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TESTS FOR MONOTONE FAILURE RATE BASED ON
NORMALIZED SPACINGS!

By Perer J. Bicker? ANp KiELL A. Dorsum
Unaversity of California, Berkeley

1. Introduction and summary. Let F be a distribution with density f, and let
q(t) = f(t)/[L — F(t)] be the failure rate of F. Tests for constant versus mono-
tone increasing failure rate based on the ranks of the normalized spacings be-
tween the ordered observations have been considered by Proschan and Pyke
(1967). They show that these statistics are asymptotically normally distributed
for fixed alternatives F and compute the ratios of the efficacies of one of their
rank tests to the best statistics for Weibull and Gamma, alternatives.

In this paper, it is shown that asymptotic normality holds also for sequences
of alternatives {Fy,} that approach the H, distribution 1 — exp (—M), ¢ = 0, as
n — o ; and that the above mentioned ratios of efficacies are in fact Pitman
efficiencies.

Let Ry, -+ -, R, be the ranks of the normalized spacings, T: = > 4R; and
Ty = — > 3log[l — Ri/(n + 1)]. Then T, is asymptotically equivalent to the
Proschan Pyke statistic. It is shown that the Pitman efficiency satisfies

(1.1) e(T,,Ty) =%

for all sequences of alternatives {Fo,} and thus 7, is asymptotically inadmissible.

Statistics that are linear in the normalized spacings and asymptotically most
powerful for parametric alternatives {Fy,} if the scale parameter \ is known, are
derived, and it is shown that the rank statistics that are asymptotically most
powerful in the class of linear rank tests, are nowhere most powerful in the class
of all tests, when \ is known.

If \ is unknown, studentizing of the linear normalized spacing tests which are
asymptotically most powerful for N known leads to procedures which have only
the same asymptotic power as the most powerful linear rank tests.

Unbiasedness is shown for tests that are monotone in the normalized spacings,
and Monte Carlo power estimates are used to compare the various statistics
with the likelihood ratio tests considered by Barlow (1967).

2. Tests monotone in the normalized spacings. Let X1, - - - , X, be a random
sample from a population with a continuous distribution F satisfying F(0) = 0,
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and let 0 = X < Xy < :++ < X be the order statistics. The normalized
sample spacings Dy, - -+ , D, are defined by D; = (n — 1+ 1) (X — X¢imny),
1 =1, -+ ,n; and R; denotes the rank of D; among D;, -- -, D, . The problem
is to test Ho:“—log [1 — F(x)] = M on [0, «) for some positive constant N\’
against Hy:“—log [l — F(x)]is convex and not of the form Az on [0, «).” Note
that the only distributions satisfying H, are

(2.1) K(z) =1—¢, z=0,\>0.

Under H, it is well known that (D, ---,D,) has the same distribution as a
random sample from a population with distribution Ky , while under the alterna-
tive there is a downward trend in the sense that P(D; = D;) < 3 whenever ¢ > j
(see Proschan and Pyke (1967). One thus defines a test ¢ = ¢(Dy, ---, D,) to
be monotone in the D’s if

oD/, ---,D,) < ¢(Dy,--+,D,) forall
(2.2) (Dy,---,D,) and (D{,---,D,)) such that
i<j and D = D/ implies D; = D;.

Following van Zwet (1964), one defines a distribution F; to have a more slowly
increasing failure rate than F, written Fy >, F, if Fy"'F is convex. Here Fy'F
is defined by P(F,*F(X) £ ¢ | F) = Fi(z),z = 0.

TuEOREM 2.1. Monotone tests have monotone power, i.e., if ¢ s a monotone test
and iof Fy > F, then

(2.3) E@¢|F) <= E(|F).

Proor. Since Fy'F is increasing, Xy = Fi'F(X ;) is the ith order statistic
in a random sample from a population with distribution F;. Let D, =
(n—i+ 1)Xw — Xep), ¢ =1, -, n. Since Fy'F is convex, ¢ < j and
D/ = D, implies D; = D, . From (2.2) one obtains

(24) ¢(Dil, Tty Dnl) = ¢(D1 )y T Dn),

and (2.3) follows upon taking expectations in (2.4).
Note that a test ¢ is similar if E(¢ | K») is independent of A. Thus all rank
tests are similar.
CoOROLLARY 2.1. All monotone tests are rank tests and they are unbiased.
Proor. The rank property follows since (2.2) implies ¢(Dy, ---,D,) =

&(g(Dy), -+, 9(D,)) for all continuous and strictly increasing functions g.
Unbiasedness follows by letting ; = K, in Theorem 2.1.

CorOLLARY 2.2. If —c,(7) and J,(7) are nondecreasing in i = 1, -- -, n. then
the test that rejects when
(2.5) 2otien(d)Ju(R) = C

has monotone power and is unbiased.
Proor. Using the notation of Theorem 2.1, define R:’ to be the rank of D,
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among Dy, -+, D,’. Theni <jand R = R ; implies R; = R; . From Corollary
2 of Lehmann (1966) one obtains
(2.6) 21 () Ja(Ri) = Dt ca(9) Ju(R).

It follows that the test is monotone, and Theorem 2.1 and Corollary 2.1 apply.

Remark 2.1. The results of this section can be used to obtain bounds on the
power of monotone tests. For instance, if 8(V,, Fs;) denotes the power of the
Proschan Pyke statistic V, = “number of pairs (%, j) with s < 7 and D; = D;”
for the Weibull distribution F; , then the power satisfies (V.. , F) = 8(V,, Fs)
for all distributions F such that Fs 'F is convex.

ReMARK 2.2. Barlow and Proschan [(1966) Theorem 3.12(v)] have shown that
if ca(1) = -+ = cu(n), the test that rejects when

Dtaca(d)Di/ 2t Ds = Co

is unbiased. Similarity follows at once from scale invariance.

ReMaRk 2.3. Monotone tests as defined by (2.2) have been considered earlier
in a different context by Lehmann (1966) and Bell and Doksum (1967). The
fact that all monotone tests must be rank tests (the first part of Corollary 2.1)
was discovered independently by the referee and the authors while the paper
was being refereed. The referee also makes several other interesting remarks
listed below. The notation used is D = (Dy, ---,D,), D" = (DY, ---,D,"),
R = (R, ---,R,), ete.

(i) Change the definition (2.2) to read

(A) ¢(D') < ¢(D) forall DandD such that g
D,'/D; is nondecreasing in 7,

then Theorem 2.1 continues to hold and the class of tests satisfying definition
(A) is larger than the class of tests satisfying ( 2.2) (see (iv) below) Theorem
2.1 continues to hold smce the conveXIty of Fy'F implies that (X @ — X (,,_1)) /
(X — Xen) £ (Xt — X(-1)/(X» — X¢p) for ¢ < j, and thus D;/D;
is nondecreasing in 4. Corollary 2.1 now becomes: “All (A)-monotone tests are
similar and unbiased.” Similarity follows since (A) implies ¢(D;, - -+, D,) =
¢()\-D17 IRREE] )‘Dn)'
(ii) The class of (2.2)-monotone tests equals the class of tests satisfying

#(R) < ¢(R) whenever there are %, 7 and m such that
(B) i<j,R/ =R;=m R/ =Ri=m+1 and
R, = R/ for k 1, j;

ie., ¢(R') = ¢(R) whenever R can be obtained from R’ by mterchanglng two
consecutlve integers that occur in ascending order (namely m = R, and (m + 1)
= RJ ’ T < .7)

To see this, first note that the class of (B)-monotone tests contains the class
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of (2.2)-monotone tests. For the converse, suppose R and R’ are such that
¢ < jand R/ = R/ imply R; = R;. To complete the proof, it is enough to
show that R’ can be turned into R by a series of interchanges of two consecutive
integers. Take any pair (if it exists) ¢ < j with R, = m, R,/ = m + 1 and
R: > R;, and interchange R, and R;’. Repeat this process, raising the number
of inversions in R’ by one each step, until no more steps are possible (the total
number of steps could be zero). The result is again called R'. It is claimed that
R = R'. To see this, note that we still have that ¢ < j and R; > R, imply
R: > R, . Moreover, we now have that ¢ < 7, R = m and R/ = m + 1 imply
R; < R;. Together these two assertions yield that R/ =mand R/ =m + 1
imply R; < R; regardless of the order of ¢ and j. Repeated application of this
property yields that R/ < R, implies R; < R, for any pair (3, 7). Hence R, < R,
is equivalent to R; < R; for any pair ¢, j and thus B = R

The condition (B) has essentially been considered by Hijek ((1968), Chap-
ter 2) in a different context. Note that Corollary 2.2 follows at once from Defi-
nition (B).

(iii) “The class of (2.2)-monotone tests equals the class of (A)-monotone
rank tests.” The second class includes the firstsince 7 < j, R’ = R, and D,’/D;
increasing in 7 imply that B; = R;. To show that the inclusion also goes
the other way, one performs for given R, R’ i, j and m as in (B) a construc-
tion of D and D" with ranks R and R’ and such that D’/Dj is nondecreasing.
The details are as follows: Let ¢ > 0 and choose D in such a way that (D/
D;) < 1 + € whereas for all other pairs (s, t) where we need D, > D, to get
the rank ordering R, D is chosen so that (D,/D;) > 1 + e.

The choice D’ = Dj for k < 4 and Dy’ = (1 + €Dy for k > ¢ works.

(iv) Definition (A) provides a proof of the unbiasedness of the tests in Re-
mark 2.2. To see this, let Z be a discrete random variable taking on the values
1, -+, n and let Py and P; be probabilities such that Po(Z = k) = D,/ > D,
and Py(Z = k) = D'/ D.. Let D and D’ be such that D;’/D; is nondecreasing
in k, then Py and P; have a monotone likelihood ratio in k. It follows from
Lehmann (1955) that Ep,(—ca(Z)) = —2 c(i)Di/D2 D = — D ca(d)
-D//>> D = Ep,(—ca(Z)); thus the tests defined in Remark 2.2 are (A)-
monotone.

3. Asymptotically most powerful tests. Let {fsn:0 = 0, X > 01} be a class of
densities such that foa(z) = Aexp (—Az), 2 = 0, and such that

(3.1) Ia(x) = (8/86) log foa() | e=o
exists.

We suppose A is a scale parameter, i.e.,
(3.2) Poa(MX =t) = Pou(X = 1)

For testing “6 = 0 versus “4 > 07, the locally most powerful test rejects
“g = 0” for large values of T.(h\) where,

(3.3) Ta(h) = w12 1" h(X5).
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We will consider sequences of alternatives {fs,} such that
(3.4) lim n'9, = b forsome 0 =<0 < .

A sequence {f, } is said to be contiguous to fo (in the sense of LeCam-H4jek)
if for any sequence of random variables R, (X;, - - - , X,), R, — 0in P, proba-
bility implies B, — 0 in Py, probability, where Py denotes the probability dis-
tribution of Xy, ---, X, if fo is true. The following condition implying con-
tiguity for sequences as in (3.4) can be obtained from LeCam (1966).

- (a) dfsn(x)/00 = 0 whenever foa(z) > 0.
(b) Forsome 6 >0 andall 6¢]0, 9],
(3.5) 0 < H(8) = [5 [6fsn(z) /6] [for(z) " da < oo,
and H(9) is continuous in 6.
(¢) limiejoo [0 {h7 (fhren(z) — fia(@)] — $[0fon(z)/06lfod(x)}de = 0
for 6 ¢[0, 6], some & > 0.
An easy sufficient condition implying (3.5) (b) and (c¢) is
(3.6)  [5 sup {[3fo.n(2) /00 [for(z)] 0 S 6 < 8} dz < @ for somed > 0.
It also follows from LeCam’s work that under condition (3.5) we have
Bt 2o a(XL) — 30°Eoa(mi(X1))]
(3.7) — 2 {log fo,n(Xs) — log foa(X.)} — 0
in Py probability and hence in Ps, probability.

According to Wald (1941), a sequence of level « tests {¢,} is said to be asymp-
totically most powerful (N known) if

(38) hmn sup {EO,)\(Kbn) - EO,)\(¢n) 0> 07 EO.A('ﬁn) = Ol} = 0.

Using contiguity we can prove Wald’s (1941) main theorem under weaker
conditions.
TraeoreEM 3.1. Suppose (3.5) holds and,

(3.9) Tu(hy) — .

in Py, » probability if n'6, — . Then the sequence of level o tests ¢, which reject
for suitably large values of T\(hr) is asymptotically most powerful.

Proor. The result is an easy consequence of the Neyman-Pearson Lemma,
(3.7) and (3.9).0

ReMARK 3.1. Under the conditions of the theorem it follows that if {S,} is any
sequence of statistics such that S, — T, (hx) — 0 in Py, probability, then S, and
T.(h\) have the same asymptotic distribution under both hypothesis and
contiguous alternatives. If, furthermore,

(3.10) Sp— ®



TESTS FOR MONOTONE FAILURE RATE 1221

in Py, probability when n*0, — o, we may conclude that the natural sequence
of level « tests which reject for large values of S, is asymptotically most powerful
(X known). An important class of such S, is discussed in the following section.

4. Linear approximations to locally and asymptotically most powerful
statistics. As we have seen, locally and asymptotically most powerful test statis-
tics for parametric alternatives are of the form T,(h) = n ™Y h(X;), for some
function A on [0, ). It will be shown that for each fixed, regular function A
(R is not necessarily related to the functions hx of Section 3), T'»(h) can be
approximated by a statistic linear in the D.’s, given by,

(4.1) Su(h) = n* Xt an(i/(n + 1)) (D; — 1)
where,
(4.2) an(u) = (1 — w) 7 [ Zioga—uy b ()€™ da, 0<uc<l

When h equals %; of Section 3, as, and S,(hi) will be called a and S, .
TueEOREM 4.1. Let h be any function such that

(i) K is continuous on (0, ©),
(i) [Sh(t)etdt=0,0< [§h(t)e " dt < oo,
(iil) esther one of the following holds

(a) h'(=log(l — u)), 0 < u < 1, satisfies assumption E of Chernoff,
Gastwirth and Johns (1967) and [5 |k ()| e "*(1 — ¢ ") dv < .
(b) &' (t) changes sign only a finite number of times as t — 0 or  and h'»
does not vanish infinitely often.
M oreover, suppose that the X’s have the exponential density exp(—z), x = 0. Then
T, — S, tends to zero in probability.
The proof is deferred to the appendix, Section 7.
ReMARK 4.1. It may also be shown that if (i), (ii) and (iii) (b) hold and
A = 1, then Eo(T» — Sa)* — 0.
The following remarks are readily obtained from the results of this section and
the appendix.
ReEMARK 4.2. Generalize a, and S,(h) to

-1 (o

ah,)\(U) = ah(./)\)(u) = (1 — u) —108(1_4,))\_1h’($/)\)6_z dx,
San(h) = 0N ann(i/(n + D) (Ds — 7).

Then the theorem continues to hold if the X’s have the density A exp(—Az),
z 2 0, N > 0, and we use S, (k) as the approximand. Moreover, S,.(h) can
be written

(43) Sun(h) = MNSua(h(-/N) + 17N — )2 ann(@/(n + 1)).
ReEMARK 4.3. Let S, denote S, (%), then since m(t) = hi(A),
(4.4) Sua = MSu(h1) + n*(A — 1) 2 a(i/(n + 1)).
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Therefore, if the conditions of Theorem 3.1 and 4.1 hold and S, satisfies (3.10),
then the level a tests which reject for large values of S, = S,.(h1) are asymp-
totically most powerful for each value of A.

6. Asymptic normality and inefficiency of rank statistics. Let Pitman asymp-
totic efficiency be defined as usual (e.g., Hodges and Lehmann (1961)). In this
section we shall show the asymptotic normality of statistics of the form

(5.1)  Wa=2120 (i —J(R/(n+ 1), ¢=n"2lec,

and compute their Pitman efficiencies with respect to the asymptotically most
powerful statistics of Section 4 Let &y be as defined in (3.1) and let S, be the
asymptotically most powerful statistics of Section 4. It will be clear in the sequel
that for most purposes we can take A = 1 in which case we shall write S, for
Sna . Also, a(u) will henceforth always be defined with o = k. Thus a(u)
depends on the distribution of the X’s through h;. Finally, we set
a;=a(t/(n+1)),0=1,---,n

TuroreM 5.1. If (3.4) and (3.5) hold, if hy satisfies the conditions of Theorem
4.1 of this paper, and if {ci} and {J(i/(n + 1))} satisfy the conditions of Theorem
4.1 of Hdjek (1961), then for the sequence of alternatives given in (3.4)
Wo — u(W,)1/a(W,) has asymptotically a standard normal distribution, where

(52) w(Wa) = b0 27 (e — 1[5 J(w)[—log(1 — w) — 1]du,
and
(53)  F(Wa) = 727 (e — &) [[s T(w) du — ([ (w) du)’]. .

Proor. Since the ranks are scale invariant, assume without loss of generality
that A = 1. The results of Hijek (1961) and the contiguity condition imply that

(5.4) W, — Q.—0 in Pg,1 probability, where,
(5.5) Qn = 0D 7 (s — &)J(1 — exp(—Dy)).

It follows from the Lindeberg-Feller theorem that under Hy, the joint limiting
distribution of bS8, and @, is the bivariate normal distribution with means zero,
variances lim b**(S,) and lim ¢*(W,) and covariance

lim b[n ™ D7 as(es — &)1[[8 J(u)[—log(l — u) — 1] du]
where (8, = ) Tal

The result now follows from LeCam’s third lemma (see Hajek and Siddk (1967),
p- 208) and the results of Sections 3 and 4.
For each vector ¢ = (¢1, -+ - , Cs), define

(5.6) Va(e) = n 2.0 (¢; — ©)*

and for two vectors ¢ and a define

(5.7) Cor.’(a, ¢) = [0 a(c: — &)/ [Va(a) Vale)].
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Then Theorem 5.1 yields
CoroLLaRyY 5.1. Under the conditions of Theorem 5.1, the Pitman asymptotic
relative efficiency of W, to S, is

(5.8) e(W,8) = Cor2(J(U), —log (1 — U))
1iMpe [Cor,’(a, ¢) Vala) /(07 2 tad) ™

where U is a uniform (U(0, 1)) random variable.

It is clear from (5.8) that one obtains the most efficient linear rank statistic,
call it W,,°, by taking J(u) = —log (1 — %) and ¢; = a;. Note that the choice
of J is independent of the alternative densities {f5.}. In this case we have

(5.9) e(W®, 8) = Var(a(U))/E(dX(U)).

Evidently, if E(a(U)) = [7 zhi(z)e " dz % 0, then e(W, 8) < 1. This is
equivalent to having X, = n™ Y 7 X, correlated with the locally most powerful
statistic T’ . It will be shown in the proof of the next result that Cor(X, , T\) < 0
when the failure rate is increasing. Let

(5.10) n(x, 0) = for(z) [1 — Fop(z)]7, z 20,

denote the failure rate of Fyn. We assume in what follows that ag(z, 6)/96
exists and is continuous in (z, 6) for 0 < 6 < 6, 2 > 0, some § > 0. Let

(5.11) L(z) = aq\(x, 6) /96 | oo -
Increasing failure rate clearly implies
(5.12) L(z) 20

for all z > 0. We have
THEOREM 5.2. Suppose the conditions of Theorems 5.1 hold, that (5.12) s satss-
JSied with strict inequality for x in some set of positive measure and that,

(5.13) Jote'L(t) dt < .
Then each linear rank statistic of the form (5.1) is ineficient, i.e.,
(5.14) e(W®, 8) < 1.

Proor. Without loss of generality let A = 1. Now,

(5.15) foa(®) = az, 0) exp{—[a(t, 0)ds.
Since dg1(x, 0)/06 is continuous in ('x, 0) we have, differentiating under the
integral sign,

(5.16) h(z) = L(z) — [§ L(¢) dt.
Using Fubini’s theorem and (5.13) we get if A = 1,
(5.17)  cov (X1, m(Xy)) = [ zhi(z)e ™ da = —[veL(z) dz < 0

by our assumptions. []
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ExampLE 5.1. An alternative for which there is an efficient rank test is pro-
vided by
(5.18) foa() = (1 — )71 + 6(—2z + L)), 0 < %

For this density, the failure rate is not monotone. It is easy to see that
Cor (X1, h(X1)) = 0. The efficient rank test rejects for large values of

(5.19) 77370 og (1 — 4/(n + 1)) + 1][—log (1 — Ri/(n + 1))].
It follows from H4jek (1961) that if
(5.20) W.®(r, - ,10) = Eoa(Salrs, -+ ,ra)
=2 ali/(n + 1) Eei(Xen),
then
(5.21) Eos(W,0 — W,y =0,

where W,® = W,”(Ry, -+, R,).

It is not difficult to see by using the method of Hoeffding (1951) that the
locally most powerful rank test rejects the null hypothesis for large values of
the statistic W,” (Ry, - - - , R,), where

Wn(s)(r17 te ’Tn) = Eo,1(Tn I i, - ’rn)

(5.22) = 107 Yk Boalla( Xjas Xep(n — j + D71
By Remark 4.1 and since a projection argument yields .
(5.23) Bos(Wo® — W,0)? < Boa(8n — T)?,

then W,® and W,® (and hence W,™) are asymptotically equivalent.

These rank statistics are of course usable even if X is unknown, the situation
which primarily concerns us, while the optimal statistics of Section 4 depend on
A and do not lead to similar tests. If we use the method of Barlow (1968) and
Nadler and Eilbott (1967) and consider studentized statistics of the form

(524) 8" = w2 iqa(i/(n 4+ 1)Di( X1 D)™ — v X iaa(i/(n + 1)),
it is not difficult to show that for any fixed \ under the null hypothesis,
(5.25) 8 — n X (aé/(n+ 1)) — a)(D; — 27 >0

in probability, and hence by (5.4) the best studentized test of this form is asymp-
totically equivalent under contiguous alternatives to the rank tests based on
W, W,?, and W,%.

It may be shown that the asymptotically most powerful linear rank tests,
asymptotically equivalent to the studentized asymptotically most powerful
linear spacings tests, are in fact asymptotically equivalent to the level a tests
which are most powerful among all tests which are similar and level «. For the
hypothesis Hy, N unknown, this and related results are given in [5].
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REMARK 5.1. If L is defined by (5.11) with A = 1, then W,® can be written
W.® = n?> %y — L(—=log (1 — i/(n 4 1)) [log (1 — Ri/(n + 1))]. This
form is used to derive the statistics W;(¢ = 1, 2, 3) considered in the next
section.

6. Applications of the theory and Monte Carlo results. The results of the pre-
vious sections will now be applied to specific alternatives and specific statistics.
The weights ¢; of (5.1) will be of the form

(6.1) ¢ = c(i(n + 1))  for some function ¢ on (0, 1)
and the efficiency (5.8) will be
(6.2) e(W,8) = Cor’(J(U), —log (1 — U))

-Cor*(a(U), ¢(U)) Var (a(0))/E(a*(U))

where U is an uniform (U(0, 1)) random variable.
The statistics to be considered are:

Wo= 27— (i/(n+ 1)) (Ri/(n+ 1))
Wi= 21— (i/(n+ 1)) [=log (1 — Ry/(n + 1))]
We = 21 [—log (1 — i/(n + 1))] [=log (1 — Ri/(n + 1))]
Ws = 2.7 — {log [—log (1 — 3/(n + 1))}} [<log (1 — Ri/(n + 1))]
We= 219G/ (n+ 1)) [log (1 — Ri/(n + 1))]
8= 21— (i/(n+1)) D
8y = 2.1 [log (1 — 4/(n + 1))] D;
8s = 2.7 — {log [—log (1 — i/(n + 1))}} D;
Sy = 21 g(i/(n+ 1)) [<log (1 — Ry/(n + 1))]
where g(¢) = (1 — )7 [Ziogasy ¢~ da.

Large values are significant.
The alternative densities to be considered are listed below for A = 1; to ob-
tain the general form, make the transformation f(z) — M(A\x).

fo'(x) =1+ 601 —e¢)]exp{—[z+ 6(zx + ¢ — 1)}  (Makeham),
£ (@) = (1 + 6z) exp {—(x + 16a7)} (linear F.R.),

719@) = (1+ 0’ exp{—2™}  (Weibull),

¥ @) = B%¢YT(L+6)  (Gamma).

For each density, z = 0, 6 = 0; and the null hypothesis is obtained for § = 0.
Each of these densities have increasing failure rates for § > 0. Note that fi®
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has the linear FR (failure rate) 1 + 6z, while £, has the failure rate 1 + 6
(1 — € ). Our Makeham distribution is a special case of the general Makeham
distribution which has a failure rate of the form a + b exp(cz).

From Theorem 3.1 it follows that S; is asymptotically most powerful for
fo'? when \ is known, ¢ = 1, 2, 3, 4. Theorem 5.1 implies that W, is asymp-
totically most powerful for fo” in the class of linear rank statistics, ¢ = 1, 2, 3, 4.

W, is asymptotically equivalent to the Proschan-Pyke statistic V. (see
Remark 2.1). It is uniformly improved asymptotically by W1 . We now list the
efficiencies of W; to the asymptotically most powerful statistic of Section 3. The
efficiencies are given in general as functions of A(z) = h(z) = [9 log fo,1(x) /86)e—o
They are always independent of \.

e(Wo) = 9[fo b (z)e " (3x — 1 + ) daf’s2(h)
= 9[f7 h(x)e(3a — & + 2¢77) dal’o*(h),
e(Wr) = $e(Wo),
e(W2) = [[o b (2)e (32" — w) dal'a (),
e(Ws) = [[Th ()¢ z(logz + v — 1) da'(3=" — 2v + 1) 0 (),
e(Wy) = [o27¢ 77 (1 — ) (a(t) — @) dtdz(32" — 1) *(h),

where v = .5772 is Euler’s constant, ¢°(h) = fo K (z)e ™ dz, a(t) is defined by
(4.2), and @ = [sa(?) dt.
As remarked in Section 5, if

(6.3) S * = Sz/z1=1 D,, t=1,23,4,

are the studentized linear spacings statistics, then S;* have the same efficiency
as W, i.e. e(8:™) = e(W,),i = 1,2, 3, 4. These efficiencies are given in Table 6.1.
The last row in this table gives the factor by which the efficiencies have to be
multiplied in order to obtain the efficiencies with respect to the best linear rank
tests (or the best studentized linear spacings tests). The efficiencies agree with
those given by Proschan and Pyke (1967) and Lewis (1965) (where comparable)
Tables 6.2 deal with a Monte Carlo study of the powers of the W; and S,
statistics for the linear F.R., Weibull and Gamma distributions, 1 = ¢ < 3.
From the tables, the following conclusions are apparent: (1) The rank tests
are uniformly less powerful than the corresponding studentized linear spacings
tests. (2) Of all the tests considered in the above tables, the total time on test
statistic S;* and the “Weibull optimal”’ statistic S;* are generally best on the
basis of both asymptotic efficiency and Monte Carlo power. (3) On the basis of
Monte Carlo power alone, Ss* is best. Barlow [1] has shown that for Weibull
and Gamma alternatives, S;* is much better than the IFR likelihood ratio test
and slightly worse than the IFRA likelihood ratio test (on the basis of Monte
Carlo power).
The agreement between the asymptotic theory and the Monte Carlo power
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with n = 10 is poor. This led us to compute Table 6.3 in which » = 30 and
the Weibull distribution is considered. This table shows that for small 6, there
is no difference in the powers between the total time on test statistic S;* and its
rank counterpart W, , while for larger 6, the total time on test statistic is again
better. However, as expected from the asymptotic theory, the difference in power
seems to be decreasing.

The results of the Monte-Carlo study are shown graphically for « = .05 in
Figures 1-4. On comparing Figures 2 and 3 with Figure 1 of Barlow (1967), it
is seen that the power of Ss* is about the same as that of his best test, namely
the “likelihood ratio statistic for IFRA.” Note that in Figure 1, the graphs for
Sy arid S.* are omitted since they would essentially coincide with the graph
for S;”.

7. Appendix: Proof of Theorem 4.1: We use the notation of Section 4. Heuris-
tically our argument is very simple and is essentially the same as that used in
Chernoff, Gastwirth, and Johns (1967).

Ty = 0 20 M Xw) — Eh(Xw))
(7.1) = w2 (X)) — ME(Xo)]}
= D W (B(Xw) [ Xe — EXw)])
= b (—log (1 — 4/(n + 1)) 225ea (D — 1)(n —j + 17

under Hy . From the ldst approximate identity our result follows. The justifica-
tion of these approximations poses some minor technical difficulties. We proceed
with the proof of the theorem. We show that i, ii and iii b) suffice. Let,

(7.2) Ji(t) =1, 6=<t=<1-—2s

Il-

=0, otherwise.

From Theorem 3 of [6] it follows that, if T, = n > rey Js(¢/(n + 1))(X ),
then

(73) Tad = nhu’ + 27 0d’Gn + 17D, — 1) + 0,(1),
where

(74)  d’(s) = (1 — &) [T Js()N (—log (1 — 1)) d,

(7.5) ' = 17 2t Ja(i/ (n + 1)h(—=log (1 — i(n + 1)7))

and 0,(1) as usual denotes a remainder converging to 0 in probability.
Now let

(76) v’ = =0 i Js(i/(n + D)E(R(X ),

(777) R = 07 icmans (M(X») — B(h(X5))},

and

(7.8) Rur = 0 X jcmma-n 1h(Xpy) — E(M(X»))}.
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Then,
(7.9) To = Ta’ + R + Ri + ..

We begin with,
Lemma 7.1 If 6, — 0 as n — o, then

(7.10) 27k [@™(/(n+ 1)) — a(i/(n + 1))|(Ds — 1) =0

in probability.
Proor.

(7.11)  E{n Xk (6 (/(n + 1)) — a(i/(n + 1)(D: — 1))°

=0 20 @™/ (n + 1)) — a(i/(n + )T,
(7.12) |&®(&)]P = (1 — )2 W (=log (1 — )| de*  for & = 0.
Moreover, ’
(7.13) Jo (@ = )7 (J W' (—log (1 — 0))| dt)*ds < oo.
To see (7.13) note that the left-hand side equals
(7.14) o (1 — ) [L W (—log (1 — &) |dt[s |h'(—log (1 — v))| dvds

= 2[5 [¢ W' (w)[- W' (n)]e™(1 — €7 dr du

after some standard arguments. Now by (c) there exists 6 > 0 such that h'(z)
has constant sign for z < 6, x > &' and sups<c<s~1 |B'(2)| < . Then .

f§_1 3 W @) B () ]e™(1 — e drdu < .
Suppose for simplicity 2'(z) = 0, z < &; &' (2) < 0, z > & ". Then
J R @)l W ()™ (1 — &) dudr
(7.15) = [T @I IR () (1 — &) dr du
= [ W@ R dr + R(5) (1 — )} du < w
since [ ¢ "|h(r)| dr < . Continuing,
208 [ |W (w)|-|W (r)|e™(1 — &) dudr
= limy.o (2% B/ (w) e “{h(u) — h(N)} du — [3{d[[* ¢k (v) dv]* du} du]
(7.16) = limao [ €™ di2(w) — 2h(N) b (uye™ du — [[2 b (u)e™ dul’]
= [SR(u)e™ du — K (8)e™’ — 2[[4 e h(w) dulh(8)e™’
+ limaao {B*(A) (1 — €7 + 20(N\) (1 — &™) [2 h(u)e™ du
+ 21(8)e*h(N) (1 — e} <
as long as K*(\) (1 — ¢ ) is bounded as A — 0. But this, of course, holds if
[s B (u)e ™ du < o, and h T in (0, ).
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One can dispose of the other pieces of the integral by similar arguments. From
(7.11) and (7.12) it readily follows that
(7.17) a™(s) — a(s)

for every 0 < s < 1 and again by (7.12), (7.16) and the dominated conver-
gence theorem the lemma follows. Suppose we can show

(7.18) lims.o sup, Var R%; = 0

for ¢ =-1, 2. We claim the theorem follows under our assumptions, To see this
note that (7.9) and (7.18) imply that for every ¢ > 0, there exists a & such that

(7.19) lim sup, d(Tw, To' + 7)) < e
where
(7.20) dX,Y) = E{IX —Y|(1+ X — Y7}

is the usual metric for convergence in probability. Now, (7.3) yields for & as
above,

(7.21) lim sup, d(Tn, n 2t @’ (i(n + 1)) (D; — 1)

+ 0w’ ) S
and by Lemma 7.1, for § sufficiently small
(7.22) lim sup, d(Ts , Sa + 2w’ + 72°) < e

This, of course, implies that there exists a sequence of constants K, such that, ’
(7.23) lim, d(T,, S. + K,.) = 0.

Since 8, and 7, are both asymptotically normal with mean 0 by Lemma 4.1
of Bickel (1967) and the central limit theorem, it follows that K, — 0. We
prove (7.18) for ¢ = 1; for ¢ = 2 it is proved analogously. Let & be defined as
in the discussion preceding (7.15). Define,

(7.24) Z; = h(Xy) if0 = X; < —log (1 —9)
=U; otherwise,

where the U; are uniformly distributed on (—log (1 — §), B) and independent
of each other and of the X, . B is so chosen that the density of Z; at A( —log (1 —
6)) is the same as the density of A(X,) at h(—log (1 — 8)).

We argue as in [4]. Let Zgy < -+ < Z@y be the order statistics of the Z,’s.
Then,

E(2Zisme (W(Xw) — Za))*
= BE(2isomr (W(Xw) — Zo)ixz—1001-1)"
(7.25) < 2B( 2 iz ZoI txiiy z—tosu—y)”
+ 22 i< [BIR* (X ) Itxei) z—10sa-01} 1
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The identity follows by definition of the Z;, the inequality from the ¢, and
Minkowski inequalities. Now,

(7.26) E( Dicinn Z I 1xei g—logu—é)l)2
< B8PXsnm > —log (1 — 8)] =0

since by Lemma 2.2 of [4], P[Xsn/57 = —log (1 — 8)] — 0 exponentially.
On the other hand,

BE(R*(X @) Ix() 2—toga—a1)
(7.27) = Jozmtosa- K @)[(E — 1) 1(n — )1 ¢ "
(1 =) dv
< SUpuzoiesaen € 00 (1 — ¢ ) TROGTDE(R(XY)).

Now,
(7.28) SUPvz—toga—n € (1 — € ) (T

=671 — 8)" (i) for i = on.
Finally,
(7.29)  supigonz 8 (1 — 8)" (i) = 871 — 8)" T (i)

by an easy induction argument on <. By Lemma 2.2 of [4] the right-hand side of
(7.29) — 0 exponentially. Then, (7.27), (7.28) and (7.29) imply that

limsro lim sup, Var RS, = 0 *
if and only if
(7.30) lim; /o lim sup, Var [Di<sm Zey] = O,

where Z; are defined for fixed §. Since the Z,’s are independently and indentically
distributed with a density positive on its convex support and E(Z,") < =,
(7.30) follows from [4]. The sufficiency of (i), (ii) and (iii) (b) for the conclu-
sion of the theorem follows. The sufficiency of (i), (ii), and (iii) (a) is an easy
consequence of Theorems of [6].

Using the methods of [4] on 7,° one can show that E(S, — T,)* — 0.

As in [6] the smoothness conditions on - may be relaxed.
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