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ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE REGRESSION!

By W. J. StuppEN aAnD D. J. VANARMAN

Purdue University

1. Introduction. Let f = (fo, f1, -+, fa) be a vector of linearly independent
continuous functions on a closed interval [a, b]. For each z or “level” in [a, b] an
experiment can be performed whose outcome is a random variable Y (z) with
mean value D i~8:f:(x) and variance o, independent of x. The functions f,,
Ji, -++, f are called the regression functions and assumed known to the experi-
menter while the vector of parameters = (8, 6:, ---, 8,) and ¢” are unknown.
One of the main problems in the above setup is the estimation of functions
of the vector # by means of a finite number N of uncorrelated observations
{Y (x1)}7=1 . Given a specific function of 8 and a criterion of what a good estimate
is, the design problem is one of selecting the /s at which to experiment. In the
present paper an experimental design is a probability measure u on [a, b]. The
experimenter then takes his observations at the different levels proportional to
the measure p. For a more complete discussion of the above model see Kiefer
(1959) or Karlin and Studden (1966a).

For estimating linear functions of 6, minimaxity problems, etc., the information
matrix of u plays an important role. For an arbitrary probability measure on
[a, b], the information matrix M (u) is the matrix with elements

Mme; = mi.’i(") = f[ll,b]f’ifi d”’J (%J = 07 ]'J tee )n)-

For two probability measures u and » on [a, b] we say v = por M (v) = M (u) if
the matrix M (v) — M (1) is non-negative definite and unequal to the zero matrix.

DeriNiTION 1. A probability measure or design u is said to be admissible if
there is no design » such that » = u. Otherwise u is inadmissible.

For the case of ordinary polynomial regression where f = (fo, fi, -+, fa) =
(1,z, -+, 2") Kiefer (1959, page 291) has shown that u is admissible if and only
if the spectrum of u, S(u), has at most n — 1 points in the open interval (a, b).
In this paper we shall generalize the above result to spline polynomial regression
functions. We consider the interval [a, b] and choose 4 fixed points or ‘“knots”

§1,6, - ,&suchthate < & < & < -+ < & < b. The type of regression fune- -

tion under consideration will be a polynomial of degree (at most) n on each of
the o + 1 intervals (¢, £iu) 2 = 0, 1, -+, & (5 = a and &y = b) and will
have n — k: — 1 continuous derivatives at &, ¢ = 1, ---, h. The integers k;
are assumed to satisfy 0 < k; = n — 1 so that the regression function is always
at least continuous. The following lemma gives a characterization of the type of
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regression function we are interested in. The function ., used below and through-
out the paper is defined by

=2, =0 G=1,2--+)
= 0, x <0,
LemMa 1.1. A function P (x) on [a, b] can be expressed in the form
(1.1) P) = 2iwaa’ + 2t D ihoby(e — £)4"

if and only if
(1) P s an ordinary polynomial of degree n in each of the intervals (£;, £i11)
1=0,1,---,hand
(2) P hasn — k; — 1 continuous derivatives at £;,¢ = 1,2, -+ | h.
Proor. See Karlin and Ziegler (1966, page 518).
We shall assume that our vector of regression functions consists of the functions

(12) 17 z, x2) T xn’(x - Ei)+"_ki) (x - Ei)+n—ki+1) ] (x - J51')+"'7
i=1,2 - h

Kiefer’s result mentioned above was generalized by D. VanArman (1968)
who considered the cases h = 1 and k; = n — 1 orn — 2 for general . The present
paper is devoted to proving the following result.

TuroreM 1.1. Let f consist of the vector of functions in (1.2). Then a design u is
admissible if and only if the spectrum of u, S (u), has less than or equal to

(1.3) n—14 2 EnalEm+k+ 1)

points on the open interval (¢;, Eyrn) for<c =0,1, --- b — L1 =0,1,---,h.
(Here we let & = a, éa = b and [z] denotes the greatest integer in x.)

SpeEcIAL casgs. (1) If each k; is equal to its maximal value n — 1, then the
requirements on our regression function are that it be continuous and a poly-
nomial of degree n on each interval (¢;, £,41) 2 = 0, 1, - -+, h. In this case u is
admissible if and only if S(u) has =n — 1 4+ In points on (%;, £:1141). This is
equivalent to S () having <n — 1 points on each (&, £i11),2 =0,1, -+, h.
This is a more or less direct extension of Kiefer’s result.

2) Forn =1landk; = 0,7 = 1,2, ---, h the regression function is linear on
(&, 8m),7 = 0,1, ---, h, and continuous at £;,7 = 1,2, --- , h. By (1) above'a
design u is admissible if and only if S(u) < {a, &, &, -+, &, b}.

(38) The first “non-trivial” case is probablyn = 2and k; = 0,5 = 1,2, --- | h.
Here we have a quadratic on each interval (£;, £:41) and the regression function
is required to have a continuous derivative at each &;. A design u is admissible if
and only if there are at most I + 1 points of S(u) in (¢;, fit441), 2 =0, 1, - -+,
h—1041=01,---,h

(4) Specific design problems are usually easier to analyze when the maximal
number of points in any admissible design, say A, is equal to B = the number of
regression functions. If the regression functions are linearly independent then
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A = B. In the spline situation an admissible design may have 4 = n + 1 +
ZLI [3(n + k; + 1)] points in S(u). The number of regression functions is
B=n+1+ 24 (b+1).8ince[f(n + ki + )] =k + 1 + [§(n — k; — 1)]
= k; + 1 for all j the situation A = B arises if and only if » — k; = 1 or 2,
j=1,2 .-+, h (Note that by assumptionn — k; = 1.)

In Section 2 we give some necessary and sufficient conditions for admissibility
in terms of the elements or moments in the information matrix. The proof of
Theorem 1.1 is given in Section 4 after we first prove a number of preliminary
lemmas which are given in Section 3.

The authors wish to thank Professors John R. Rice and Carl deBoor for a
number of extremely helpful discussions concerning spline functions

2. Moment conditions for admissibility. The proof for the ordinary polynomial
case uses the fact that if f(z) = (1,2, ---,2") and g(z) = 1, z, ---, 2™ ")
then M (v) = M () if and only if [ g()d(» — u) = 0 and [2"d( — u) > 0
(all integerals in the following will be over [a, b] unless specified otherwise).
Thus p is admissible if and only if the moments of p up to order 2n — 1 uniquely
determine u or among those measures » whose moments up to 2n — 1 agree with
those of u, the measure u maximizes the 2nth moment. The remainder of the
argument then uses known moment space results which show that these latter
conditions on u are equivalent to S (u) having at most » — 1 points in (a, b).
The idea behind the proof of Theorem 1.1 will be to follow the above line of
argument. The moment conditions for the spline polynomials are contained in
Theorem 2.1 below. We let g consist of the vector of functions

(21) 1, x, MY x2"_1, (x —_— Ei)_‘_n_k’., ey, (x bt gi)+2n—l’ 1, = 1’ 2, s, h

TuroreEM 2.1. Let f consist of the vector of regression functions in (1.2) and let g
be defined as above. Thenv = u (or M (v) = M (u)) if and only if

1) [9@)d® — p) = 0and
)0 [a"de —u) 2 [ @ — &)"dl — u)
2z [@—8):"de—w) 20,
If condition (1) holds then condition (2) is equivalent to
@) [l = &)+ — (@ — £n)y™d@ — ) 20,5 =0,1, -+, h;

and at least one of these inequalities s strict.

The proof of the above theorem will use the following two simple lemmas.

Lemma 2.1. If M = (ms;) is a symmetric non-negative definite matriz and a
diagonal element m;; = 0 for some ¢ then my = 0 for all j.

Proor. Consider the vector with a 1 in the ¢th component, 8 in the jth com-
ponent and zeros elsewhere. Then the fact that 3/ is non-negative definite results
in 28m.; + B°mj; = 0 for all 8. This readily implies that m; = 0.
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LeMMmA 2.2. Let A be a matrix of the form

Ao A - A,
(2.2) A = Ar Ar e Ay
A, Ay - A,

Then A Z Oifand only of 0 # Ag = A1 Z -+ Z A = 0.

Proor. We need only notice that
Dzt = Dm0 (Ai — Aga) (@t 4+ -+ + x)°

where Ap1 = 0.

Proor or THEOREM 2.1. The vector f of regression functions specified in (1.2)
will be written with the powers 1, z, - - - , 2" in the first n + 1 components, then
those involving &, ete. We let M = M (v) — M (u) and assume that M = 0.
The proof that conditions (1) and (2) hold consists of a repeated application of
Lemma 2.1 and a single application of Lemma 2.2. Since » and u are both prob-
ability measures the first row (and column) of M has zero elements, i.e.

(a) fxid(y—u) =0,7=1,2,---,mn.

©) @ —&)’do —p)=0,j=n—ky, - ,n;p=1,--,h
From (a) with ¢ = 2, the 2nd row is also zero. Finally we obtain
[2'dp —p) =0, ¢=0,1,---,2n — 1;
Joi@—&)7de —p) =0, i =0,1,---,n—1; j=n—"F, - ,n
p=12 - h
Now forr £n — landany p = 1,2, , h,

J @ = &)""do — u)
=[@ -5 @ —&dr —p) = Xiva[2'@ = 5)"dE — u) = 0.

Therefore fg(:c) d(v — u) = 0, ie. condition (1) holds. Now observe that M
has all diagonal elements equal to zero except the elements

Ja"d@p —u) and [ (z — £)d(v — n), p=1,--,h,

and M has zero elements except for the corresponding rows and columns. We nox;v
show that the resulting submatrix has the form (2.2). The element A, =
[ 2™ d( — p). The element A4, in the first row is

[o@ = 8)"d0 — u) = [ (@ — )" de — w).
Similarly the element, say, in the 2nd row and 3rd column is
f @ —&)"(@—&)dy —u) = f (x — 52)+2nd(1/ — W)
Applying Lemma 2.2 we find that condition (2) holds.
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Now assume that conditions (1) and (2) hold. Condition (1) reduces M as
above so that the nonzero part of M has the form (2.2). Condition (2) and
Lemma 2.2 then imply that M = 0.

For a design to be admissible a trivial necessary condition is that given any
subset I of [a, b] the design u, normalized on I, is admissible on I relative to the
same regression vector. An explicit definition and lemma in this regard is given
below.

DeriniTioN 2.1. A design p is said to be admissible on [¢;, £:4.04a] if u (nor-
malized on this interval) is admissible there relative to the functions

(23) 1,:13, "'73;”7 (:B - Ei)n_kj7 Tty ((l! - E:i)-i-n’ 7 =1+ 17 7Z+ L.

A design u is said to be subadmissible (%) if it is admissible on every subinterval
(5iy Eivigal, 2 = 0,1, ey b — l)l =0,1,---,h—1

LemMma 2.3. If p 78 admaissible for h knots then u is subadmissible.

Proor. By the remarks preceding Definition 2.1 the measure u must be ad-
missible on [£;, £:4.41] relative to the functions (1.2) restricted to this interval.
Admissibility is independent of the basis used for the linear space spanned by
the functions. By Lemma 1.1 the functions (2.3) are a basis for the linear space
spanned by the functions (1.2) restricted to [£:, Eiprpal].

3. Some preliminary lemmas. In this section we present a number of lemmas
which will be used in the proof of Theorem 1.1. These lemmas deal with the
construction of some spline polynomials having specified zeros.

First we paraphrase an important result of Karlin and Ziegler (1966, pages
519-522). (See also Karlin (1968).) Let ¢, (t:, u;) = (¢: — u;)’, s =1,2, ---
and let t;, u;, 7,7 = 1,2, - -+, r satisfy the following conditions:

Q) cStis - 4 < ds cfu - 2w <d

2) a+B=s+2(s=1)whenevera(=1) of theu,’s coincide, say equal to ¢,
and B(=1) of the t/s agree with the same point ¢.

(3) No more than s + 1 consecutive ¢/s (or u;’s) coincide.
Let M, (¢, ) be defined as follows:if f < t, < -+ < franduy < us < -+ < u,,
M, (t, w) is the matrix || ¢, (¢, u;) [|7,521 - I wjpm1 < Ujy = Ujoyr = =+ + = Ujpin-1
< ujpen we replace the (jo + ¢)th column vector, 1 = ¢ = h — 1, of
llos @iy uj)||iia by (d'os(ty, u)/du’Yumuj,, v = 1, -+, r. A similar adjustment
is used on the rows of the matrix when ¢; values coincide, any sth derivative being
taken from the right. We let D, (¢, u) be the determinant of A/, ({, u). The result
of Karlin and Ziegler is that under conditions (1), (2) and (3), D.(¢, u) = 0
always and

(3.1) D,(t,u) > 0= tien < ui < i, t=1,2 - ,r

where for ¢ < s + 1 only the right hand inequality is relevant. For any vector
of funetions f(z) = (fi(z), - -+, fa(z)) and vector of constants ¢ = (t, -+, &)
whereti < 6, < -+ = t, we let M (¢, f) be the matrix with the vector f(¢;) in the
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2th row. If ¢; values coincide then the successive rows are replaced by derivatives
as in the definition of M, (¢, u).
LemmA 3.1. Let f denote the vector of functions

(32) 1 z, "'33;8:(3; - Ei)+8-)\i7 ) (x'— si)+‘ T = 17 Tt h;

where0§,fs—lz—1 <, h.

Lett = (1, - ,t) wherer = s + 1+h+ Z,_lkj,nomorethan =N+ 1)¢
values are &; and no more than (s + 1) t; values coincide. Then M (t, f) is non-singu-
lar if and only if

(33) by < &< bstotyi_y 1= 1, 2’ Tty h

where yi = 25 (N 4+ 1),8=1,2, -+, b, v = 0.

Proor. The result is an application of the Karlin-Ziegler result with ¢ = a — ¢,
d =b, where for the u; values we choose s 4+ 1 equal to ¢ and N\; + 1 equal to
&y 1= L., h.

It is then seen that the matrices M, (t, u) and M (2, f) are non-singular together.
The inequalities (3.3) are equivalent to those in (3.1).

The proof of our main theorem will require a somewhat delicate analysis of
the zeros of polynomials constructed using Lemma 3.1. This is due mainly to the
fact that spline polynomials are not infinitely differentiable and non-trivial
spline polynomials may vanish identically on intervals between knots. All sys-
tems of functions we shall use will be linearly independent so that a linear com-
bination of these functions will be trivial or identically zero on (— «, « ) if and
only if all the coefficients vanish.

We shall use the following conventions when counting the zeros of a spline
polynomial P(z). (See Karlin and Schumaker (1967).)

(a) no zeros are counted on any open interval (¢:, &) if P(z) = 0 there.

(b) the multiplicity of a zero z = &:,¢ = 1,2, -+, his counted in the usual
manner, i.e., z is a zero of order r if

PP?@ =0, j=0,1,---,r—1, P7@)#0.

(¢) if P(x) = 0on (£, &) and X0 on (£, £:41) the zero at £ is counted as in
(b) using right hand derivatives. Similarly we use left hand derivatives for
P(z) # Oon (§i1, &) and = O on (&, £ia).

(d) If P(z) # 0 on (41, &) or (4, £ia) and

(34) PPti—)=PP@E+) =0, j=0,1,---,r—1
A =P?%¢—)=P”@¢+) =B

then &; is a zero of order
@i) rif AB > 0;
@) r+1if AB < 0
(i) r+1ifAB=0 and B —
r+2if AB=0 and B —

[ry

oo
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It is easily seen that a zero of order r of P (z) is a zero of order r — 1 of P’.
Welet Z (P) denote the number of zeros of P according to the above conventions.
Lemma 3.2. (1) A non-trivial polynomial P in the functions

(35) 13 Ly vy xs’ (IE - Ej)+pj, Tty (x - EJ’)+83 .7 = 172’ e ’h;
where 1 < p; < s,hasZ(P) < s+ D ra (s —p; + 1).
(i) For any fixedz = 0, 1, - - - , h a non-trivial polynomzal P in the functions in

(3.5) and fi(x) = (& — &)™ — (@ — £i)s"" satisfies Z(P) < s + 1 +
251 (s — pj + 1) zeros.

(Note that in each case the maximal number of zeros is one less than number of
functions used.)

Proor. (i) The proof will proceed using an induction on 4 and p; and an ap-
plication of Rolle’s Theorem. For 2 = 0, when no spline parts are present, we
are in the ordinary polynomial case and the result is immediate. For & = 1 we
consider first the case p1 = 1, where only continuity of P is required at & . If
P(@)=0o0n (a, &) or (,1,b) then Z(P) = s. If P(x) %2 Oon (a, &) or (&, b)
and P (&) 5% 0 then Z(P) < 2s. Moreover if (3.4) holds and AB 5 0 then P
has at most r + 1 zeros at &, and at most s — 7 on each side of & so Z(P) =
26 —r)4+r—1=2s4+1—17r = 2s. If AB = 0 then P has at most r + 2
zeros at & and at most (s — ) + (s — r — 1) zeros not equal to & so that again
Z(P) = 2s.

Still letting 2 = 1 we now assume the result true for any sand p, = 1,2, - - -,
7 — 1 and consider the case p; = 2. If Z (P) > 2s — 7 + 1 then by Rolle’s Theorem
Z(P") > 2s — 4. To deduce this, care must be taken with the intervals on which
P or P’ vanishes. For example if P % 0 on (a, &) or (4,b) but P’ = 0 on (a, &)
or ({1, b) then P is constant on the corresponding interval. The induction hy-
pothesis now furnishes a contradiction since Z (P') < 2s — 4.

We now apply an induction on % and p;, = min p,. We first observe (see proof
of Lemma 2.3) that a basis for the linear space spanned by the functions (3.5)
restricted to (¢:, £;) is the system (3.5) omitting the spline parts involving
£, , 8,8, ,&.If pj, = 1 we proceed as in the case b = 1, p1 = 1 using
the induction on h. We then suppose the result true for all s, » and p;, = 1, 2,

-, ¢ — 1 and deduce the result for p;, = ¢ again using Rolle’s Theorem.

(ii) The arguments used here are similar to those used in part (i). The indue- .
tion steps are carried out in the same order and will be omitted.

Lemma 3.3. Constder the functions (3.5) where s = 2n and for ¢ = 1, -+, h,

(36) pPi=n — k.‘, n — k; Odd;
=n—k;+ 1, n — k; even.

Let \; = 2n — p., assume p; = 3 and consider a set of tvaluesa =t < t, £ 8 =
e Sty < tw = bwerem = 2n + Z?=1 (\; + 1) and at most two of the t;
values are equal to any gien point. If

®3.7) by < &i < baprgviiss i=1,2 - ,h,
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where v; = Zj;l N+ 1),2=1,2,---, h,vo = 0, then there exists a polynomial
P(z) in the functions (3.5) such that
Q) P@t:) =0,¢ = 1,2, ---, m with double zeros at ¢; if t; = tina
(ii) P(x) # 0 on any subinterval
(i) PO+ 1) = —1

(iv) if b;,7 = 0,1, -+, h denotes the coefficient of =™ on (&, £;41) then b; < 0.
(Note that since (ii) holds all of the t; values may be counted as zeros of P, t.e.
Z(P) =m.)

Proor. The polynomial is constructed using Lemma 3.1. The m ¢; values and
tmy = b + 1 are used so that the r in Lemma 3.1is m 4+ 1. We set up the system
of equations for P by requiring that P (¢;) = 0,¢ = 1, - - - , m (appropriate deriva-
tives if ¢; values coincide) and P (b 4+ 1) = —1. By Lemma 3.1 the resulting sys-
tem of equations has a non-vanishing determinant. Therefore the polynomial P
exists and conditions (i) and (iii ) are satisfied. In order to prove (ii) it suffices to
show that P cannot vanish at a value ¢, distinet from the ¢;,¢7 = 1, ---, m. If
P did vanish at some other point we consider the set to, 4, - - + , » in non-decreas-
ing order. If we renumber this set the new subscripts can be increased by at
most one. Thus for the new system the inequalities (3.3) hold since we have
shifted the value s + 21in (3.3) to 2n 4+ 1 = s 4 1in (3.7). Therefore the poly-
nomial P is identically zero which is a contradiction.

Now consider part (iv). Let p = p;, = min p; and consider the derivative
polynomial P*~" (z) whose highest coefficient is 2n — (p — 1). P(z) has 2n +
3% (\ 4 1) zeros so that P (z) has at least 2n + Dt (A + 1) —
(p — 1) distinet zeros. Since P (z) does not vanish on any subinterval we may
assume that none of these zeros are counted in any open interval on which
P () vanishes identically. Applying Lemma 3.2 we see that P* " (z) has

(38) =2n — pi, + 1+ 25" (\ + 1) zeros on [a, £;,], and
(39) =20 — py + 1 4+ 2ieipn O\ + 1) zeros on [£,, b].

Adding these two numbers we find their sum to be exactly 2n + > o1 (\; + 1) —
(p:y — 1) so that equality must occur in (3.8) and (3.9). Moreover these are all
distinet zeros so that if £;, is a zero it can be counted in only one of the intervals
la, £;,) and [£;,, b]. In this case (3.8) and (3.9) may be written using [a, &) and
(Eio ) b]

If b, > 0,then P(x) — « asxz — + ».Since P(b + 1) = —1, the polynomial
P then has a zero above b + 1. However P has a maximal number of zeros on
[a, b]. Therefore b, < 0. Since the number m is even, P(a — 1) < 0, so that we
also have by < 0. Using the maximal number of zeros of each derivative we see
that P®™ (z) < 0 to the right of its largest zero on (a, b). Since the number of
zeros of P® ™ (z) on (¢4, b) given by (3.9) is even we conclude that
P (¢,) < 0. We extend P® P (z) to the left of £i, using its expression on
(%4y 5 £ip+1)- Since this new polynomial already has a maximal number of zeros on
(i, , b) it follows that b;; = 0. Similarly b;,—; = 0. We now consider the new

polynomial and differentiate up to the value min;<;j<x p;, thus deducing, as
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above, that additional b; values for %< j < h are <0. Continuing in this manner
on both sides of £;, we may conclude that b; < 0,0 < j < h.

Lemma 3.4. Let S(u) consist of n 4+ D ri[k(n + k; + 1)] points in the open
interval (a, b) and suppose S (u) has less than or equal to

n—14 2 EaEm+ ki + 1))

points on the open interval (¢; , £p) fore=0,1,--- A —11=0,1,--- ,h—1.
Then there exists a set of polynomials {P;(x)}i—o (one for each interval) where P; 1s
a polynomial in the functions

(3.10) Lz, oo, a0 (@ )%, e, (@ — )™, j=1,2,--,k;
where
gG=n—ki—1, n—k; odd, j=1,2,-,h
=n —k;, n — k; even;
and the function

fi@) = (@ = £)4" — (@ — Eapn)y™

such that

(1) the coefficient of fs is one,

(2) Pi(z) = 0 for x e S(u),

3) Pi(z) = 0 for all z,

(4) Pi(x) > 0 forxelt, fal, x2S (n).

ReMARK. It can readily be seen that the conditions on S (u) are incompatible
if k; = n — 1 forsome j. In this case ¢; = 2 for all j. Further, if k; = n — 2 for
some j then & £ S (u). The polynomial we construct is actually unique so that if
kj = n — 2 then P;(x) = Oforz > & ifj 2 ¢ + 1 and Pi(z) = O for x< & if
J = 1. For example if k; = n — 2 for all j then S (u) must have n — 1 points in
(@, &) and (& ,b),n — 2 points ineach (¢, £;41),7 =1, -- - , h — 1 and one point
at each £; . The polynomial P;(z) in this case vanishes on [a, b] n (&, £i41)°.

Proor. We consider a sequence ¢, -« , ¢ in non-decreasing order, where
m=2n+23 " [k(n+k;+ 1)]and 4 = &, = 1st point in S(u), £; = ¢ = 2nd
point, ete. We construct the polynomial by taking a linear combination of the
functions (3.10) and equate it and its derivative to —f; at the points in S (u)."
Welet\;=2n—1—g¢;,7=1,2, -+, h. The conditions of the lemma guarantee
that (3.3) holds with s = 2n — 1. Therefore the determinant of the resulting
system of equations is non-zero by Lemma 3.1. Thus a polynomial P; in the
functions (3.10) and f; exists satisfying (1) and (2). Moreover it is unique and
has at least a double zero at each point in S (u).

Suppose that Pi(z) = 0 for zelt;, £71] where b = j = ¢ + 1. If we set

Q) = Pi(x), x=¢;
= 07 x> Ei;
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then @ satisfies (1) and (2) and is a linear combination of (3.10) and f;. Since
P;is unique P;(z) = O for all z > ;. A similar result holds for j + 1 = <. Thus
there is a maximal interval [& , £&] C [a, b], which contains [£;, £:.], such that
P, # 0 on any subinterval.

We now proceed as in the proof of Lemma 3.3 confining ourselves to the sub-
interval (£, &). Observe that if « = 1(8 < &) then P;(x) has a zero of order
9 (gs) at £a (&)

We shall suppose that « = 0 and 8 £ h; the other cases may be treated in a
similar manner. Since (3.3) holds P; has at least Zf=1 (\; + 1) zeros on (a, &)
and ¢g zeros at f. Moreover \s 4+ ¢ = 2n so that P; has at least
2n + 1 + E?Zi (\; + 1) zeros which is the maximal number allowed by Lemma
3.2. Therefore P;(x) # 0 on [a, &) for x #% ;. Now if & £ S (u) then there are at
most A = 2n — 2 + > g1 (\;+ 1) ¢; values in (£, b) and hence P; has at
least 2n 4+ D iy (\y 4+ 1) — A = 2 4+ 2.6 (A\; + 1) zeros in (a, £&). In this
case P;has 2n + 3 + 2521 (\; + 1) zeros in (a, &) contradicting Lemma 3.2.
Thus P;(x) # 0 on the closed interval [a, &] provided x # ¢; . Therefore con-
dition (4) is true provided we can show that (3) holds.

We modify the polynomial P; by omitting the spline parts (z — §;),* for
j = B. Suppose B = ¢ + 1. Since ¢ is even and the coefficient of f; is one the
polynomial P; must be non-negative; otherwise the modified P; would have an
additional zero on [, « ). Therefore assume 8 > ¢ 4+ 1 and let ¢ = ¢;, =
min; <j<g ¢; . As in Lemma 3.3 we may deduce that the number of zeros of
pD (x) on each of the intervals (a, &;,) and (&;,, &) is the maximal number
allowed by Lemma 3.2. Continuing up to the next smallest value of ¢; — 1, ete.,
we finally conclude that P," " (z) (r = ¢s_1) has a maximal number of zeros on
(£s_1 , £s]. Therefore the coefficient of z** " in P;(z) on (£s_1 , £) cannot be zero.
If P;(z) = 0 this coefficient must be <0 since, as above, ¢z is even and the modi-
fied P; already has a maximal number of zeros on (a, £]. Now consider
¢ = ¢j, = miniccpq; again. If (&, &) C (a, &,) then P has an even
number of zeros on (&;,, b) and is <0 for x > & if P;(z) = 0. In this case
PV (E,) < 0.If (&, £41) © (&, , b) then P (z) < Oforz > & . We take
P on whichever subinterval contains (£;, £41). In either case P{ ™ (z) < 0
to the right of the endpoint. Now if jo, = ¢ + 1 we obtain a contradiction since
P extended to the right of £;1 has a highest coefficient which is even and
positive. If jo ## ¢ + 1 we continue differentiating on the subinterval containing
(¢;, Eiq1). Eventually we arrive at a contradiction as above.

Lemma 3.5. Let S(u) satisfy the hypothesis of Lemma 3.4 with k; £ n — 2 (or
g;i = 2) and let g denote the vector of functions (3.10). Then there exists a measure v
such that fgd(u —u) =0and SG) & S(u).

Proor. The proof proceeds along the lines of the proof in Karlin and Studden
(1966b, pages 138-139) and we shall be brief. The system of functions (3.10) is
a WT-system. A perturbation of the vector with a Gaussian kernel produces a
T-system. The measure u is an “upper principal representation’ of the correspond-
ing moment vector and the measure v is a limit of measures with mass at the end-
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pointsaand b and n — 1 + D 5= [5(n + k; + 1)] points of (a, b). Thus » = p.
Moreover S (v) C S (u) is readily seen to imply that v = u since f gd(v — u) =0.

4. Proof of Theorem 1.1. The proof of Theorem 1.1 is a combination of the
following two lemmas.
LEmMA 4.1. A destgn p is admaissible if

41) S() has =n — 1+ 2L Em + k; + 1)) points on
(i, Eipiqn) for =0,1,---,h —1; 1=0,1,---, h.
Proor. Since a subspectrum of an admissible spectrum is admissible it suffices
to consider the case where S (u) satisfies (4.1) for! = 0, 1, --- , b — 1, equality
holds for I = h and both of the endpoints are in S (u).
We consider a sequence of points
bty o obmy,  (m=2n+22 00 F0 +k + 1)
where t; = a, &z = §3 = 1st pointof S(u) in (a, b), -+, tn = b. Let \; + 1 =
2b(n + k; + 1)), = 1, 2, .-+, h. By condition (4.1) there are <2n — 2

4+ 25i5i (4 1)t valuesin (a, &) and <2n — 2 4 3 5_ci (\; + 1) ¢ values in
(£, b). Therefore if v; = > ;o1 (\; + 1) then

(4.2) Ei é th+'y,;._1 = t2"+1+7i-1
and
(4.3) t‘y; = tl-{-‘y,' é E'L .

If equality occurs in (4.2) we shift the odd numbered point feny14y;_, so that it is
greater than £; . Similarly we shift the even numbered point so that ¢,, < &; if
equality occursin (4.3). We shall assume for the moment that k; < n — 2. In
this case S (u) is contained in the new sequence of points since in order to shift a
double ¢ value both right and left we need v; = 2n + yiyor \; + 1 = 2n. How-
ever\;+1=n-+k;+ 1= 2n—1 (provided k; = n — 2). The new ¢ sequence

satisfies

by; < &i < bangitvioy s t=1,2 -+, h.
Then, by Lemma 3.3, there exists a polynomial P (z) in the functions
L, -, 2™ (@ — )™, o, (@ — 8™, i=1,---,h;
where
pi=n—k;, n — k; odd;

=n—ki+ 1, n — k; even;

such that (i) P (z) vanishes only on the modified set of ¢; values.
@ii) P(xz) = 0 on (a, b) except between modified ¢ values.
(iii) the coefficient of ™ on each (&, £i1) is <0.
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If ki = n — 1 for some ¢ the conditions (4.1) imply that S(u) has n — 1
+ 2oi=i3( + k; + 1)] pointsin (a, &) andn — 1+ 22 B + ks + 1)]
points in (¢;, b) and a point at £; . We then use the above result to construct the
polynomial P on the segments where k; = n — 2 separately. The “combined”
polynomial satisfies (i), (ii), and (iii) above.

Now condition (iii) allows us to write

44) P() =D jtoa;x— )" + R()
=200 @+ -+ a)(@—E)" — @ — &)™) + R@)

where ap + -+ + a; £ 0. The part involving R (z) involves powers <2n — 1
so that if » = u then by Theorem 2.1, part 1, [ Rd(» — u) = 0. Also P (z)
vanishes on S (u) so f P du = 0. Therefore if » = u part 2 of Theorem 2.1 and
the expression (4.4) implies that fP dv = 0. Now we may assume that the ¢;
values were modified so that P (x) = 0 on S (v). Since P (z) vanishes only on the
modified ¢; set this implies that S(») C modified ¢; set, which, in turn, implies
that v = u by Lemma 3.1. Thus u is admissible.

LeMMa 4.2. A design u such that S (u) has =n + D iy [(n + k; + 1)] points
i (a, b) vs tnadmissible.

Proor. We may assume that S (u) consists solely of exactly

n+ Dtk + ki + 1))

points in (a, b). We proceed by induction on /. Note the result is true for A = 0.
We assume the result true for 0, 1, --- , A — 1. Then we may also assume that
S (u) satisfies (4.1) forl = 0,1, --- , h — 1; otherwise u is not subadmissible and
hence not admissible by Lemma 2.3. Let ¢ (z) consist of the vector with compo-
nent functions

1,x, -, (@ — £, o, (@ — £)77 i=1,2 -,k
where
pi =n — ki, n — k; even;
=n—ki—1, n — k; odd.

If k; = n — 1 for some ¢, the conditions (4.1) forl = 0, --- , h — 1 and the fact
that S(u) hasn + Dty [ (n + k; + 1)] points in (a, b), imply that & & S (k)
and w is inadmissible on (a, &) or (§;,b). Thus we assume k; < n — 2so0p; = 2.
Consider the » of Lemma 3.5 and the polynomials {P;(z)} -, of Lemma 3.4. Then
JPidp —p) = [fi(@)d(p —u) 20,4=0,--- ,hand [ fi(z)d( — u) > 0
for some 7. Also | ¢d(v — u) = 0. The conditions of Theorem 2.1 are satisfied
and thus» = p.
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