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1. Introduction and summary. A problem which has received considerable
attention in recent years is that of estimating the tail probability in a distribu-
tion belonging to a specified family. Kolmogorov (1950), Lieberman and Resni-
koff (1955), and Healy (1956) obtained the unique minimum variance unbiased
(UMVTU) estimator of P{x > ¢}, where x has a normal distribution with unknown
mean and variance; they used the Rao-Blackwell theorem for this purpose.
Washio, Morimoto and Ikeda (1956) used integral transform theory to study the
Koopman-Pitman family. Barton (1961) provided UMVU estimators of the
normal, Poisson and binomial distribution functions. The most extensive study
is that by Tate (1959) who obtained the UMV U estimators for the ¢df (and other
functionals) for several probability densities; this was accomplished by using
transform theory. In the context of reliability theory, Glasser (1962) estimated
the tail of the exponential distribution and Basu (1964 ) that of the gamma dis-
tribution; other related work in the area of reliability theory is that of Rute-
miller (1966), and Zacks and Even (1966 ). Non-parametric estimation of proba-
bility densities has been treated by Rosenblatt (1956), Parzen (1962), Lead-
better and Watson (1963), and Weiss and Wolfowitz (1967).

The more general problem of estimating Ef (z), where f is any given function,’
was considered by Neyman and Scott (1960) and Schmetterer (1961) in the case
that « has a normal distribution with unknown mean and variance. Schmetterer’s
solution really consists in obtaining the UMVU estimator of the density and then
integrating the product of this estimate and f. That this procedure is of wider
applicability is seen from the following result.

LemMA 1. Let {pq, 0 ¢ O} be a family of densities relative to a o-finite measure M.
If T is a statistic such that there exisis an unbiased estimator §(T, u) of {pe(u),
0 ¢ ©}, for almost every u, then [h(u)p(T, u) dM (u) s an unbiased estimator of
o0 = [h()po(u) dM ().

It might, therefore, be of interest to obtain UMVU estimators of the probabil-
ity density for various families of distributions, which is, in part, the motivation
for this paper. .

Remark. It is to be noted that this procedure for estimating ¢, is not neces-
sarily better than the direct approach, nor is it always feasible; for it can happen
that there exists an unbiased estimator of ¢ , but not of py . Thus, in cases where
there is an essential discontinuity in p (such as the family of uniform distribu-
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1262 S. G. GHURYE AND INGRAM OLKIN

tions on finite sub-intervals of the line), p is not estimable, although there are
many estimable functions.

Suppose now that (Xi, -+, X,) is a sample of independent observations on a
population with density ps(2), 0 ¢ ©, and S (X1, - -+ , X,.) is a complete sufficient
statistic based on this sample. If {p,(z), 6 ¢ O} has an unbiased estimator, then
the conditional density (if it exists) of X1 | S(X1, - -+, X,) evaluated at z is the
UMVU estimator of {ps(z), 6 ¢ ®}. Two methods of computation have been used
in this context:

(1)- the conditional density of X; | S may be obtained directly from the joint
density of the sample;

(2) alternatively, under suitable conditions, it may be obtained from the con-
ditional cdf by differentiation, (8/92)Ps{X: < x| S}.

Both procedures involve the computation of conditional distributions, which
might be cumbersome. E. L. Lehmann (private communication) has shown how
the computation of the conditional density is facilitated in many cases by the
use of a result due to D. Basu (1955). However, it can happen in some problems
that there exist methods specifically suited to those problems which are simpler
than the general procedures indicated above. In this paper, we treat a class of
such problems, and incidentally are able to estimate some parametric functions
which are not densities.

In these problems, we are concerned with location-and-scale-parameter
families; we note that a simplification results from breaking up each problem into
two sub-problems: first, the problem of estimation assuming the scale-parameter
fixed, followed by the problem of estimating an appropriate function with the
scale-parameter unknown. This is a consequence of the following result whose
proof is simple.

Lemma 2. Let 8 and T be independent statistics with a joint cdf F (¢; 0, )G (s;0)
depending on the parameters (o, 7) € ©1 x @, . Let b(s, T') be an unbiased esti-
mator of {h(e, 7), 7 € Oz} for each o ¢ O1 and a(S, v) be an unbiased estimator of
{b(o, 7), 0 & O} for each v ¢ Oy. Then a(S, T) is an unbiased estimator of
{h(o,7), (0, 7) € Oy x Oy}.

In the problems we consider, the “scale-parameter” is the covariance matrix of
a family of normal distributions; we therefore deal with the gamma and Wishart
distributions in Section 2 and use these results to estimate multivariate normal
densities with known means. In Section 3, we estimate the multivariate normal
density with unknown mean vector and unknown or partially known covariance
matrix. Section 4 is concerned with the multivariate normal family with a line-
arly restricted mean, including the univariate linear model as a special case.
Finally, in Section 5, we obtain the UMVU estimators of the entropy of a multi-
variate normal distribution and of the Kullback-Leibler information number for a,
pair of multivariate normal distributions.

Notarion. The determinant of a matrix 4 is denoted by |4!; 4 > 0(=0)
means that A is a positive (non-negative) definite matrix. The function ¥ of a



ESTIMATION OF MULTIVARIATE PROBABILITY DENSITIES 1263

symmetric matrix is defined by
1.1) T(4) = |4], if A > 0,
= 0, otherwise.

Vectors are row-vectors unless transposed (with a prime). The vector (1, ---, 1)
is denoted by e. For a square matrix A, etr A denotes exp (tr A). By £(z) =
N (k; £, £) we mean that z is a random vector with a k-dimensional normal dis-
tribution whose density is denoted by

(12)  nk;zE32) = @) =P etr [-27 @ — £) @@ — £)/2].

By £(8) = W(k, v; £) we mean that S is a random k¥ X k symmetric matrix
having a Wishart distribution whose density, relative to {k(k 4+ 1)/2}-dimen-
sional Lebesgue measure, is denoted by

(1.3) w(k, v; 8, 2) = ek, »)|Z[" @SN etr (—2778/2),

where ¢k, v) = [2"P* P T 3G — ¢ + 1))]7". Note that W (1, »; o) =
£ (™0).

2. Gamma and Wishart distributions; multivariate normal distribution with
a known mean. In this section, the UMVU estimator of the Wishart density is
obtained in three cases: (i) 2 is known up to a scalar multiple, (ii) £ has the form
@[(1 — p)I + pé'e], o and p unknown (intraclass correlation model), (iii) = is
completely unknown. In practice, we typically have a sample from a multi-
variate normal population whose parameters are partially known, and we con-
struct from the sample an appropriate sufficient statistic. The component of the”
sufficient statistic which pertains to the covariance matrix has a Wishart distribu-
tion, and the canonical problem is to find the UMVU estimator of another
Wishart density with a covariance matrix of the same form. This problem is dealt
with in the following

TaroreM 1. For any A = 0 and any real m < v — k + 1, let

2.1) v, m; A, Z) = |2 etr (—=7'4/2).

If £(S) = Wk, v;Z), then the UMVU estimator of v(k, m; A, =) is
@22) gk, m; 4, 8) = [e(h, v — m)/e(h, NS (S — 4)TEE,

Proor. Unbiasedness follows by direct integration, since

g (k, m; A, S)w (e, v; 8,2) = v(k, m; 4, Z)w(k, v — m; S — 4, 2).

Completeness of the Wishart distribution then establishes that the estimator is
UMVTU.

CoroLuarY 1. If £(8) = W (k, v; 6°Z0), where Zo(>0) is known and o is
arbitrary, then the UMVU estimator of w (k, m; A, 6°0), m < v, is

o (b, m)[Zo| ™ (A)] TP g (1, mk; a, 5),

where a = tr g "4, s = tr ¢ 'S.
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CoROLLARY 2. If £(S) = Wk, »; Z) with 2 = o’[(1 — p)I + pe'e], where o
and p(— (k — 1)™ < p < 1) are unknown, then the UMVU estimator of w (k, m;
A, Z),m < v s

¢k, m)[® (A", (1, m; a, u)gr— 1, km — m; b, v),

where a = eAé' /k,u = eSe'/k,b = tr A — a,v = tr S — w.
CoroLLARY 3. If £(S) = W (k,»;Z) and = (>0) is arbitrary, then the UMVU
estimator of w(k, m; A, Z),m < v —k + 1, 1s

¢ (k, m)[¥ (A", (k, m; A4, S).

REeMARK. It has been pointed out to us by W. J. Hall that this result may also
be obtained (when m > &k — 1) using conditional densities as follows: We may
write S = S; + 8, where £(S:) = Wk, m;Z), £(S:) = Wk, v — m; Z), and
S1 and S; are independent. Then the conditional density of S| S1 4+ Sz at S; = 4
is the UMVU estimator of W (k, m; A, = ). This provides an interpretation of the
estimator in Corollary 3 (when m > k — 1): it is the conditional density.

Proors or CoroLLARIES. In Corollary 1, since T = ¢°Z,, where =, is known,
the usual estimator S of = can be further reduced to s = tr 2o 'S, which is suffi-
cient and is complete, since £(s) = W (1, kv; ¢°). The density to be estimated is

w(k, m; 4, 0’20) = ¢k, m)[¥ (A)]" P2y (1, mk; a, o).

The result now follows from Theorem 1 with the association (k, m, 4, Z, s, ») =
1, mk, a, o*, s, vk).

In Corollary 2, if weset @' = ¢’(1 + (k — 1)p] and 87" = o*(1 — p), it is well,
known that (u, v) is a complete sufficient statistic, u and v are independent with
L) = WA,v; ') and £@) = W[1, v(k — 1); 7Y, " = ace/k+
B(I — e'e/k) and |Z|™ = of*". The density to be estimated is

wk,m; A,2) = ek, m)[¥ A"y 1, m;a, )y (1, mlk — 1];b, 87).
The result now follows from (2.2) with the associations
(k,m, A,2,8,») = (1, m,a,a ", u,»), and
(k,m, A,2,8,v) = (1, m(k — 1),b, 8 v, v(k — 1)).

Corollary 3 is an immediate consequence of Theorem 1.

REeMark. These corollaries have an immediate application to the problem of
estimating a multivariate normal density with a known mean. If z;, --- , z, is
a sample from a N (k; &, £) population with a known mean vector & and an
unknown or partially known covariance matrix Z, and it is desired to estimate
n(k;c, &, Z), the results follow immediately from Corollaries 1-3 by substituting
S = > (xi — &) (®: — &), and noting that n(k; ¢, &, 2) = @r) % (&, 1;
(c — &) (c — &), 2).

3. Multivariate normal distribution with an unknown mean. Let z;, - - - , z, be
a sample from a N (k; £ Z) population with an unknown mean vector £ and an
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unknown or partially known covariance matrix =. It is desired to estimate
n(k;c, & Z) at a prescribed point ¢ ¢ Ry , under different assumptions concerning
2. We consider four cases: (1) 2 is known, (2) Z is known up to a scalar multiple,

(3) = has the form ¢’ [(1 — p)I + pe'e], (4) = is unknown. In each case we find
the estimator of

vk, m;c, & 2) = |2 etr [-Z7 (e — £) (c — £)/2],

which is (27)**n(k; ¢, &, =) when m = 1. A complete sufficient statistic is pro-
vided in each case by t = D, z:/n and a suitable function of § = Y. z/z; — nt't.
The results for the four cases are stated first, and are then followed by the proofs.
Note that the sufficient statistics ¢, S are independent, with £(t) = N (k; &, 72),
£(S) = W(k, v;Z), and r is a known positive proper fraction. Normally, ¢ and
S come from the same sample of size n, in which case r = 1/nand v = n — 1;
however, such statistics might also arise in other ways.

3.1. When = = Z, is known, the UMVTU estimator of v (k, m; c, & Zo) is given
by

Do (1 — ) exp {—[(c — )20 (e — t)'/2(1 — 7)]}.

3.2. When = = ¢°%, with =0 known, o unknown, let s = tr 2o 'S; the UMVU
estimator of v (k, m; ¢, &, ¢°=0), m < v, is given by

omklap (vk/2) Gk
T[(v — m)k/2](1 — r)k/2

(o[-

3.3. When 2 = o’[(1 — p)I + pe'e], let u = eSe’/k = e[D.: xixi — nt'tle /k,
v =2 zai — nit — w; then the UMVU estimator of v (k, m; ¢, &, Z), m < »,
is given by

2™ (5/2)Tlv(k — 1)/21(1 — )™ D12, b=/
T[(v — m)/2]T[(v — m)(k — 1)/2]

|2

[\I'(u _ a)](v—m—-Z)/Z[\I,(v _ b)][(v—m)(k-l)—zllz’

where a = [(¢c — t)éT/k(1 —7),b = (c —t)(c — 1)/d —r) — a.
3.4. When Z is unknown, the UMVU estimator of v(k, m; ¢, & Z),
m < v — k -+ 1, is given by

clk,v —m)/{ck,v)A — r)k/z} ISl—(v—k—l)IZ
{¥[S — (c — t)/(c —t)/( — ,,.)])(V—k——m—n/z'

Proors. The proof of 3.1 consists of a direct computation from the fact that
£(t) = N (k; £ rZ0). Note that when r = 1/n, where n is an integer, the result
can be obtained by considering a sample {1, --- , .} from a N (k; & =o) popu-
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lation. The conditional density of z; | Zx;/n evaluated at ¢ is then the UMVU
estimator of n (k; ¢, £, Zo).

In 3.2, we have unknown parameters (¢, ¢°) and complete sufficient statistics
(t, s) which are independent with £ (t) = N (k; £, re°Zo) and £ (s) = W (1, vk; ).
We use Lemma 2, first estimating v for fixed ¢”. From 3.1, we obtain the estimator
221 — r) %™ exp {—a/20%), where a = (¢ — )20 ‘(¢ — t)'/(1 — 7),
assuming ¢ known. An application of Theorem 1, with the association
(k,m, A, 2,8, v) = (s, mk, a, ¢, s, vk) yields the final estimator

Izdl—mm (1 — )—k/2[c (1, [V _ m]k)/c (1’ Vk)]S_(yk_Z)/Z[‘I/ (S _ a)][(v—m)k—2]/2'
In 3.3, we have unknown parameters (£, ¢°, p) and complete sufficient statistics

(t, u, v) which are independent with £ (t) = N (k; & r2), &) = W, »; &),
W) =W(Q,v(k —1);8"). Again we use Lemma 2, first estimating

v = "V exp [— (¢ — £){ade/k + (kI — €e)/k} (c — £)'/2]
for fixed «, 8. From 3.1, we obtain the estimator
A — r) ™™ exp (—aa/2)][8"" " exp (—b/2)].

The last step is to estimate the two factors in terms of the statistics 4 and v,
using Theorem 1 with the associations

(k,m, A, Z,8,v) = (1,m, a, 0‘_1’ u, v),
(kym, A,2,8,v) = (1, m(k — 1),b, 6—1,'[),1/(]{7— 1)),
respectively, and obtain the final estimate .

(1 _ r)—gk C(l;(Vl ‘_V)m) u—%(v—Z)[\I,(u _ a)]%(v—m—2)
(L, [v — mllk — 1) 3082 $r—m) (k—1)—1
k1) " (o — b)) :

TFinally, 3.4 follows similarly by the use of Lemma 2 with = fixed and Theorem 1.

REMARK ON A GENERALIZATION. Suppose that ¢ and S are independent statistics
with £(S) = Wk, »; 2) and £(t) = N (k; ¢, A’ZA), where A is a known non-
singular & X & matrix. This is a generalization of Case 3.2, where 4 = *I. The
problem is to find a function of ¢ and S which is an unbiased estimator of
v(k, m;c, & Z). It is somewhat surprising that no such estimator exists unless 4 is a
scalar multiple of the identity—as in Case 3.2.

Proor. Suppose there exists a function g (c; ¢, S) such that

(3.5) [gle;t,S)nk;t, &, AZAw(k, v; S,2) dtdS =gz v(k, m;c, £ 2).

We assert that (3.5) implies 2 — 4’24 = 0 for all = > 0, and then show that
this implies 4 = al.

Suppose there exists a Zo > 0 such that =y — A'Zed is not positive semi-
definite; then there is a non-vanishing vector £ and a positive number b* such that
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620 — A'20A) = —V". In (3.5), set = = Zo and £ = 7 with 1 £ By . Upon
simplification, we obtain
(3.6) [iernss0g(c; t, S) etr { =2 '[(A") 147" + S]/2)
-exp [tA7'Z¢ ' (A")'y] dt dS =, (constant) exp (—b’n’).

On making a non-singular linear transformation from (f, --- ,&)to
(Wa, -+, y) with 1 = tA7'Z¢ ' (A")7¢, and integrating over S > 0 and
W2y -+, Yr) € Re—1, (3.6) reduces to
(3.7) JZa7 (@) exp (yn) dy =, (constant) exp (—b'n"),

where f is some function on R; .

But the right-hand side of (3.7) is not a Laplace transform (e.g., see Widder
(1941), Theorem 7a). Consequently, the assumption that there exists a Z¢ >0
such that =y — A'ZA is not positive definite leads to a contradiction. Hence,
S — AZA =z 0forall = > 0.

LemmMA 3. If A is a non-singular k X k matriz such that = — A'SA = 0 for all
= > 0,then A = ol with |la| < 1.

Proor. By choosing = to be a diagonal matrix D, = diag (o1, :* - , o), We see
thato; = D ;0 for alle; > 0, which implies that a;; = 0 fors # j, and a3; < 1.
Thus A is a diagonal matrix D, = diag (&, - -+, @). Now choose a general =

and consider any 2 X 2 principal minor of Z — DZD, . Since this minor is non-
negative, we have o;(1 — a’)o;;(1 — a) = o5;(1 — aiw;)? for all i > 0,
o057 > o5 . This implies (1 — &)1 — @) = (1 — a.e;)* and hence a; = aj,
i;j = 1) ;k'

4. Multivariate normal distribution with a linearly restricted mean. We next
consider a situation which is, in some respects, intermediate between those of
the previous two sections, namely one in which the k-dimensional mean vector is
known to be restricted to a subspace of less than k£ dimensions. The problem canbe
formulated in some generality as follows. Let 2, - -+, z, be independent k-di-
mensional random vectors with £ (x;) = N (k;04;:,2),2 =1, --- , n, where 6 isan
unknown {-dimensional vector whose range is not contained in an ({ — 1)-dimen-
sional subspace, and the A; are known £ X k matrices such that (4, , - - -, 4,) has
rank £. It is desired to estimate [[in (k; ¢;, 6B;, £) in terms of z = (1, -+ -,
Zn), where By, -+, B, are given £ X k matrices. We again consider the three
cases with different assumptionson Z: (1) £ known, (2) £ known up to a
scalar multiple, (3) the intraclass correlation model. In each case, we find the
UMVTU estimator of

V(k’ m, 1r; ¢ 07 2) = lzl_mlz €xp [_Z;=1 (CJ' - GBJ')E_I (CJ' - GBJ')I/2]’
from which the UMVU estimator of
Hin(k; Cj, 0BJ' ) 2) = (27")_7”/27(197 rTr;c 0’ 2)

is immediate.
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4.1. 3 = 3 known. Define t = > ;a3 A and 4 = (A0, -+, 420 Y),
so that £(¢) = N (k; 04A’, AA"). The UMVU estimator of v (k, m, r, c,0,2)is
given by

2™ |I — B'(44"y7B[*
-exp {—3[c — t(44")"'BIlI — B'(AA")"B])7'lc — ¢(44")7'B]},
if and only if AA" > BB’, where
B= Bz, BEY, o= (@3, 63,
Note that the alternative form of the UMVU estimator
=0 ™ 144"} |44 — BB}
-exp {—3[cc’ — t(44")H + (t — ¢B')(44" — BB')'(t — ¢B')"]},

may be more convenient for computational purposes.

42. 2 = ¢, 2o known, ¢ unknown. Using the notation of 4.1, define
s = w2 @i — t(AA")7, so that £(s) = W (1, »; ¢°). The UMVU esti-
mator of v (k, m, r; ¢, 8, 6°Z,) is given by

2™ D (10) |20 A [P R (v — mE)] ™ s @22 — B'(44") 7B
(¥ls — (¢ — 44" 'B)T — B'(A44")"'B)™ (¢ — ((44")'B)'1} T,

Normally, when ¢ and s arise from a sample of size n, v = nk — {. When k = 1,
Zo = 1, the model is that of univariate linear regression.

4.3. Intraclass correlation model, = = o’[(1 — p)I + pe'e]. We give here the ex-
plicit solution to two relatively common cases.

Case (i). The matrices A; and B; have the special form 4, = aie, B; = bje,
t1=1,--+,n;7 =1, ---,r, where the a’s and b’s are £-dimensional vectors with
rank (o), ---, @) = €. Define A = (Ay, ---, 4,), Ao = AA" = kD ;ala;,
andt = ad Ao u =K D (mie) — it us = (I — e'e/k)x', so that £ ()=
N (040, a7 I), L) = W, m;a ), £us) = W, ne;6). The UMVU
estimator of 7(k m, r; ¢, 0, £) is given by ¥ = $19. | — BAo—lBI , Where
B = (B, , By, and %; = k5, n)u P @y — ¢)] TG = 1,2,
and Whel‘ek(ﬁ,'q) = 2P0 (9/2)/T[(n —8)/2, s =m, 8 =m(k — 1),m = n — £
o=k~ 1), 0= (- tAﬁB)(I — B4 -‘B)—l(c — tA'BY, g =
c(I — ée/k)c, ¢ = (ccle, -+, cee)/k.

Case (ii). The matrices 4 and B; have the property that 4.6 = Bje' =0,
t=1,--,m75=1-- rwhereA—(Al,'-- n)lsofrankt’Deﬁne
Ay = AA', M = (I — ee/k), t= > awMAI AT, w = D Mzl —

= 3 @)/, so that £(t) = N (6044, 671), S@) = WL, s 67,
&) = WA, 1 ;0 "). The UMVU estimator of v (k, m, r; ¢, 6, =) is given by ¥
asin (i) with the associationd; = mEk — 1), =m,m =nk — 1) — {,92 = n,
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@ = @ — tA7B)(I — B'ATB) @ — tATB), ¢ = X cidlec; /b, where
= (M, -, c:'M).
Proors. We start with a result which is a version of 4.1 in canonical form.
4.4. Let tbe a random vector with £(t) = N (¢; 6, 1), where 6 is unknown, and
let H be a k X k non-negative definite matrix. Then there exists a function of t
say ¥o, which is an unbiased estimator of

Yo = exp [— > 3 (¢; — 6B;)H (¢c; — 0B;)'/2],
if and only if I — >, B;HB; > 0, in which case
¥ = |I — B'B[™exp[—(c — tB)(I — B'B)™(c — tB)'/2],

where B = (BH?, --- , B.HY, ¢ = (a:H?, - -+, ¢.H?). The unbiasedness of Fo
may be verified in a direct manner by writing out the identity, Eg =4 v,, to be
satisfied by an unbiased estimator, g, of vy ; viz., the identity

@r)7 [ (@) exp[— (t—0)(t — 0)'/2 =gexp [~ X, (¢; — 0B;)H (¢; — 6B;)'/2],
which can be rewritten in the form .
@r)7 [ {g(t) exp [— (¢ — cc)/2lexp (¢ — ¢B)O] dt = o exp [0(I — BB)6'/2].

The left-hand side is a Laplace transform, whereas the right-hand side is one if
and only if I > BB’, in which case 4.4 is obtained by inversion.

In 4.1, unbiasedness follows directly from 4.4 with the association [t, H, B;] =
[t(AA")? =, (AA,)—%B]']. The result follows from the completeness of ¢.

In 4.2, we have independent statistics s and ¢, with £(s) = W (1, nk — ¢£; 87
and £(t) = N ({;044',5°AA"). Unbiasedness follows from Lemma, 2, Theorem 1
and 4.4 using the association [f, H, B = [t(e"AA")7, (6%20)7, (c*A4')7 B
The result then follows from the completeness of (Z, s).

In 4.3, we first investigate the existence of a complete sufficient statistic and
then reduce the problem to canonical form. The explicit solution is then obtained
for the two special cases.

Let T'be a k X k orthonormal matrix with first column ¢’k Define Il =
(yi, 2:), AT = (¢, G/), where yi = 2k} g/ = A#'k. Then Yiy "y Yn,
2, =+, 2s are mutually independent with £(y;) = N(1; 69/, «™*) and £ (z;) =
N(k — 1;0G¢, 87I). Hence, (X iy, Diz2i, Diygi, S i2:Gs) is a minimal
sufficient statistic for (a, 8,0) (see Lehmann and Scheffé (1950)). In terms of the
original variables, a sufficient statistic is (3_: (zi¢')?, D z:Ma/, >ixAl). Com-
pleteness may then be shown by using a necessary and sufficient condition ob-
tained by Wijsman (1958, Theorem 2).

The joint density of the y; and 2; has the form

fle, B,0) exp [~ D 0: (yla + 22/8 — 2yt — 22.G860°)/2).

The minimal sufficient statistic is complete if and only if, among the 2¢ functions
occurring as coefficients of a6’ and 8¢, exactly £ are linearly independent. Since
rank (g1, -+, ga/, G, -+, G.)) = £, this is the case if and only if rank
(gl,’ ) gn,) + rank (Gl,’ Tt Gn/) = {.In Case (1)7 (gll’ Tt gnl) = k%(ally Tty
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a,’), which is of rank £, and (G, ---, Gx') = 0.In Case (i), gy -+ ,92) =0
and, (GY, --+,G) = (Ailz, -+-, AaT}:), whereI' = (¢'k™*Ty). By hypothesis,
A = (41, -+, A,) is of rank ¢, so that (G4, -+, G+') is of rank £. Hence, in
each case, the minimal sufficient statistic is complete.

The unbiasedness follows by a direct computation using Lemma 2, Theorem
1 and 4.1.

5. Entropy and Kullback-Leibler information numbers for the normal dis-
tribution. The entropy and Kullback-Leibler information numbers for the nor-
mal distribution are defined by
(6.1) [n(k;a, £ 32)logn (k;z,£2)) de = —3[k + klog (2r) — log |2]],

(5.2) [n(; &, 2)logn(k;, &, 21) — logn (k; 2, &, Z)] do

= Hllog [Za| — log [Zs] + tr=Z ™ — b+ (& — &)% (& — &)
Since both quantities play a role in statistical and communication theory, it is of
interest to obtain the UMVU estimators. In this connection, the maximum likeli-
hood estimator of the entropy of a discrete distribution has been discussed by
Miller and Madow (1954 ).

Because they involve the parameters the integrals in (5.1) and (5.2) do not
have the same form as that in Lemma 1, so that UMVU estimators of log |Z|,
tr 225t and (8 — £&)2s (&1 — &) must be found directly. The result then fol-
lows from the additivity of unbiased estimators.

Lemma 4. If £(S) = W (k, »; ), then
d log T'(a)

da a=(—itD)/2

»

k
(53) Elog |8| = log |2| + klog 2 + D,
1

Proor. From the fact that £ (|=7S]) = £ ([]¥ 2:), where £(z:) = x5—i11, We
have E log |S| = log |2| + 2.1 E log z:. To obtain E log z:, we note that

0

© 2% ¥ dz = 2°T (a) may be differentiated under the integral sign with re-
spect to a, to yield E logz = log 2 + dlog I' (a)/da.

To estimate tr 2.2 ", suppose £(S;) = Wk, v;; Z;),J = 1, 2, with S; and
S; independently distributed. Since ESy/»n = 21, BESs /(n — k — 1) = 257,
and the trace is a linear function, we have
(54) Etr (S8 ) /m(e — k — 1) = tr 225 %

When & and & are known, we have

(65) E(f: — S —6)/(e—k—1)= (b — &) ' — &)\

When % and & are unknown, and we have available independent statistics

z,y, S1, Sz, with £ (x) = N (k; &, /N ) and £(y) = N (k; &, Z2/M ), then
E{trS: @ —y) (@—y) = S/ :N)/ G2 — k — D)} — k/M

tr 2o Y[Z/N + Zo/M + (5 — £) (& — &) — YN} — k/M

(1 — 8)Z0 (& — &)

Combining (5.4) with either (5.5) or (5.6) yields the UMVU estimator of the

entropy or the Kullback-Leibler information numbers.

(5.6)
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