (i) wa(l) =1,
(iv) wa(e v b) = paa) +pa®), 4 aab=0, and
(v) pa(an) 1O 4f an]O.

The reader will notice that (5.2) (cf. [2], p. 25) corresponds exactly with (4.1).
In fact, conditional probability is the motivation for defining the integral as in
Section 4. The idea of regularity does not apply to the conditional probabilities
w4 in view of Theorem 5.2. Although the theorem that follows is not true in
general for the conventional theory, the proof can be done in the standard way
by application of the previous results. .

TureorEM 5.3. If f is an iniegrable random variable, E, (f) = f fdu,.

The above completes this work to give a simply stated basis for the theory of
probability. There is an apparent inability to correspond numerical values to
events and random variables. This problem is considered in the next section.

6. Relationship with the conventional theory. If (X, @, \) is a probability
space, then @ | A is a complete Boolean algebra whose elements are denoted by



CONDITIONAL PROBABILITY 975

a = [A]for A in@,1 = [X], and 0 = [F]. Define u on @ | \ as follows:

(6.1) (w(@))(@) =1, a<A4)
=0, NA)Za

We point out the following obvious results.

TrarorEM 6.1. If u is defined by (6.1), u is a probability (Section 4) on @ | \.

TuEOREM 6.2. If u is a probability (Section 4) on @ |\, then there is a prob-
ability measure on the field of sets @ which corresponds to u as in Theorem 6.1.

The preceding theorems give us the numerical values for u sometimes neces-
sary for computation. There is an advantage in considering probabilities with a
positivity condition (see [5], pp. 25-32).

Let ® be a o-subfield of @ and let & |\ be the set of residue classes of @ |\
which contain an element of ®. Then & | A C @ | A and ® | A is a complete Boolean
algebra.

A real-valued mapping A(+, +) = A(-, | @, ®) defined on @ x X is a regular
conditional probability on @ x X (see [4], p. 80) if

(6.2) forany A in @, N4, -) is ®-measurable, and
NAnB) = fB)\(A, -)d\ forall B in @&, and
(6.3) for every z in X, M(-, ) is a probability measure on Q.

If (6.2) is satisfied, A(-, -) is a conditional probability on @ x X. The term
“conditional probability on @ x X is used to distinguish a mapping A (-, )
described in (6.2) from a conditional probability on a Boolean algebra described
in (5.2).

A conditional probability on @ x X satisfies the following conditions (cf.
5.2).

(i) for every A in @, 0 < N4, ) £1 with Mprobability
one.
(i) AN, -) = 0 with A-probability one,
(64) (i) A (X, -) =1 with \-probability one,

(iv) if AnB =, NMAuB,-)=\4, )+ NB, )
with A\-probability one, and

(v) if A, | &, NAd., ) | 0 with \-probability one.

Henceforth we denote ur by u (¥, -) if F = ®&|\. Define u(® |\, -) on @[ A
into Q[® | A by (u(® [N, a)) (@) = [{z:M (4, z) > af].

THEOREM 6.3. If \(-, - ) is a conditional probability on G x X, then u (& |\, -)
1s a conditional probability on the Boolean algebra @ | \.

Proor. Only the continuity condition will be checked. If @, | 0, choose B, in
a, so that B, | &. Given @ > 0, let E, = {x:A(B., z) > «}. Then
ANB.nE,) = [, N(Ba, -)d(\|®) > aX(E,).
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It follows that A(B,) > aA(E.) so that N(E.) < (1/a)\(B) | 0. But
(R(®| N\, ba)) (@) = e, where e, | 050 Anu(®|X, bn))(a) = 0. Thus

Vi An (I‘((E’l)\, bn))(l/m) =0

and finally (A, u(®|X,b,))(0) = 0.In view of the fact that A, u(® |\, b,.) 2 0,
the proof is complete.

Regularity does not enter into Theorem 6.3. The question of the existence of
a regular conditional probability on @ x X defined from a conditional proba-
bility on the Boolean algebra @ | \ arises for which only a partial solution is pos-
sible (see [1] or [3], p. 210). Perhaps an approach to the related problems using
the ideas of this article could be helpful. We consider two important cases.

In what follows a set is chosen from each residue class of ® | A. Let = denote a
mapping that does this and define A (-, ) on @ by

(6.5) M4, z) = sup {a:zex (&[N, a))(@))]

where u(® |\, +) is a conditional probability on @ |X. When A(-, ) is a prob-
ability measure on @ for each z in X, we refer to this class as a class of proba-
bility measures on @ associated with u(®|X, -).

TaEOREM 6.4. Let B | \ be such that there is a mapping =:® |\ — & so that the
class of tmages under = is a o-field, then the class {\ (-, x):x & X} is a class of prob-
ability measures on @ associated with u(® |\, - ).

Proor. Denote the set = ((u(® |, a)) (a)) by S(4, a), then (6.5) becomes

6.6) NA, ) = sup {aiz e S(4, a)}.

It is evident that 0 < A(4,z) < 1forall 4 and z, and that \(X, z) = 1forall z.
IfAnB =&, 8S(AuB,a) = Us (S4,B8)nS(B,a — B)). In order to show
that \(Au B, z) = N4, ) + N(B, ) we must show

(6.7) supia:re Us(S(4,8) n S(B,a — B))}
= sup {a:reS(4, a)} + sup {a:xeS(B, a)}.

To accomplish this let o be in the set of numbers on the left of (6.7), then there
is Bo so that z &£ S(4, By) and z ¢ S(B, a0 — Bo), i.e. Bo is in the first set on the
right of (6.7) and @ — Bo is in the second. Thus the sum of the suprema on the
right of (6.7) is larger than ao, hence larger than the supremum on the left.
On the other hand let o and a; be in the first and second sets on the right of (6.7),
respectively. Suppose that one of them, say a1, is not the supremum. Then there
is, in the dense set of real numbers, a Bo > ai such that x ¢ S(4, 8o). Moreover
zeS(B, a1 + a: — Bo) since az + a1 — Bo < az. Consequently

zeUsg (S(4,B)nSB, 1 + a2 — B))

s0 that cu + a2 is in the set on the left of (6.7).

If B, T B,SB,a) = U,S(B., ) so if a is such that x ¢ S(Bx, @) there is
n such that z € S(B,, ). Then (B, z) < lim M\(B,, @) by (6.6). The other in-
equality is obvious since A (B, ) = \(B», z) for all n.
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If the probability space is discrete, the existence of a mapping = is apparent.
For more general cases we use a theorem of Maharam ([6], p. 992): If (X, ®, )
is complete, thereis 7: ® | A — ®@ such that 7(0) = &J,7(1) = X, n(a A b) =
m@)nx®), m(a vd) = w(@)unr(®), and = (b) ¢b. Henceforth we assume
(X, ®, \) is complete and let = be as above. If u(® |\, ) is a conditional prob-
ability on @ |\, we define A\ (-, z) asin (6.6).

The reader will notice that this = differs from the mapping of Theorem 6.4 in
that the class of images might not form a o-field. However, by making the ap-
propriate changes in the proof, we obtain the following results.

LemMa 6.5. If An B = &, thereis N ¢ ® with N\(N') = 0 such that \(A u B, x)
=NA4,z) + N(B,z) forxezN.

COROLLARY 6.6. If @ s a field which consists of a countable number of sets, there
is N ¢ ® with \(N) = 0 such that \ (-, z) s finitely additive on @ for x 2z N.

LemMa 6.7. If A, T A, then there s Ne® with N\(N) = 0 such that
sup, AN(A.,z) = N4, z) forz 2 N.

In the next theorem we change the setting so that it can be readily compared
to [9], p. 241 and [4], pp. 80-83. Let (X, @, \) be as before, ®: a subfield of
@, ®; a g-subfield of @ for which every subset of a A-null set in ®; is in ®; . There
is a conditional probability w(®:|X, -) on & (®B1)|\ into Q[®: | \], where ® (®1)
is the o-field generated by ®; (cf. sec. 5). A class € of subsets of a set X is compact,
if for each sequence C, in € the relation N1 C; # & forn = 1, 2, - -+ implies
N: C: = &. A finitely additive probability measure X defined on a field ® is
compact if there is a compact class © which approximates & with respect to A,
i.e. for each A in ® and n > O there is a set C in € and a set B in ® such that
BcCc Aand (4 — B) <.

Theorem 6.8. If u(®:|\, -) is a conditional probability on ®(®1)|\, B s a
field with a countable number of elements, and (\ | ®1) s compact, then there is a class
of probability measures on & (®1) associated with u(®z |\, -).

Proor. If 7 is defined on ®; |\, define A (-, ) on ®; as in (6.6). By Corollary
6.6 A (-, z) is finitely additive for all z outside a \-null set. There is a compact class
@ such that for every B in ®; there is C,, in € and B, in ®; such that

B, C C,c B and \(B) = sup. M(B»).
By Lemma 6.7 (B, 2) = sup, A\ (Ba, ) for all z outside a N\-null set. & countable
implies that A (-, z) is also compact for  not in a N\-null set. Let N ¢ & be a
A-null set for which (-, 2) is a compact, finitely additive measure on ®; for
z g N.If Be®; define
'“(-_B’ z) = N(B, z), zegN
= N(B), zeN.
But u(-, z) can be extended to a probability on ®(®:) for each = (see [7], p.
118).
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