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WEAK QUALITATIVE PROBABILITY ON FINITE SETS

By PerEr C. FISHBURN

Research Analysis Corporation

1. Introduction. Recent works on intuitive and subjective probability [3, 9,
12, 13, 16, 23, 24] give axioms for a binary relation < (“is not more probable
than’) on an algebra that imply the existence of a probability measure P on the
algebra that strictly agrees [A < B« P(A) < P(B)] with <. Kraft, Pratt, and
Seidenberg [9] were the first to present necessary and sufficient conditions for
strict agreement when the set S of states is finite. Scott [16] rephrases these condi-
tions.

This paper examines several finite-S axiomatizations that result in partial
rather than strict agreement. They take < (“is less probable than’) as primitive.
In all cases < is asymmetric so that at most one of A < B and B < A holds for
any 4, BC S.

In the next section we shall consider the case where P almost agrees with <;
A < B= P(A) < P(B). Adams [1] gives necessary and sufficient conditions
for this case. We shall also consider slightly stronger sufficient conditions that
seem natural in the context of qualitative probability.

Section 3 presents even stronger conditions that yield a P and a ¢ = 0 such
that A < B& P(4) 4+ ¢(A) < P(B). In connection with this we shall present a
theorem similar to Stelzer’s [19] that gives necessary and sufficient conditions for
a P and a real number 0 < e < 1suchthat A < B P(4) + ¢ < P(B).

All our theorems are proved using a theorem of the alternative from linear
algebra [2, 6, 21] whose broad applicability to relation-representation problems
has been noted elsewhere [1, 5, 16, 22]. This theorem is in fact very efficient for
uncovering conditions for numerical representation in linear systems, and it has
been used in this way for the theorems of this paper. It is presented in Section 4
where proofs of two theorems of Section 3 are given.

Throughout, we define A ~ B < (not (4 < B), not (B < 4)). Our main
divergence from the strict-agreement axioms [9, 16] is that we shall not assume
that ~ is transitive. This adds a dimension of reality to the theory of qualitative
probability, and is an attempt to formalize the vagueness in judgment that
Savage [14, 15] and others [7, 8, 18] have recognized. Now A ~ B might have one
of several interpretations, including the notion that A and B are equally probable,
that there is not a definite feeling that A is less probable than B or vice versa,
or that A and B are incomparable [7, 8]. Whatever the interpretation, an insist-
ence that ~ be transitive seems questionable. For example, suppose 4, B, and C
are the events ““it will rain here within the next 48 hours,” “it will rain here within
the next 49 hours,” and ‘‘a Republican will be elected President in 1980.”” Then
A < B, A ~ C, B~ (C might well apply for an individual.
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2. Almost-agreeing measures. Throughout we shall assume that S is finite.
8 is the set of all subsets of S. With A ¢8, A(s) = 1 meansthatse A; A(s) =0
otherwise, and

(1) T A; = Y Bie >t Aj(s) = D74 Bi(s) foreach seS.

S A; = D7 B;if equality holds for each s on the right in (1).

Our first theorem is a particular application of Adam’s [1] Theorem 1.3. His
proof uses the theorem of the alternative.

TarEoREM 1. There ts a probability measure P on $ such that

@) A< B=P(4) < P(B), forall A, Bes,
of and only f, for all A1, As, -++, B1, By, -+ tnSandm = 1,
Al. 074,237 B;, A; < B for eachj < m) = not (A < Bn).

Among other things, Al implies that < is irreflexive and asymmetric, that
ACB=(A<BorA~B),andthat (4; < 43,42 < A3, -+ ,Ana1 < Ap) =
(A1 < Anor Ay ~ 4,,). Al does not imply that & < S, or that < is transitive,
orthat A < C when A € Band B < C.

To illustrate this last assertion suppose thatS = {r, s, {} and < = {{r, s} < {¢}}.
Then P almost agrees with < whenever P(r) + P(s) < P(¢). But (4 C B,
B < C)= A < ( fails since {r} ~ {¢}.

In qualitative probability it seems natural to suppose indeed that (4 C B,
B < ()= A < C, and this is reflected in the next theorem.

TrEOREM 2. There is a probability measure P on $ that satisfies (2) if, for all
A,B,C,A1, -+ ,B1,---mmSandm = 1,

Bl. (O.7 A4, = 2.7 B;, A; < B; for each j < m) = not (Am < Bn),
B2. ACBB<(C)=4<0C.

Although Bl is clearly necessary for (2), B2 is not. B1 is of course implied by
A1, but the converse if false since B1 is not sufficient for (2). With § = {r, s, ¢}
and < = {{r, s} < {t}, {r, &} < {s}}, Bl holds, and any measure @ that satisfies
(2) must have Q (r) negative. Although B1 and B2 do not imply the companion
of B2, (A < B, BC ()= A < C, this could be added to B1 and B2 with little
(if any) loss in applicability.

Theorem 2 is easily proved using Theorem 1. Suppose Al fails with D 1 4; =
> 7 B;and 4; < B; for all j. It follows from (1) that there are C; & $ such that
C;C Ajforalljand D7 C; = Y7 B;. Then, if B2 holds, C; < B; for all j, which
contradicts B1. Hence not A1 = not (B1, B2), so that (B1, B2) = Al.

3. More precise but still imperfect judgment. Our next set of conditions
strengthens B1 and B2 and adds a new condition (C3). In strengthening Bl we
shall use a binary relation < * on § defined from < as follows:

(3) A<*Bo[C<A=C<B, forall Ces],
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4) A<*BeA<*B andnot (B <™4).

In words, A <™ B < any event less probable than 4 is also less probable than B
and there is some event less probable than B that is not less probable than 4.
The following theorem is proved in the next section.
TrrorEM 3. There is a probability measure P on 8§ and a non—negative real valued
Sfunction ¢ on $ such that

(6) A<BeP@)+od)<PB), foradl A Bes,

if, forall A, B,C,D, Ay, -+, By, --- inSandm = 1,

Cl. QT 4; =27 B;,A; <* B, for eachj < m) = not (Am <* By),

C2. ACSBB<(C)=4<C;4<B,BC(C)y=4<¢C,

C38. A<B,C<D)y=A<Dor(C<B.

C4. not (4 < A). :

In preceding cases, C4 was implied by Al or B1, but it needs to be stated ex-
plicitly in the present case, since it is not implied by C1, C2, and C3. For example,
with S = {s}, C1, C2, and C3 are seen to hold when < = {& < &, {s} < {s},
& < {s}, and {s} < I}

Asymmetry and transitivity for < follow from C3 and C4, so that < is a strict
partial order. When this is the case, A < B= A4 <™ B so that C1 = B1.

C1, C38, and C4 are necessary for (5) but C2is not. To show the necessity of C1
suppose )v A; = >.v By and A; <™ B; for all j. Then, for each j, there is a
C; ¢ 8 such that (C; < B;, not (C; < A4;)) by (3) and (4). Hence, by (5),
P(C;) 4+ 0(C;) < P(B;)and P(4;) < P(C;) 4+ o(C;), so that P(4;) < P(B;).
Summing over j and using Y A; = D B; we get 0 < 0. Hence C1 is necessary for
(5).

To show that C2 is not necessary for (5) let S = {r, s} with P(r) = 4,
P(s) = 6,0(F)=.7,0()=.10()=.1,0(S) = 0, and define < according
to (5). Then {r} < {s} since P(r) 4+ o(r) < P(s), but not (& < {s}) since o
(@) > Ps). |

As noted above, the axioms of Theorem 3 imply those of Theorem 2. To show
that the converse is false let S = {r, s, ¢} with {r} < {s}, {t} < {r, s}, and < ap-
plying elsewhere only when it can be deduced from these two with the aid of B2.
Then, with P(r) < P(s) and 0 < P(t) < P(r) + P(s), (2) and Bl and B2
hold, but both C3 and the second half of C2 fail.

Finally, an objection to C3, which is a counterpart of an axiom used in prefer-
ence theory [4, 16, 17, 20], is in order. Let A and B be the rain events used before
(within 48 hours, within 49 hours), and let C and D be similar to each other but
rather different than A and B: for example, C = “it will snow in Chicago within
48 hours after noon on January 1, 1978,” D = “it will snow in Chicago within 49
hours after noon on January 1, 1978.” Then, with A < B and C < D, it might
happen that A ~ D and B ~ C.

We now consider a theorem that is very similar to a theorem proved by Stelzer
[19]. Because it differs slightly from his and its proof further illustrates the use of
the theorem of the alternative, a proof will be given in the next section.
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TurEOREM 4. There 1s a probability measure P on § and a real number €, with
0 < e < 1 such that

6) A< BePA)+e< P(B), foral A,Bes,
if and only if, for all A, B, C, Ay, --- , By, --- inSand allm = 1,
D1. Q. A4; = 27" B;,not (B; < Aj)forj=1,---,mand A; < B; for

j=m-+1,---,2m — 1) = not (Aam < Ban),

D2. ASBB<(C)=A4<C;A<B,BC(C)=4<0¢,

D3. not (& < &),

D4. & < S.

If (6) holdsbut D1 fails then )1 P(4;) < D1 P(B;) + meand >y P(4;)
+ me < Y mia P(B;), which on adding and using D i" 4; = »_;" B; yields
0 < 0. Hence D1 is necessary for (6). D2, D3, and D4 are also clearly necessary.
D4, which is required by (6) and ¢ < 1, is not implied by preceding axioms.

With (41, 42) = (By, B:) = (&, A) for D1, D1 and D3 imply not (4 < 4),
which is C4. D2(=C2) and D3 imply not (4 < &), forif A < & then & < &
by D2. D1 and D3 imply that < is asymmetric on using (4., --- , 44) = (&, I,
A, B)and (Bi, -+, Bs) = (&, d, B, A) in D1. Suppose A < Band B < C,
andnot (4 < C). Thenwith ((4;)) = (&,C,4,B)and ((B;)) = (J,4,B,C),
D1 is contradicted when D3 holds. Hence D1 and D3 imply that < is transitive.

Stelzer’s interest in (6) stemmed in part from a similar (but nonadditive)
model in preference theory that is based on Luce’s [12] notion of a semiorder
[16, 17, 20]. The semiorder axioms are irreflexivity, C3,and (4 < B,B < C) =
(A < D orD < (C). The latter two follow readily from D1. Suppose C3 fails
with A < B,C < D,not (A < D), not (C < B). Then D1 fails with ((4;)) =
(D, B, A, C) and ((B;)) = (4, C, B, D). Suppose the other semiorder axiom
fails with A < B, B < C, not (A < D), not (D < C). Then D1 fails with
(4;)) = D, C, A, B) and ((B;)) = (4, D, B, C). Hence D1 and D3 imply
that < on § is a semiorder.

We have noted prior to Theorem 4 a case where C3 might not hold. The other
semiorder axiom might very well fail in the situation where A, B, and C refer
respectively to rain within 48, 49, and 50 hours, and D = “it will snow in Chicago
within 49 hours after noon on January 1, 1978.” It would not seem alarming if,
for some individual, A < B < Cand D ~ A4, D ~ B, D ~ C.

To conclude this section we state a theorem that is equivalent to those proved
in [9, 16].

TraEOREM 5. There 1s a probability measure P on § such that

A< BeP(A)<P(B), foral A ,Bes,

if and only if, for all s e S, all Ay, --+ , By, --- tnSand all m = 2,
El. Q.TA4;=D>.1"B;,A; < Bjor A; ~ B;foreachj < m)=>not (An < Bn),
E2. not ({s} < &),
E3. & < 8S.

4. Proofs for Theorems 3 and 4. A form of the theorem of the alternative
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[1, 2, 6, 21] that is applicable to each of the theorems stated above is:

THEOREM OF THE ALTERNATIVE. Suppose a', - -- , a™ are N-dimensional real
vectors and 1 < K < M. Then either there is an N-dimensional real vector p such
that

0<pd for k=1,--- K,
=p-ak fof,« k:K—i—l’...’M’

or there are nonnegative numbers r1, - -+ , g at least one of which vs positive and
numbers g1, ++ , Tu Such that

ZI]:{=17'kaik=0 for i=1,---,N.

Throughout the proofs of Theorems 3 and 4 we shall let n be the number of
statesin S with 8 = {s1, - - -, s,.}. Without further elaboration we note here that,
in both theorems, the axioms imply that < is a strict partial order, that & < A4 or
& ~ A for each A ¢ 8, and that exactly oneof A < B, B < A, A ~ B holds for
each A4, B ¢8.

In both cases we shall argue that only the 0 < p-a* part (and not the 0 = p-a*
part) of the first alternative needs to be used. For Theorem 4, which is proved
first, N = n + 1, the extra dimension arising from e. For Theorem 3, N = n + 27,
where 2" is the size of 8, the number of argument for o.

SUFFICIENCY PROOF OF THEOREM 4. Throughout, D1 through D4 are assumed
to hold.

Suppose (6) holds with 0 < e < 1, with

M) P4) + e < P(B) for all A, B such that A < B,
(8) P(A)=P(B)+e¢ and PB) = PA) + ¢ for all A, B such that
A ~ B.

Now if any =< in (8) is =, we can make it < by increasing e slightly without
disturbing < in (7) or e < 1. And if ¢ = 0 the same slight increase can be made.
Hence, if there is a (P, €) solution then there is such a solution with < holding in
(8) and € > 0. If, in the latter solution, P (s) = 0 for one or more s € S, we can
alter P by making each such P (s) > 0 (but definitely <e) and reducing larger
P (r) by a compensating amount without disturbing any of the < in (7) or in
(8) modified. Hence (6) holds with 0 < e < 1, if and only if there is a (P, €)
such that 0 < e < 1, P(s) > Oforall s, and (7) and (8) hold with < throughout.

These changes have been made to facilitate application of the Theorem of The

Alternative. For its use we take p = (p(s1), -+, p(sa), €) inn + 1 dimensions.

For the theorem, (7) and (8) give rise to

(7% 0<pa or Dap(s)+e<Dsp(s) (forallA < B)
* k

(8 ) 0<pa or Ypp(s) < 2ap(s)+e (for all 4 ~ B)

0<pa or D2ap(s)<sp@)+e
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where k& runs through successive, nonrepeating positive integers, each a* is an
n + 1 dimensional vector of —1’s, 0’s, and 1%, and (8*) includes all A ~A4
cases. Since we know that if there is a solution then there is one in which P (s) > 0
for all s, we add the following to (7*) and (8*):

9*) 0< p-d or 0< p(s) (for all s such that & ~ {s}).

If (7%) through (9%) has a solution then it must be true that 0 < € on using
A~ Ain (8%),and that p(s) > Oforall sin S by (7*) and (9*) and the fact that
& < {s} or &F ~ {s} for each s. Normalizing the system by dividing everything
through by Es p (8), s0 that the sum of the new p’s equals one, we have that the
new e (i.e., the old e divided by X s p(s)) must be less than one by (7*) since
& < S asin D4.

It remains to show that (7*) — (9) has a p solution. Suppose that there is no
p solution. Then, by the Theorem of The Alternative, there are nonnegative

numbers 71, 72, +++, 7%, -+, rx (where K is the total number of statements in
(7*) through (9)), at least one of which is positive, such that
(10) S mad =0 for ¢=1,---,n+ 1.

Because of the finiteness of the system and the rationality of the a*, rational and
hence integer r; satisfy (10). We can then view r; as the number of times the
kth inequality in {0 < p-a®:k = -, K} comes into play in (10) Now since
1 =n 4 lin (10) refers to ¢, and a,.+1 = —1 when k applies to (7%), and a1 = 1
when k applies to (8*), the sum of the r for (7*) is the same as the sum of the
7 for (8%). Let this common sum equal m. Let the m A ~ B statements (with
possible repeats when 7, > 1) for (8%) be A4y ~ By, - -+ , An ~ B, with the con-
vention that the ordering of pairs designates which half of (8*) is used: that is,
Aj~ Bjrefersto D4, p(s) < ZB, p(s) + ein (8%). Let them A < B statements
for (7*) be Am.,.l < Buya, *+* y Asm < Bon . Finally, let ¢ be the sum of the r; that
apply to (9%), with the corresponding statements & ~ {s'}, -+ - , & ~ {s'} where
each s’ ¢ S but s’ may refer to any one of the s, . .

It is easily seen that m = 1, forif m = 0 then ¢ > 0 and (10) would necessarily
fail for any ¢ whose s; was involved in a (9*) statement for which 7, > 0. Hence,
by the failure of a solution to (7*)-(9*) we obtain m = 1 and

AINBI;”',AmNBm; Am+1<Bm+l;"',A2m<B2m,

gN{sl}’ e 7QN{st}
where, by (10) for each 7 < n + 1, we have
(11) nglA(st) = J_lB (81,) =+ ZJ—I (81,), T = 1’ P ()

sothat D> A; = > B; + 2. {s’}. If { = 0 we have an obvious violation of D1,
To show a violation of D1 when t > 0 we need to get r1d of the {s}.

~ Suppose then that ¢ > 0. Using ) 4; = > B;+ > {5}, we can get rid of one
(s} at a time by reducing an A4; that contains the s; correspondmg to {5’} to
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A; — {si}. Consider the first reduction with {s;} = {s'}. Suppose first that s; € 4;
form < j £ 2m. Then, by D2 and 4; < B;, A; — {si} < B;.Suppose next that
sie A;forj £ m, with 4; ~ B;. We want not (B; < 4; — {s:}). To the contrary
suppose B; < A; — {s;}. Then, by the other half of D2, B; < A;, which is false.
Hence not (B; < A; — {s;}). Continuing this for each successive {s’} it is clear
that we arrive at

IlOt(Bj<Aj/) j:]_,...,m
Aj < B; j=m4+1, -, 2m
ZAf,=ZBf,

which violates D1.

We have thus obtained a contradiction to the supposition that there is no p
solution to (7*)-(9*) when D1 through D4 hold, and'the proof is complete.

Proor or THEOREM 3. Throughout, C1 through C4 are assumed to hold.
With < *and < * defined on $ as in (3) and (4), suppose not (4 <* B) and not
(B <™ A). Then there are C, D ¢ 8 such that {C < 4, not (C < B), D < B, not
(D < A)}, which contradicts C3. Hence < * on 8 is connected and not (4 <™ B)
= B <™ A. Suppose A ~ Band B < C. Then, if C <* 4, (3) implies B < 4,
which contradicts A ~ B. Hence

(12) A~BB<C)=4<*C.

We shall use this later in the proof.
Suppose (5) holds so that

(13) PA)+o(4) < P(B) for all A, B such that 4 < B,
(14) P(A) = P(B)+o(B)and P(B) = P(4) +a(4)
for all A, B such that 4 ~ B.

Since 4 ~ A4, (14) giveso(4) = 0 for all A ¢ 8. By an analysis like that used in
the proof of Theorem 4 it is clear that if (13) and (14) hold then they hold also
for some (P, o) for whicho(4) > Oforall A €8, P(s) > Ofor all s ¢ S, and every
=< in (14) is <. We shall use this fact in applying the Theorem of The Alterna-
tive.

For that theorem we take

p= (@), -, @), 0 (), o(fs}), -+, 0({sa}), o1, s}), -+, a(8))
in n + 2" dimensions. With the changes noted above, (13) and (14) give rise to

(13%) 0<pa or 2up(s)+o(d)<Xsp(s)
(forall A < B)

(14%) 0<pd or 2up(s) <2Zap(s) +o(B)
(for all A ~ B)

0<pa or Xpp(s) <2ap(s) +o(4)
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to which we add
(15™) 0<pad or 0<p(s) (for all s such that & ~ {s}).

In (13%)-(15™) k runs through successive, nonrepeating positive integers and
each a® is an n + 2" dimensional vector of —1’s, 0’s, and 1’s. (13*) and (15%)
give p(s) > O for all 5, and (14™) implies 0 < o(4) for all 4 ¢ 8. If (13%)-(15%)
has a p solution, normalization leads to a corresponding solution for (5).

It remains to show that (13*)—(15) has a p solution. To the contary, suppose
there is no p solution. It then follows from the Theorem of The Alternative and
the rationality of the a;* that there are nonnegative integers ry, -+« , 7%, -+ , x
(where K is the total number of statementsin (13*)-(15%)), at least one of which
is positive, such that

(16) 2hana’ =0  i=1-,mn4 1,04 2"

From (13*) and (14*) and ¢ > n in (16) it follows that the number of statements
from (13*) out of the total of > r that have a given o (4 ) on the left of Y4 p (s)
+ 0 (A) < 25 p(s) is equal to the number from (14*) that have the same o (4 )
on the right of Y5 p(s) < D4 p(s) + o(4). Along with (16) for 7 < n this
means that (16) implies that, for some m = 1, there are Ay, -+, Am, B1, -+,
BuyAmi1, -+ Aosmy Buy1, -, Bom,and {s'}, - -+, {s'} (thelatter for the positive
7%, if any, for k in (15™)) such that A; < Bjforj < m, A; ~ Bjform < j < 2m,
A; = Bymforj=1,--+,m, & ~{s'} forj =1, -+, ¢ and

A =20 By + 2 {5,

where each s’ is one of the s;. Using (12) as derived at the beginning of this proof
it follows that

Af—i-’m<*Bi J=1;-,m
o) N{Sj} J=1 -t
et Ajym = 2071 By + 205 {7},

Using the last expression we can eliminate the {s’} by taking them out of the
Ajim . Letting A}y, denote the reduced A ;.. we then have S " Ajm = 21"B;.
Using both parts of C2 it is easily seen that (se 4,4 <*B)= (4 — {s}) <*B.
Hence A,’~+m <*Bjforj =1, ---,m, and we have arrived at a contradiction of
Cl. Thus, (13%)-(15") has a p solution.
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