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ON A CLASS OF RANK ORDER TESTS FOR THE PARALLELISM OF
SEVERAL REGRESSION LINES!

By PranaB KUMAR SEN
University of North Carolina

0. Summary. For the regression model ¥,; = a + B¢i + i, 2 =1,---, N,,
where the ¢, are independent and identically distributed random variables
(iidrv), optimum rank order tests for the hypothesis that 8 = 0 are due to Hoeff-
ding (1950), Terry (1952) and Hijek (1962), among others. In the present
paper, the theory is extended to the problem of testing the homogeneity of the
regression coefficients from k£ (= 2) independent samples. Allied efficiency results
are also presented.

1. Introduction and preliminary notions. For each positive integer
»(1 £ » < =), consider a sequence of N, (= ELl n,;) independent random
variables Y,ij,7 = 1, --+, s, ¢ = 1, - -+, k, where we assume that

(1.1) PlY,; £ z] = Fui5(x) = F(z — ai — Bitij), Feg,
where ¢, = (G, *** , Cviny;), ¢ = 1, -+, k, are vectors of known constants,
a1, + -+, oy are nuisance parameters, 1, - - - , B are the regression parameters,

and & is the class of all absolutely continuous (univariate) cumulative distribu-
tion functions (cdf) for which the square root of the density function possesses
a quadratically integrable derivative. That is, § = {F:I(F) < «}, where

(1.2) IF) = [2If @) /f@)]dF(z); f(&) = (d/dz)F(z) and
f (@) = (@/dx)f ().
Our problem is to test the null hypothesis

(1.3) HO:BI = e = Bk = 6 (unknown),
against the set of alternatives that 8y, ---, 8 are not all equal.
Let us define
(14) Cvi = n:l'l Z?""l Crij 031 = Z;:‘l (c”if - 6"')2’ 1= 17 Tty k;
(1.5) 0,2 = ,§=1 Cff and Yvi = C%.‘/Cf, fori = 1, ey, k.

It is assumed that as » — o, n,, Ok, ¢ = 1, - -+, k, all tend to o, satisfying
(16) %i—=7::0<yv=m, ,n=1—7<1 where v = 1/k,

and the Noether condition:

(1.7)  limye [MaX1gjgny [Gii — Gl /Cril = 0, forallz =1, ---, k.
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Further, without any loss of generality, we assume that for each v (1 < v < =),
(1.8) ca = ¢ie £ -+ = Cuin,; (Where all the equality signs are not strict),
t=1:,k

Let now ¢(u) be an absolutely continuous and non-decreasing function of
u:0 < u < 1, and assume that ¢ (u) is square integrable over (0, 1). Also, let

Un < -+ < Uy, be the ordered random variables in a random sample of size
n,; from a rectangular distribution over (0, 1), and define

(19) B} =EoU), j=1-",m =1 -,k
Alternatively, we may also define the scores

(1.10) B = ¢G/i+ 1), J=1,,m, i=1,---,k

It is well known that the scoresin (1.9) and (1.10) lead to asymptotically equiva-
lent statistics [cf. Hajek (1962, 1968)]. Two particular scores are worth mention-
ing, and are used in later sections. If ¢ (u) = u:0 < u < 1, then the correspond-
ing scores in (1.9) or (1.10) are given by j/[n,: + 1,7 = 1, ---, n,;, and are
known as the Wilcoxon scores, and if ¢ (4 ) is the inverse of the standard normal
cdf, then (1.9) relates to the expected values of the order statistics of a sample of
size m,; from the standard normal distribution, and are known as the normal
scores.
Let us now define

(1.11) B = (I/n) 204 E, i=1,-,k
(1.12) ¢* = [t¢(u)du and A’ = [1¢"(w)du — ($*)"

Consider then the statistics

(1.13) Ty = [2002 (i — G)BR,/IA-Cl,  ©=1, -,k

where R,;; is the rank of Y,;; among Y, -+, Yyu,, , and C,;is defined by (1.4).
Such statistics are studied in detail by Hoeffiding (1950), Terry (1952) and
Hijek (1962) for testing the hypothesis of no regression in the single sample
case. For convenience, we write

(1.14:) Tr,;’ = Tﬂ,i(Yn‘), Where Y"' = (Y,ﬂ, ceey, Y”.”“.)’ 7 = 1’ cee k’

Also, we denote by 7,,;(Y,; + b-c,:) the statistic in (1.13) when the observations
Y,;; are replaced by Y,;; 4+ b-c.:;, where b is a real number. It follows from
Theorem 6.1 (to follow) that under (1.8) through (1.14)

(1.15) T,:(Yys — b-cs) is | in b(— <b < ), foralle=1,---, k.
Also, for later use we define here

(1.16) v) = —[FE@)fF @), 0<u<l,

so that

(1.17) [ov@)du =0 and [¢*(u)du = I(F) < .
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Finally, let
(1.18) P, ¢) = [[ov ) () dul/[A* I (F)]

and assume that p (¥, ¢) is strictly positive. It may be noted that the assumption
of monotonicity of ¢(u) (made earlier) holds if we take

119) ¢@) = =[G @)/g@ @), 0<u<l1l, Ge7,

when ¢ (z) is a strongly unimodal density function [cf. Hijek and Sid4k (1967,
page 20, Lemma c¢)]. Further, if both f(z) and g(z) are strongly unimodal, it
can be shown that p (¥, ¢), defined by (1.19), is positive whenever both A4°
and I (F') are so.

In the sequel, it will be necessary for us to consider a consistent estimator of
[o¥(u)¢(u)du, and for this, we require the following assumption on ¢ (u):

(1.20) (d/dz)¢(F (z)) is continuous and bounded for all z(— o < z < o).

In the classical two-sample location problem, (1.20) is often assumed to be true
for the general Chernoff-Savage (1958) type of statistics [ef. Puri (1964), and
others]. Finally, in the sequel, we use the symbols O (1) [or 0,(1)] and o(1) [or
0,(1)] in the same sense as in Mann and Wald (1943).

Under the above notations and assumptions, in Section 2, asymptotic properties
of the likelihood ratio test—including its asymptotic optimality as a parametric
test—and the variance-ratio test are derived. Section 3 presents asymptotically
optimum non-parametric tests. In Section 4, the model (1.1) is generalized to
distributions not necessarily identical, and suitable large sample tests for (1.3)
are constructed. The last section is devoted to the study of an optimum property
of a pooled sample nonparametric estimator of 8 when (1.3) holds.

2. Asymptotically optimum parametric tests. Under (1.1), let p(Y, ; @, 8) be
the joint density function of Y, = (Y,1, -+, Y.&), where @ = (o, -+, )
and 8 = (B1, - -, Bi). Let Qx be the 2k-dimensional real space of the parameters
(a, 8), and let Q541 be the subspace of Qg for which 8; = --- = 8. Denote the
likelihood ratio statistic by

2.1) A= [Supﬂ?k“) p(Y,; @, 8)/supa,,p(Y,; e, 8)].

It follows from the results of Wald (1943, Theorem 9, page 480) that under H,
in (1.3), —2 log A, has asymptotically a chi-square distribution with ¥ — 1
degrees of freedom (df). Hence, for large sample sizes, the likelihood ratio test
may be constructed as follows:

reject or accept the null hypothesis (1.3) according as —2 log ), is at
(2.2) least as large as x?x—1 or not, where x_ is the upper 100 € % point of
the chi-square distribution with ¥ — 1 df.

Let now B,: be the maximum likelihood estimator of 8;, for ¢ = 1, ---, k,
and let

23) Q = I(F)‘[Z?a Cfl’(éw' - 3wo)2], where B, = Z’Ll‘)’n‘é:i.
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Then, using again the results of Wald (1943, page 478), it follows that

(24) Q + 2logh —,0 as »— o,
Since f,: consistently estimates 8; and C2; —» © asy — o, foralls =1, ---, k,
@, can be made arbitrarily large (as » — o) when 8, - - -, 8; are not all equal.

Hence the test in (2.2) is consistent. Thus, for the study of its asymptotic prop-
erties, we shall consider the following sequence of alternative hypotheses for which
the power of the test is bounded away from 1:

(25) HyBi =8+ C 78, =1, -,k Diayhi = 0,

where 8, - - - , 6, are all real and 8 is a nuisance parameter. Then, from the results
of Wald (1943, page 480), it follows that under {H,}, —2log A, (or @,) has asymp-
totically a non-central chi-square distribution with & — 1 df and the non-cen-
trality parameter

(2.6) Aq = I(F)-[2 5y,
where v1, - - -, v are defined by (1.6).

Now, for each positive @ and each point 8 = (6;, - -, 6;) € R*, we define the
surface S,(8) by the equation
(2.7) S.(0) = {6:2 5 1vibl
Consider now a transformation 6% = D@, where the first row of Dis (y1, -+ -, v&)
and
(2.8) DD’ = r = diag (71, ' *, Te)-
This transformation transforms the surface S, (8) into the sphere S, (6*) given by
2.9) >k s (0:%) = a, where by definition 6,* = 0.

For any point 6, and any positive §, consider the set w(8y, ) consisting of all
points 6 which lie on the same S,(0) as 6, and for which |6 — 6, < 5. Let then

(2.10) 1(8) = lims.o {@[w (8, 8)1/C[w (8, 8)1},

where o’ (8, 3) is the image of (0, 5) by the transformation 6* = D6, and @ (»)
denotes the area of the set . Then, from Theorem 8 of Wald (1943, page 478),
we obtain the following theorem. )

TuEOREM 2.1. For testing the null hypothesis (1.3), the likelthood ratio test in
(2.2) () has asymptotically best average power with respect to the surfaces S;(0) and
wetght functions 1(0), (i) has asymplotically best constant power on the surfaces
Sa(0), and (iii) 7s an asymptotically most stringent test.

By virtue of Theorem 2.1, we shall regard the likelihood ratio test in (2.2) as
an asymptotically optimum parametric test. In practice, the most commonly
used test is based on the variance-ratio criterion involving the least squares
estimators, viz.,

(2.11) Z, = 2% ChiBi — Bn)’/ (b — 1)s.7,
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where B,i = 272 Yyii(6ij — 6:)/Coi, 6 =1, -+, k, Bo = Dt 74iBoi, and 8.}
is the (pooled) within sample mean square due to error. It is easy to verify that
for any F (z) having a finite variance o> (F), (¢ — 1)Z, has asymptotically (under
(1.3)) a chi-square distribution with £ — 1 df. Also, under (2.5), it has asymp-
totically a non-central chi-square distribution with £ — 1 df. and the non-cen-
trality parameter

(2.12) Az = [Xiavdll/d (F).

Now, under (2.5), —2 log M\, and (¢ — 1)Z, have asymptotically non-central
chi-square distributions with ¥ — 1 df and the non-centrality parameters Aq
and Az, respectively. Hence, according to the conventional measure of the

asymptotic relative efficiency (A.R.E.) (cf. H4jek and Siddk (1967, p. 270)],
the A.R.E. of the Z,-test with respect to the \,-test is

(2.13) ezn = Az/Bq = [@*(F)I(F)]™ = 1,

by the classical Rao-Cramér inequality. In Sections 3 and 4, when the proposed
rank order tests will be compared with the Z,-test or the A,-test, the same def-
inition of the A.R.E. will be employed.

3. Asymptotically most powerful rank order tests. Looking at (2.3) and (2.11),
we observe that the \, and Z,-tests are respectively based on the discrepancies of
the maximum likelihood and the least squares estimators of 8y, « - -, 8% . In the
non-parametric case, estimates of the regression coefficients are considered by
Mood and Brown (1951), Theil (1950), Adichie (1967) and Sen (1968), among
others. A suitable quadratic form in these estimates can be used to construct test
statistics as in (2.3) or (2.11). Unfortunately, this requires the estimation of all
the individual 81, - - - , B; as well as | o¥(u)ep (u) du (all of which usually require
trial and error solutions, cf. [1]). In the alternative procedure considered below,
we only require a pooled sample estimate of the regression coefficient. For this,
define

B.1) T.* = DELCuT/C = [2 e 202 (6ij — Gi)ESR,/IAC).

For later convenience, we express T,* as T,* (Y,), and write ¢, = (C,1, - - , o).
It follows from (1.15) that

(3.2) T,*(Y, —b-c,) is | in b(—w <b < ).

Also, it follows from (1.9), (1.10) and (1.13) that

(3.3) E(T,:«(Y.s)|B8: = 0) =0, forallz =1, --- k.
Consequently, under (1.3),

(34) E(T*(Y, — B¢)|[p=--- =B =8) =0.

[Note that the edf of T,*(Y, — Bc¢,) may or may not be symmetric about 0. A
sufficient condition for this symmetry is that ¢ (u) + ¢ (1 — u) = 2¢ (%) for all
0 < u < 1. But, for our purpose, we do not want to impose symmetry on ¢ (u)
or ¢ (u).] We shall now estimate 8 [under (1.3)] by equating 7,*(Y, — b-c,) to
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0. For this, let

(3.5) B = sup {b:T,* (Y, — b-c,) > 0},
Br@ = inf {b:T*(Y, — b-¢,) < 0}.

Then, the proposed pooled sample estimator of 3 is

(3.6) BF = B + Brm)/2.

[For the single sample case, such an estimate has been considered in detail by
Adichie (1967) under the additional assumption that F and G, defined by (1.1)
and (1.19), are both symmetric (which is not needed for our purpose)]. Let us
now define

(37) Tv,i = v,i(Yn‘ - Bv*'cvi), 1 = 1, ctt k and Lv = ?sl Tf,i-

Our proposed test is based on the statistic L, and the following theorem, whose
proof follows as a special case of Theorem 3.2 (to follow).

TueoREM 3.1. Under (1.3) and the conditions of Section 1, L, has asymptotically
o chi-square distribution with k — 1 df.

By virtue of Theorem 3.1, we have the following asymptotically size e test:

(3.8) reject or accept Hoin (1.3) according as L, is at least as large as x: ;—; or
not, where x2 x_; is defined by (2.2).

As in Section 2, we shall consider here the sequence of alternatives in (2.5) and
study the asymptotic power of the test in (3.8). For this, we have the following.

TaeoreM 3.2. Under the conditions of Section 1 and the sequence of alternatives
i (2.5), L, has asymptotically a non-ceniral chi-square distribution with k — 1
df and the mon-centrality parameter

(3.9) A = [p@W, &) ) ia v b7

where p (Y, ¢) ts defined by (1.18).
The proof of the theorem rests on the following lemmas.
LemMA 3.1. For the sequence of alternatives in (2.5),

(3.10) |C,8,* — B8)| = 0,(1), as »— .

Proor. It follows from (3.5) and (3.6) that for any real z, [8,* < z] =
[B%ay < =]. Also, by definition in (3.5), [85ay < 2] = [T*(Y, — 2zc,) < 0.
Thus, for any positive a,

(8.11) PglC,(B* — B) < —a] £ Pg,IT.*(Y, — [8 — a/C)Jc,) = 0]
Now, under H, in (2.5)
(3.12) P[Y,i; — B — a/C.)ei; £ 2] = F(z — a; — [(a + 6:)/C)lesis),

forj=1,---,m:,%2 =1, ---, k. Thus, by virtue of (1.6) and (1.7), (3.12) con-
forms to the basic model considered by H4jek (1962). Hence, on using the same
technique as in his Theorem 6.1, it follows that under {H,} in (2.5), T); (Y, —
[8 — a/C\.Jc,:) converges in law (as v — o ) to a normal distribution with mean



1674 PRANAB KUMAR SEN

v + a)[fﬁglz(u)qs (u) du]/A and unit variance, for all ¢ = 1, ..., k. Since
the different 7',,’s are stochastically independent, it follows from the above re-
sult that under (2.5), T,*(Y, — [8 — a/C,]c,) converges in law (as» — =) to a
normal distribution with mean a[[s¥ ()¢ (x) du]/A and unit variance. Thus,
the right hand side of (3.11) converges (as» — = ) to ®(—a[[o¥ ()¢ (u) du]/A)
= &(—ap(y, $)[I F)]'), where &(z) is the standard normal cdf at z (— o <
z < =), Since in Section 1, both p (¢, ¢) and I (F) are assumed to be positive,
by choosing a adequately large, say greater than as, ®(—asp (¥, ¢)[I (F)]) can
be made smaller than §/2, where § is an arbitrarily small positive number. It can
be shown similarly that for large », Pg,[C,(8,* — 8) = as] can be made smaller
than §/2. Consequently,
(3.13) limyew Palle, (8% — 8) S as] = 1 — 6. []

LemMaA 3.2. Under the conditions of Section 1 and for any real (a, b)
(3014) [Tv,i(Yvi - [ﬁi - a/Cvi]cvi) - Tv,i (Yvi - [B'L - b/Cvi]cvi)]

=pW¢)a—DIE) +0,(1) as »— w.

Proor. For notational simplicity we assume (without any loss of generality)
that in (1.1) and (1.4), a; = B; = &: = 0. Then, it follows from (1.13) and
Theorem 6.1 of Hijek (1962) that for any real and finite ¢

(3.15)  &[T,:(Yoi + Cl-t-c,)] = Rt (¥, $)T (F)F, 1), as »— co.

Consequently, it suffices to show that the joint distribution of 7,.:(Y,: +
Cyla-c,i) and T,,:(Y,: + Cyi-b-c,:) asymptotically (as» — o) degenerates on
a straight line in the two dimensional plane. Let us now define

(3.16) V.2 = [AC,]7 20 crisd (FIY0ij + t6,i5/Chil).

Then, from the results of Hajek (1962) (viz., his Section 5 and the basic contig-
uity arguments), it follows that

(3.17) [T,.:(Y,i + Co-tocos) — V,)9] —,0 as »— .

Thus, it is enough to show that the joint edf of (V,, V,®) asymptotically
(as v — o) contracts on a straight line, and a sufficient condition for this is that
Var [V, — V,?] tends to 0 as » — «. Now, by (3.16), V., is a linear function
of independent random variables. Hence, )

Var [V, — Vv, ]
=[4 Cvi]_2 Z,’;"l cfij-Var [ (F[Yyi; + acii/Cyil)
— ¢ (F[Yys; + bevii/Cyi)]
(3.18) < A7 {maXigicn,; [E{d FY,i; + acis/Chil)
— ¢ (F[Yi + beii/Cl)IT
= A_z{ma.)ﬁgjgn.,- [(c3:i5/C:) (@ — )’

E{¢. (FIY,i; + ¢ 6ii/Coi))}N},
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where ¢, = (d/dz)¢ (F[z]) and ¢ lies between a and b. Hence, by (1.7) and (1.20),
the right hand side of (3.18) converges to 0 as » — . This completes the proof.

REMARK. Let I (ay) = {a:|a| = ao, ao > 0}. Then, (3.14) actually holds simul-
taneously for all (a, b) € I (@). To show this, let a, = b, = —ay + 2a0/k,,

=0,1,---,k , where k, — « but k,[maxi<j<a,; ¢ij/Cri] — 0 as v — . Then,
as in Section 5 of [4] and our Lemma 3.2, it can be shown that (3.14) holds simul-
taneously for all (a,, b,),r, s = 0, 1, ---, k,. Since, for any a ¢ (a,, a,),
a —a, =o0(l),and forany b e (b, bs41), b — b, = 0(1), the rest of the proof can
be completed by using the monotonicity in (1.15) and some standard computa-
tions.

Now, in (3.5) and (3.6), if we work with 7, ; instead of T',*, the corresponding
estimator will be denoted by 85, for 7 = 1, ---, k. These individual sample
estimators are already studied in detail by Adichie (1967) under the additional
assumptions that (i) the distributions F and @ defined by (1.1) and (1.19) are
both symmetric and (i) C}i/n,: converges to a positive (finite) limit ¢’ > 0,
as v — . We note that the first assumption is not at all needed here, while the
second may be safely replaced by (1.5) and (1.6).

LemMa 3.3. Under (2.5) and the conditions of Section 1,

(3.19) G (8" — 2iamiid)l = 0,(1) as v — w.
Proor. Precisely on the same line as in Lemma 3.1, it follows that
(3.20)  Ci(Bri — B = 0,(1) as v— oo, foralli =1, ---, k.
Now, using (3.5), (3.6) and some simple arguments, it follows that
(3.21) IT,*(Y, — 8,"-c.)| = 0,(1),
and it can be shown similarly that
(3.22) IT,.s(Yys — Brcoi)| = 0p(1), foralls =1, ---, k.

Also, by (3.1) and (3.22)
T,*(Y, — 8,*c,)
(323) = 2t (Ci/C)T,i(Yoi — B,7coi)
= Dl T (Vi — B,7¢os) — Thi(Yoi — Briri)] + 0,(1).

Now, by (3.21), the left hand side of (3.23) converges in probability to 0 as
» — o, while by (3.20), Lemma 3.1 and the remark following Lemma 3.2, the
right hand side is equivalent (in probability ) to

(3.24) [DhaCA B — B + B — B W, SHIEN/C,
~p C 2 v (B — B W, )T (F) ],

as under (2.5) and (1.6), C\[D t—17,:(8: — B)] > 0asv — . []
We have the following lemma whose proof follows along the line of approach
of Section 5 of Adichie (1967), though we note that here F and G need not be
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symmetric and his condition that Cs;/n,; — ¢ (>0) as » — o, may be replaced
by lim,., Cs; = .

LemMma 3.4. Under the conditions of Section 1, the independent random variables
Ci(Br: — Bs), © = 1, -+, k are asymptotically normally distributed with means
zero and (common ) variance ([p (¥, )T (F))~.

A direct consequence of the preceding two lemmas is the following lemma.

LemMma 3.5. Under (2.5) and the conditions of Section 1,

(3.25) L* = [0',¢) I i=1C% (8 — 87

has asymptotically a non-central chi-square distribution with k — 1 df and the non-
centrality parameter Ay, defined by (3.9).

Returning now to the proof of Theorem 3.2, we observe that by virtue of (3.6),
(3.7), Lemmas 3.2 and 3.3, (3.21) and (3.22), we have under {H,} in (2.5)

(3.26 ) L, ~p Lv*o

Hence, the proof of the theorem follows readily from Lemma 3.5 and (3.26).
From the results of Section 2 and Theorem 3.2, it follows that (i) the A.R.E.
of the L,-test with respect to the likelihood ratio test is equal to

(3.27) era = Au/bg = [p (¥, #)T,
and the A.R.E. of the L,-test with respect to the Z,-test is equal to
(3.28) ez = Ar/Az = & (F)[[3¢(n)é (u) dul’/A”.

Now, (3.27) agrees with the efficiency studied in detail by Héjek (1962). Hence,
referring to his Section 6, we omit the details here. We only note that if the as-
sumed score ¢ (u) agrees with the score ¢ (u), (3.27) will be equal to 1. Concern-
ing (3.28), we again note that this coincides with the A.R.E. of the Chernoff-
Savage (1958) two-sample location test with respect to Student’s i-test,
if we rewrite [ f s¥(u)é(u) du] in the Chernoff-Savage form [fi'i°c {(d/dz)-
¢ (F (z))} dF (z)]. The details of the A.R.E. therefore follow from the well known
results of Chernoff and Savage (1958). In particular, for the test based on the
normal scores, it follows from their results that (3.28) is bounded below by 1,
where the lower bound is attained only when F (z) in (1.1) is itself normal. This
explains the supremacy of the normal scores test over the classical variance ratio
test.

4. Test for a more general model. Instead of (1.1), we consider the following
model:

(4-'1) P[Yn'j§x]=F.’(x—a,-—,B,c,,,~,~), j=1,-..,n,i’i= 1,...,]0’

where F;e &, foralls = 1, - - - , k and ¢,:;’s satisfy the conditions of Section 1. Here
we desire to test the null hypothesis (1.3), without assuming that F,, ---, F}
have the same form.

We define the statistics 7, ; as in (1.13) and also the individual sample esti-
mates B5; as in Section 3. Now, under the hypothesis that 8; = 0, it is possible
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to locate two values, say, T\ and T{? , such that

(4.2) PITY <T,;<T%|B:i=0=1—0a  forallF;es
where (0 < a < 1) is preassigned. Define then

4.3) Brin = inf {b:T, (Y — bew) < Thd},

(44) Briw = sup {b:T,,:(Y,i — bews) 2 TR}

Then, from (1.15), (4.1), (4.2), (4.3) and (4.4), we obtain that

@45) Pt S B S Bluv|B]l=1—a.

We shall use these confidence intervals to estimate certain parameters which we
define below. In (1.16), if we replace F by F;, the corresponding score will be
denoted by ¥:(u), and in (1.18), replacing ¥ (x) by ¥:(u), we define p (¥:, ¢),
1 =1,---,k We need to estimate the parameters

(4.6) B; = B(¥s, ¢) = [[ov:(w)é(u) dul, i=1,---,k

For this, we first note that by virtue of the asymptotic normality of T,,; under
B: = 0 [cf. H4jek (1962)], we have on using symmetric tails in (4.2),

@7) TS - (=1)7ap, forj=1,2ands =1, -,k (asv — o)

where 7, is the upper 100a % point of the standard normal distribution.
TuareoreM 4.1. For the model (4.1) and under the conditions of Section 1,

(4.8) B,; = A[T® — T1/1CiBriv — Brin)l = Bi, foralli=1,--- k.

Proor. By the same technique as in Lemma 3.1, it can be shown that
|C,:(Biw — B:)| and |Chi(Bri. — B:)| are both bounded in probability (as
v— »),forall7 =1, ---, k. Hence, the proof of the theorem follows directly
from (4.2) through (4.8) in conjunction with the remark following Lemma 3.2.
Therefore the details are omitted. Further, as a direct extension of Lemma 3.4
we have the following.

TaeorREM 4.2. Under (4.1) and the conditions of Section 1, the independent
random variables B:C,:(Bri — Bi)/A, i = 1, -+, k are asymptotically normally
distributed with zero means and unit variances.

Let us now deﬁge -
(4.9) v = ChB/C), i1=1 -,k B * = D i vriBri/ D ket Yri s

Then, the proposed test is based on the statistic
(4.10) 8, = [ ChBLi(Bs — B))/A%

From Theorem 4.1, Theorem 4.2, (4.9), (4.10) and some routine computa-
tions, we obtain the following.

TaeoreM 4.3. Under Hyin (1.3) and the conditions of Section 1, S, has asymp-
totically a chi-square distribution with k — 1 df.

By virtue of this result, an asymptotically distribution-free test for Hyin (1.3),
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under the model (4.1), can be constructed as in (3.8). Now, by (1.5), (1.6) and
(4.8), it follows that as » — oo, v,; converges in probability to v;*, where

(4.11) vi* = v:BE, i=1,--,k.

We define 6, - -, 6; asin (2.5), and let 6 = > iy ¥:"0:/ > =1 v+ . Then, from
Theorem 4.2, (4.8) through (4.11), it follows by some standard arguments that
under {H,},in (2.5) and the conditions of Section 1, S, has asymptotically a non-
central chi-square distribution with ¥ — 1 df and the non-centrality parameter

(4.12) As = [D s vit (8: — 0)7]/A%

If the cdf’s Fy, - -+ , Fxin (4.1) are all known, we may construct the likelihood
ratio test as in Section 2. In this case, let the likelihood ratio criterion be denoted
by M*. Then, the test may be constructed as in (2.2), and also, under (2.5), it
can be shown that —2 log \,* has asymptotically a non-central chi-square dis-
tribution with £ — 1 df and the non-centrality parameter

(4.13) A = [ vi(0: — 8 VI (F.)]

where 6% = X 51 T(F:)vi#i/ 2 ie1 I (F:)y:. Therefore, upon noting that

(4.14) a0 — ) S Xyt — 07

(4.15) vi* = 7B = vl (F)A%' Yi, ¢) foralli =1, .-,k

we obtain from (4.12) through (4.15) that

i vl (F2)o($s, ¢) (0 — 6%)°

4.16 A A*gz‘-”’ LS SRR AN <1,

(416 /4 I (F) (6 — 0

(asp’ (¥i,¢) < 1forallz), and that the equality sign holds only when p (¥:, ¢) = 1
foralls = 1, -- -, k. A particular case when (4.16) is independent of 6, , - - - , 0 is
of some importance and is considered below. Consider the heteroscedastic model:

(4.17) F;(x) = F(z/0:) foralli =1, ---,k,
where o, - - - , o1, are all positive scale factors. Then,
@.18) I(F:) =I(F)/ol and p(¥i,¢) = p(¥, ¢) foralli=1,---,k,

where I (F) and p (¥, ¢) are defined by (1.2) and (1.18) respectively. In this case,
it readily follows that (4.16) equals to o’ (¢, ¢) independently of 61, - - -, 6; as
well as a1, - -+, 0. Thus, for the heteroscedastic model (4.17) (in conjunction
with (4.1)), the A.R.E. of the S,-test with respect to the likelihood ratio test is
equal to the A.R.E. for the basic cdf F, independently of the scale factors.

Let us now consider the least squares estimators §,:,% = 1, - - - , k, defined just
after (2.11). Also, let s% ; be the mean square due to error from the ith sample,
t1=1,---,k and

(4.19) % = vi/sei, i=1,---,k

Thus, by (1.5), (1.6) and the well known convergence property of the mean
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squares s; ;, it follows that as » — o,
(4.20) i = vifoil = vi, foralli =1, ---,k,

Finally, let §,* = D %1 ¥%B,s/ D i1 vvs and 6% = > %1 v020./> % 1 4. Then, it
follows by standard arguments that the following statistic based on the least
squares estimates,

(4:.21) Zv* = Cvz[ 1=1 'YM(BVl - ﬁv )]

has asymptotically [under (1.3) and (4.1)] a chi-square distribution with & — 1
df, and hence a large sample test may be constructed as in (2.2). It also is seen
by some routine analysis that under (2.5), Z,* follows asymptotically a non-
central chi-square distribution with £ — 1 df and the non-centrality parameter

(4.22) A = Dy (0 — 87
Again, upon noting that

(4.23) iyl (0 — 8% = il (0 — 6)
and that
(4.24) v = viBi = v%/B{, fori =1,---,k

we obtain from (4.12), (4.22) through (4.24) that the A.R.E. of the S,-test with
respect to the Z,*-test is equal to

Zk—l ’)’108,(01 - 9)2

4.25 As/A" = = min; e;,

( ) S/ ‘ Zk—l Yi (01 - 0)2

where

(4.26) ¢; = o’B/A* = ARE. (8%:/B,:), for i=1,---,k.

[When we speak of the A.R.E. of two sequences of estimates, we interpret it as
the reciprocal of the ratio of their asymptotic variances. See also, Theorem 5.2,
(5.6) and (5.8)]. Now, under the heteroscedastic model (4.17),e;, = --- = ¢, = ¢
is given by (3.28), and hence, (4.25) equals (3.28) for all oy, -- -, 0% . Also, for
the normal scores test, e; = 1,foralls = 1, - - - | k, and hence, (4.25) is uniformly

bounded below by 1, for all Fy, ---, Fy.

5. Optimality of 8,* based on T,* . Suppose now that (1.3) holds and we desire
to estimate the common value of 3. In the parametric case, the combined sample
least squares estimator 8, , defined just after (2.11), is a linear compound of the
individual sample least squares estimators. In the nonparametric case, either we
may use the pooled sample estimator in (3.6), or we may use a linear compound
of the individual sample estimators, i.e.,

(51) BB* = I;=1 'YviB;k,i,

where 85 is the ¢th sample estimate of 8;, considered by Adichie (1967). The
properties of invariance and symmetry of 8,* and B,”* follow exactly on the same
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line as in Adichie (1967 ), and hence, the discussion is confined to their availability
as practical estimates and their asymptotic efficiencies. We note that explicit
expressions for 8,* and 8,°* in terms of Y, are not available, unless we impose some
restrictions on c, [e.g., the two-sample location problem where the c,;; can as-
sume the values 1 and 0 only]. Adichie (1967) uses a trial and error method for
finding the 5. Since T,* is a simple linear function of the T, ;, the same trial
and error procedure is applicable for the 8,*. The question is therefore about the
orders of the labor involved in the two trial and error procedures. We note that
for the computation of 8,°*, we require 8;, 7 = 1, ---, k, and hence, k trial
and error procedures for the k£ samples. On the other hand, the computation of
B8, requires a single trial and error procedure on T,*. Hence, from this stand point,
8* appears to be no less practical than 8,”*. Now, it follows from Lemma 3.3 that
under the model (1.1), the two estimates are asymptotically equivalent. Hence,
we shall compare them only under the model (4.1). Then, we have the following
theorem.

TaEOREM 5.1. Under (4.1) and the conditions of Section 1, both the estimators
8,* and B,"* are asymptotically normally distributed, and

(5.2) ARE. 3*/8*) =z 1,

where the equality sign holds ¢ff B = --- = By, = B, and the B; are defined by (4.6).
Proor. It follows from Theorem 4.2 and (5.1) that under (4.1) and (1.3)

(5.3) £[C, (B — B)/A] — (0, D%y vi/B).

Now, using Theorem 6.1 of Hijek (1962) for the individual 7,1, -+, Thx, We
obtain by convolution that under (4.1) and the following sequence of alternative
hypotheses:

(54) H*:8: = B = a/C,,

i=1,---,k, (where a is real and finite), (1 £ » < ©),

T,*, defined by (3.1), has asymptotically a normal distribution with mean
a(Q %1 v:B:) and unit variance. Hence, proceeding as in Section 5 of Adichie
(1967), we obtain after some routine analysis that under (1.3) and (4.1)

(5.5) £[C, 8" — B)/A] = 3 (0, [Xha v:BI ).
Hence, it follows from (5.3) and (5.5) that
(5.6) ARE. 8*/8") = [2ia vi/BA ia vBI = 1,

by virtue of some elementary moment inequalities among non-negative quantities.
The equality sign in (5.6) holds only when By = --- = By . Hence the theorem.

This suggests that as a pooled estimate of 8, 8, is asymptotically at least as
good as the linear compound estimator B,"*. Assume now that o, the variance of
the cdf F;, is finite, forall 2 = 1, - - - , k. Then, it is easy to show that for the com-
bined sample least squares estimator §,[defined just after (2.11)]

(6.7) LIC (B, — B)] — (0, 2iaa viol),
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where the v; are defined by (1.5). Hence, from (5.5) and (5.7), we obtain on
using the same moment inequalities that

(58) ARE. (8,/8,) = [ iz violl[D kms viBil'/A?
= [Zlf'=1 'sz?][ZILl 'Yzei%/ 4 i[2 = min; e;,

where the e; are defined by (4.26); also, the AR.E. < & = i1 v.¢i, when

o; = +-- = op. Thus, for the heteroscedastic model (4.17), we recall that
e = -+ = ¢, = e [defined by (3.28)], and hence, the A.R.E. in (5.8) is bounded
below by e, where the equality sign holds only wheng; = --- = 4. Also, for the

normal scores, ¢;, defined by (4.26), is bounded below by 1, and hence, (5.8)
is bounded below by 1, uniformly in #;, - - - , F;. Finally, we remark that under
(1.3) and (4.1), T,* in (3.1) can provide an exact confidence interval for g,
whatever be Fy, -+, Fx. On the other hand, the other method fails to do so.
The procedure for obtaining the confidence interval is exactly the same as in
(4.2) through (4.5), where we have only to change T, . to T,*. Since, under
(4.1) and the hypothesis that 8 = --- = 8; = 8 = 0, T.* is a linear compound
of k distribution-free statistics, its distribution is also independent of Fy, - - - , Fy .
Hence, we can always find two values, say, T,* , ¢ = 1, 2, such that (4.2) holds
with T, ; replaced by T,*, The rest of the procedure is the same. [For large »,
we note again that (4.7) extends to the situation where T, is used.]

6. Appendix: monotonicity of regression rank statistics. Let £, £ --- £ E,
(not all equal) be n rank scores, and ¢; < --- = ¢, (not all equal) be known con-
stants. Also, let Yy, - -+, Y, be independent random variables with continuous
cdf’s Fy, - -+ , F, , respectively. Further, let R;(b) be the rank of Z;(b) = Y, — bc;
among Z1(b), --+, Z,(b), fort = 1, - -+, n. Finally, let

6.1) T,0) = Z:';l (ci — E)Egi(b); ¢=mn" Z?=1 Ci, —o <b< w©,

THEOREM 6.1. Under the conditions stated above, there exists n*[1 = n* = (3)]
points by < -+ < bux, such that (i) Tn(b) = Th(bs 4+ 0) for all by < b < bsya,
s=0,1, ---,n* (whereby = — @, byspy = ® ), (i) Tulbs — 0) = To(bs) =
Ta(bs +0),8 =1, ---,n* and (iii) T, (b) is necessarily positive (negative) for
b < bi(>bw). Thus, T,(b)is | inb (—wo < b < «).

Proor. Let ¢.* = ¢; — ¢1(=0),¢ =1, - -+, n, and rewrite T, (b) as

(6.2) To(b) = 2t ¢ Erey + (0 — €) 20— Es,
where the last term does not depend on b(—© < b < ). Let then
(6.3) Z:*®) = Y, — be., i=1,-,n(—0 <b< ).

Now, in (6.3), we have n straight lines in b. The (7, 7’ )th lines are either parallel
(if ¢; = ¢« ) or they intersect at a single point by (if ¢; #Z ¢o), 1 £ ¢ < 7 = n.
As not all the ¢; are equal, the number of distinct pairs [(c;, ¢#)ice > ¢,
1 £ i< 7 £ nlisequal ton®, where 1 < n* = (3). We denote the ordered values
of these n* points of intersection of the n linesin (6.3) by by, -+« ,bus. AsFy, -+ -,
F, are all assumed to be continuous, ties among Y,, -+, Y, , and hence, among
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bi, -, bu, can be neglected with probability 1. Thus, by < - < bus, with
probability one. Now, for any s(=0, ---, n*), consider the open interval
bs < b < b1 . Since in this interval, no two lines in (6.3) intersect, the ranks of
Z*(b), -+, Z,*(b) are the same as those of Z*(b, + 0), -- -, Z.* (b, + 0),
respectively. Hence,

(6.4) T.() = Ta(b; +0), forall b, < b < by, s=0,1,---,n"

Atb = b, let the two intersecting lines be the (7,7’ )th ones, and let R; (b, — 0) = ¢1,
Ri(b, — 0) = q2. As ¢ > ¢.* (otherwise the two lines do not intersect), we
must have (i)g1 = ¢ —1=¢— 1 (say), (i) Ri(b; +0) =q =14 R (b; + 0),
and (iii) B;(b; — 0) = R;(b; + 0) for the remaining n — 2 values of j. Thus,

(6.5) Tu(bs + 0) = To(by — 0) — (cF — ¢*)(By — Eqr) < To(bs — 0),

asclr > ¢;F and B, = E, 1. Again, atb = b,, Z,*(b,) = Z} (b,). Hence, accord-
ing to the usual convention of mid-ranks for tied observations, the scores for each
of these two variables are E,* = Ej— = [E, + E,]/2. Thus,

(66) Tn(bs) = Tn(bs - 0) - (C:'k’ - Ci*)(Eq - Eq—l)/2

= [Tn(bs - O) + Tn(bs + O)]/2,
and hence, from (6.5) and (6.6), we have

(6.7) T,(b; —0) = T,(b) = T, (b +0), foralls=1,---,n*
Finally, we rewite T, (b) as
6.8) T.(b)= n! El§i<i’§n (cor — i) (Ery vy — Er.»), - <b< w.

Now, if ¢ > ¢i, then forb < biir, Z;*(b) < Z¥ (b) [which implies R;(b) < R+ (b)
and hence Ez,¢) = Egz,’ (b)]. Also, by = min; o by, and hence, for b < by, all the
Er;'®y — Eg;e are non-negative. Let now Y, = max; [YViic; = ¢, and
Y, = min; [Y::¢; = ¢i]. Then, for b < b1, Zx(b) and Z,,(b) have respectively the
rank n and 1. Also, £, > E; and ¢, > ¢ (by the hypothesis that the scores or the
constants are not all equal), and hence, from (6.8), we obtain that

(6.9) T,(b) = n ' (ca — &) (En — E1) > 0, forallb < b;.

It can be shown in the same manner that T, (b) < 0, for all b > b,«. Hence th
theorem. -
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