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1. Introduction and summary. In this paper some Kolmogoroff-type in-
equalities are derived. One of them is best possible for martingales. Another holds
for sums of independent random variables and for martingales in which con-
ditional variances satisfy a certain property. But it does not hold, in general, for
martingales. This elucidates an important difference between martingales and
independent sums.

Let E denote expectation. Consider a sequence of random variables Xy, --- , X,
and the following three assumptions:
(a) E(X1)=0, E(X1|X7;_1,“‘,X1)=O, i=2,~-,n.
(b) |Xi = T almost surely, 1=1---,n.

() E(X") #0, E(X|Xia,---,X1) #0 almostsurely, <=2, ---,n.

The first says that { X} is absolutely fair, the second that { X} is almost surely
bounded, and the third, that conditional variances are positive.

We shall deal with the following classes of sums. M (n) is the class of all
martingales {S;} of n partial sums S; = X; + - -+ 4+ X, where { X} satisfies (a).
B(n) C M (n) is the subclass in which { X} satisfies (a), (b), (¢), V(n) C B(n)
the subclass where, additionally, E(S.’) = E(S.’| Xna, --+, X1), and finally
I(n) < B(n) the subclass where, in addition, {X;} are independent. M (n) is a
pneumonic for martingale, B (n) for bounded martingale, ¥ (n) for martingales
where variance equals conditional variance, and I (n) for independent sums.

Write ¢ = E(X?), s’ =o' + -+ 0o, i=1,---,n, ¢ = EXD),
C} = EX?|Xea, -, X1), 6 =2-,m, C =0+ -+ ¢ Let
M, = max (S1, - -,8,),p(t) = Pr{M, = ts,} and

r(t) = lo/ (1 + 4"/ (1 4 7)™
Bennett [1] and Hoeffding [4] showed independently that
Suprem [Pr{S, = ts.}] < r(2).

Steiger [7] extended this to the context of Kolmogoroff inequalities by showing
that p (¢) < r (@) for all sums {S;} € I (n). In Section 3 we show that the inequality
actually holds throughout the larger class, V' (n), and that it is best-possible there.
However the inequality can be false in B(n). This shows that the maxima of
martingale partial sums may have larger tail probabilities than those of inde-
pendent sums or of sums in V (n) — a characteristic property.
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In Section 2 we prove two preliminary lemmas of independent interest. These
are used in Section 3 to obtain Theorem 1, which gives a best-possible upper bound
in B (n) for Pr {M, = tC”} which, when restricted to V (n) gives supye [p (¢)] <
r(t), also best possible. These results are compared to known results of Marshall
[6], Dubins and Savage [2], and Steiger [7]. Finally, in Section 4, a partial con-
verse to Theorem 1 is given.

2. Preliminary results. Assumption (¢) guarantees that for sums {S;} ¢ B(n),
there is a number b > 0 such that C* = b almost surely. The following lemma
shows how the idea used in proving the well known Bernstein Inequality adapts
to the present situation, and has interest in its own right.

LevwMa 1. Let k > 0 be a real number and h > 0 a non-decreasing, convex function.

Then for all {S;} € B(n)
Pr{M, 2 tC*} < E[h(kS,)]/h(¥tb).

Proor. The assumptions and a result of Feller ([3], p. 215) imply that {4 (S;)}
is a sub-martingale so that forz = 7> k = 1,

1) EMh @S h@Se), -+, h(81)) Z ERr(S)Ih(Se), -+, h(S1)).
Take y = 0 and define the random variable
L(y) =min (j,1 =j =n:8;2y), or

=0 if §;<y, l1=sj=n
Then Pr{M, = ty} = X7~ Pr{L(ty) = 7}, t > 0. It is easy to see that
2) E(h(kS,)) 2 271w Elh(kS,)| L(ty) = 4] Pr{L(ty) = 1)

= Y Elh(88:)| L(ty) = 11 Pr{L(ty) = 1}

Z h(kty) Pr{M, = ty}

the first line following from % > 0, the second from (1) and the last from the
definition of L and because 4 is non-decreasing. In particular (2) holds fory = b
and since C* = b a.s., the lemma is proved.

The next lemma, also of independent interest, shows how to bound the right
hand side in Lemma 1, when A = exp, in the best-possible way.

Foralli =1, .-+ ,ntake0 < d; < T such that C;’ < d;* almost surely and put
& = d’ + -+ + d,. Note that by assumption (b), ¢ < T i =1,---,n.

LemMa 2. For k > 0 and {S:} e B(n),
3) BE™) = [Tia 1 + @/T") (" — kT — 1)].

ReEmMARK 1. (3) and the arithmetic-geometric mean inequality imply that
E (¢"**) is no more than [1 + d*€*” — kT — 1)/(nT?)]" and 1 + » <" then yields

4) E (") < exp (" — kT — 1)d%/T").
ProoF. €* < 1 + kz + aa’ for k > 0 and all z¢[—T, T] if and only if
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a 2 (¢ — kx — 1)/«" which implies that ¢** < 1 + kz + 2*(** — kT — 1)/T*
since (¢"° — kax — 1)/a” is increasing. Put X, for z into this inequality and take
expectations to prove the lemma for n = 1. To advance the induction suppose
the statement is true for n = m. Then

) E (@) = [Trr B (|8, = a)dPr{S, < a}.
An argument similar to that used for the case n = 1 shows that
CE@E 8, = a) = Bl(1 + kXp1 + Xoua (67 — kT — 1)/T%)| 8, = a]
and since Chi1 < doys almost surely, the right hand side of (5) is no more than
[+ dopa (¢ — kT — 1)/T% [Thr e d Pr {S, < a}.

Using the induction hypothesis, the lemma is proved. .

REMARK 2. (3) is best-possible. Take T > 0. Choose d > 0 such that d < T'.
Define for each ¢ = 1, - - - |, » the random variable X; by

Pr{X;, =T} = d’/(d + nT?),
Pr{X;, = —d/nT)} = oT*/ (& + nT")

and suppose { X} independent. Then |X,| < T, E(X.) = 0, and E(X.}) = d*/n,
i=1,---,m,s0 that {S;} ¢ B(n). From the independence of { X} a computation
shows that for k > 0,

B@*) = [ E@™)
— e—kdle'[nT2/ (d2 + nT2)]n[1 + d2 (ekTekdzl(nT) )/ (nT2)]n
and 50 lim,.. B () = exp ((¢*" — kT — 1) d’/T") which is (4). Thus there
is no function w on the positive integers such that for each ¢ > 0 and all n,
E@E™) <wmn) + ¢ < exp ((¢F — kT — 1)/d/T%).

+3. A Kolmogoroff-type inequality for B(n). From Lemmas 1 and 2 it is easy

to establish
TueorEM 1. Let {Si} e B(n), 0 < b < C* almost surely, and take 0 < &* < nT*
such that C* = d almost surely. Then for all t > 0,

6) Pr{M, = tCY < "[d%/ (d® + tT)]®"+/",

Proor. Use Lemma 1 with 2 = exp and then (4). Minimize the resulting in-
equality with respect to k. 4
REMARK 3. The right hand side of (6) decreases as b increases and hence, (6) is
strongest when b = sup (z > 0:z < C” a.s.). With this choice of b, (6) is best-
possible, based on Lemma 1, because 4) is.
~Dubins and Savage ([2], see [5], Chap. 14) prove that for all {S.} e M (n),

i}
Q) = infye [Pr{S < t(C + -+ + CZ + 1), all k, 1=k < n}]
where Q(1) = 4£/(1 + 4£), Q) = fin(d)/(A + £foa(4)), n Z 2, and
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fi(s) = 28/ (1 + ), fal(s) = fi(fa-1(s)). Note that lim,... @(n) = £/ (1 + ')
because f1(1) = 1, fi(s) < s, s > 1, fi(s) > s, s < 1, so that f,(s) — 1 for all
s > 0. This result implies that

(7) Pr{M, = t(C"+ 1)} = 1/ + £fur(4)),

for all {Si} € B(n). Table 1 compares the bound in (7) with that of (6) for
selected values of b, d°, and ¢.
ReMARK 4. In V (), C* = s, and we may takeb = d* = s,>. (6) then becomes

(8) supy [p @) = r(t).

Combining Remarks 2 and 3, (8) is best-possible.

Marshall [6] has shown that supye [p (t)] = 1/ (1 + £’s,”) and Steiger [7], that
Supsm [p ()] = e/ (1 4+ )"/ "P[1/(1 + t}T)I*/ ™", Table 2 compares
(8) with these results for selected values of n, s,” and ¢ and shows how they can be
improved in V (n).

REMARK 5. p(t) < r(t) is false in B(n) and thus points out a characteristic

difference between the classes I (n), ¥V (n), and B(n), as the following example

TABLE 1

Comparison of the right hand side of (6), T = 2,b = 1 and selected values of d?
with the right hand side of (7) for selected values of n.

¢ (6) (6) ) )
b=1 d&®=2 b=1, d*=4 n==~6 n = 10
1.5 .673 .795 .222 .248
3.0 .280 .454 .066 .076
4.5 .087 .206 .031 .035
6.0 .022 .079 .018 .020
7.5 .005 .026 .011 .013
9.0 .001 .008 .008 .009
10.5 .000 .002 .006 .007
TABLE 2

Comparison of r(t) with the inequalities of Marshall and Steiger for T = 2 and
selected values of n, s2, 1.

¢ r(t) Marshall Steiger Steiger
sn2=1 sp2 =1 n =26, s?*=1 n=10, s,.2=
1.5 .529 .308 .768 .385
3.0 .149 .100 .508 .092
4.5 .030 .047 .315 .018
6.0 .005 .027 .187 .003
7.5 .001 .018 .108 .001
9.0 .000 .012 .061 .000
10.5 .000 .001 .034 .000
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shows. Take 0 < ¢ < 1 and define the random variables X; and X, by
PriX, =1} = ¢/(1 + ¢)
PriX,=—q¢ =1/0 +9)
PriX, =1|Xi=1 =1+ 0/B+ ¢
PriXe=—-(1+¢)/2| X =1 =2/@+q)
J =
J

1

PriXo=1[X1=—¢} =q¢1+¢)/2+¢0+q)
PriXo=—q(1+¢)/2|X1i=—¢ =2/2+ ¢+ 9)).

Define {Si}, S; = X i1 X;,% = 1, 2. It is easy to check that assumptions (a),
(b), (c) are satisfied so that {S;} & B(2). Because E (S,’) = 2¢ = E(S’*| X1 = 1)
= (3 +¢)/2,{S:} £ V(2). A sample computation reveals that when ¢ = .025 and
t = 36,p() = Pr{max (Si,8;) = 1.65} = .0083 --- whiler(t) = .0076 - .- so
that (8) is false in B (n). Loosely speaking, the tail probabilities, Pr { M, = #s,’},
for maxima of martingale sums are larger than those for sums in ¥ (n) and hence
I(n).

4. A further result. The proof of Theorem 1 used (4) which bounds moment
generating functions of elements of B (n). It is interesting that the conclusion of
the Theorem, (6), itself provides a bound for moment generating functions of
elements of M (n) which is a partial converse to “(4) implies (6)”. Specifically,

THEOREM 2. Take {S:} ¢ M (n) and numbers b, d’, T such that almost surely
0<b=C =d =l If (6) holds for {Si} then for each K > 0, the moment
generating function of S, , g(k) = E (™), exists, and

) g(k) < ™, k| < K,

where the constant W is independent of k.
Proovr. The statements

E(@@") = [2,é"dPr{S, < 2}
1+ [2 € — ke — 1)dPr{S, < 2
<1432 K" dPr{S, < 2

follow from definition, {S;} ¢ M (n), and the 1nequahty & —kr—1=
(k*2%'"*'") /2, respectively. From (6) and Pr {|S,| = td*} < 2Pr{M, = tC*} we
have

(11) Pr {lsn| > u} < 2eub/(d21‘)/[1 + ubT/d2](ub/(d2T)+d2/T2)’ u = O,

(10)

Integrate the last line of (10) by parts and then use (11) and |k| = K to see
that

(12) E@™) £ 1 + 2K [Z0 265 DD/ (1 + abT/d?) S/ @D g
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The integral in (12) exists, 1ndependent of k and equals, say, W/2 which proves
the theorem because 1 + sz <
(4) is stronger than (9) in B(n) since (4) with |k| < K implies (9).
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