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RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS!

By Harorp D. SHANE AND Mapan L. Purr
City University of New York and Indiana University

1. Summary and introduction. The only non-parametric multivariate paired
comparison tests presently available for testing the hypothesis of no difference
among several treatments are (i) the Sen-David (1968) test and (ii) the David-
son-Bradley (1969) test. Both these tests are applicable to situations which in-
volve the preferences of each individual comparison. Both these tests are the
generalizations of the one-sample multivariate sign tests [1]. As such their
AR.E.’s (Asymptotic Relative Efficiencies) with respect to the normal theory
F-test are not expected to be high. In fact the A.R.E. of the Sen-David (1968)
test with respect to the normal theory F-test can be as low as zero (under nor-
mality).

The purpose of this paper is to develop test procedures which could be con-
sidered as competitors to the Sen-David (1968) and to the Davidson-Bradley
(1968) tests. The proposed procedures are based on the ranks of the observed
comparison differences, and include as special cases the multivariate normal
scores and the multivariate rank sum paired comparison tests. For convenience
of presentation we develop the theory when the paired comparisons involve
paired characteristics. Under suitable regularity conditions the limiting distribu-
tions of the proposed test statistics are derived under the null as well as non-
null hypotheses, and their large sample properties are studied. It is shown that
for various situations of interest the proposed procedures have considerable
efficiency improvements over the Sen-David (1968) and the normal theory
procedures.

2. Mathematical model and the proposed tests. Let us consider ¢ treatments
in an experiment involving paired comparisons, and suppose that for the pair
(%,7) of treatments (1 < ¢ <j < t), the N;; encounters yield the random variables
Ziji = (X, Yiju), ! = 1, -+, Ny which are independent and identically
distributed according to an absolutely continuous cdf (cumulative distribution
function) [[s; ) = Il (&, ), 1 £ ¢ < j < t. The null hypothesis states that

(2.1) IIi @ = II @)

where ][] (z) is unknown and ] (z) is diagonally symmetric about 0; that is,
its density m(z) is invariant under the simultaneous changes of signs of all the

coordinate variates.
Let N = % D i1iei 2 71 Ny be the total number of observations. For each
variate separately, arrange the absolute values of the observations in increasing
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order of magnitude. Let
(2.2) asiy = +1 (=1)
if the rth smallest of the [Xa,e,c =1, -+, Nap, 1 < a < b £ tis from the pair

(¢, 7) and the corresponding observation is positive (negative) and otherwise let
(4.9
AxN,r = 0.

(2.3) avis = +1 (—1)
if the rth smallest of the |Ya,o,¢c =1, -+, Nw, 1 < a < b < tis from the pair

(¢, 7) and the corresponding observation is positive (negative) and otherwise let
adi) = 0. Denote

L . R
(24) Twp = Nij D=1 B0y, Traip = Nij Dot Enz va$3)

where Ey;r = Jyi(r/(N + 1),7¢ = 1,2,r = 1, ---, N is the expected value of
the rth order statistic of a sample of size N from a distribution

2.5) vi@) = ¥ @) — v (—2z) if 220,
=0 otherwise, 1 =1,2.

We assume that ¢;* (z) satisfies the following assumptions (cf. [12]):

AssumptioN I. ¢;*(2) is symmetric about z = 0,7 = 1, 2.

AssumerioN I1. N7' 2 [Byiy — ¥ /(N + 1))y, = 0,(N?) where
Mr=a8, 050 1l a<BSti=1,2.

Assumprion III. J.*(w) = ¢ (u) is absolutely continuous, and
|7 )| = |dJ*? w)/dw’] £ Ku(l — )" j =0, 1, for some K and
some 6 > 0;¢ = 1, 2. Further, let

(2.6) Unyi = D jtijwi N?jTM(i,ﬂ , Vi = D et N%ij(i,ﬁ .
Then the proposed test statistic is
2.7) Ly =t it (Unsi, Vi) A7 Uy, Vivis)’

where the matrix (¢ — 1)A is an estimator of the covariance matrix of
(Uw,i, Vu,i) under Hy, to be specified later. The test consists in rejecting H, at
level « if £4 = C., where C, is determined by Py, (€x = C.) = a. It shall be
established that when Hy is true, if (¢t — 1)A4 is a consistent estimator of the co-
variance matrix of (Uy,;, V,:), then £y has asymptotically a central chi-square
distribution with 2(t — 1) degrees of freedom. This provides a large sample ap-

proximation to the critical point C., .

3. Joint asymptotic normality. Before proving the main theorem of this sec-
tion, we introduce a few notations and assumptions.

Let ¢ = (;) denote the number of all possible pairs and label the pair (7, 5)
bya=G—1)+ji— (M 1si<j=<t ThenZ,, - -+ , Zay, are the observa-
tions corresponding to the ath pair. They are independently distributed according
to the coutinuous cdf [[o(z) = [J«(@, 4), 0 = 1, -+, c.
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LetN = > %1 N.and px'® = N./N and assume that for all N , the inequalities
0<po = px® £ 1 — po < 1hold for some fixed py < l/canda =1, ---,c.
Let F1'“ (z), F.'* (y), Hi'” () and Hy® (y) be the marginal edf’s of X,
Yo, | Xo| and | Ve respectively fora =1, -+, c.
F{3 (), Fi% (y), HLS (x) and HS% (y) will denote the sample cdf’s of X,
Yer, [Xa,[ and | Ve, 7 = 1, , Na respectively, fora=1,---,c.
Denote

(1) Fin@) = Daapn“Fi% @), Hin() = 2 oms onHiT (2),
W) = Dem ' F;® () Hj@) = Lo ovH;® (), j = 1,2.

Thus F1,x(x), Hix (), F2.x(x) and H, x(x) are the combined sample cdf’s of
X’s, |X]’s, Y’s and |Y|’s respectively whose population cdf’s are II; (x), Hi(z),
Il () and H,(z) respectively. The distribution function I, (z), and hence
F;® (2),7 = 1,2 may depend upon N, (as for example in Section 4), but for the
sake of convenience this notation is suppressed.

Asin [12], we write Ey;.» = Jws(r/(N + 1)),2=1,2,7 = 1, --- , N and ex-
tend the domain of definition of Jx;to (0, 1) by letting it have constant value over
[r/(N+1), r+1)/(N +1)),r =1.---, N. Finally, let
(3.2) Ji(w) = limpse Jws(uw) for 0<u <1, i=1,2.

With these notations, we may represent T'yjw , J = 1, 2 defined by (2.4)
equivalently as

Twiwy = [omodwiN (N + 1) H;.x(x)) dF§3 ()
(3.3) — [ Ins (NN + 1) Hjw (—2)) dFS% ()
= [FodwiN (N + 1)"H;»(2)) dFS% () + Fi% (—2)],
J=L2;a=1,---,c.
Finally, set
(34) s = [iod;(H;@)) dIF;® @) + F°(—z)],
J=14L2a=1,---,c¢

TreEOREM 3.1. Under the assumptions 1, II and IIL, the random wvariables
NS (Tyiey — i > Taoey — Mwvze ), @ = 1, <+« , ¢] have asymptotically a multi-
variate normal distribution with zero means and covariance matrizx £ = ((o5,s5.48))
where o ijep, 1, ] = 1,2;a,8 = 1, -+-, ¢ are given by (6.15), (6.16), (6.17)

and (6.18).
Proor. We can express Twj,J = 1,2;=1,---,cas

(3.5) Triw = mwia) + Bish + Biah + i Ci,
i=1,2%a=1,-,¢
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where uyj) is given by (3.4),
(3.6) Bi¥y = [J;(H;(@)) dFSR @) + Fi3 (—z) — F* () — F{“ (—2)]
(3.7) By = [fd/ (H;@)Hx(@) — H;@)]dFS @) + Ff°(—2)]
38) Oy = -0 + 1) [LoJ/ H; <x>>H,N<x>d[F‘“><x> + F§3 (—2)]
(3.9)  Cixy = [7=oJi (H;@))[Hjnx @) — H;(x)]
-d[FSR @) + Fi3 (—z) — F (@) — F{ (=2)]
(3.10) Ciny = [f={;(N(N + 1)H;x(@)) — J;(H;(@)) — J; H;(z))
"IN + 1)7Hiw(@) — H;@)]} dIFSR @) + Fi% (—2)]
(3.11) ) = [ {Iwi(N(N 4+ 1) H;n(z)) — JJ-(N(N + 1) H;n (2)))}
diF§R) (x) + Fi3) (—2)]

By virtue of the assumption ITI and the fact that d[F;? (z) + F;® (—z] <

po - dH;(x), it follows that i) is finite. Furthermore, proceeding precisely as
in [12], it can be shown that Cig); = o, (N ) fork = 1,2, 3,4 and j = 1, 2. Thus
the difference [N (Thiw — #wvi > Thrw — brvaa) — ]\ﬁ (B{S'r,)x + Bz(»:r,)l, B3,
+ Bi%%)] converges in probability to zero, as N — «, foralla = 1, ---, c.
Hence to prove the theorem, it suffices to show

Lemma 3.1. By = D ou1 D 2a N (BSR); + Bini)Nia (where Mo, j = 1, 2;
a = 1, -+, c are real constants, not all zero) has the limiting normal distribution
as N — .

Integratmg B, by parts and making some routine computations, we can
express Biyy and By, as

(3.12) Bifh = Noa' 275 Bi(Xar), Biv: = No' 227 Bi(Yar)

where

(313)Bi(Xer) = —[olc@ — Xar) + ¢(—2 — Xar) — Fi (&) — F1® (—2)]
-dJ1(H1(z))

(3.14) By(Ya) = —[20lc@ — Yar) + ¢(—2 — Yar) — F2® (x) — Fy'® (—2)]
-dJy(Hz(z))

and where

(3.15) cw) =1 if w=0 and c(u) = 0 otherwise.

Let us now turn our attention to Bay,;, j = 1, 2. Noting (cf. (3.1)) that
Hin@) — Hi@@) = XiapP[HS2 (@) — H;® (z)], we can rewrite Biy); as
B = 2iaon® [io[HE () — H® @)U (H;(2))

(3.16) -d[F® (x) + F (—z)]

=N Za=1 Zfﬁl Cie (Xﬂr) if g
= N_ Zﬂ:l Z‘Zﬁl Cza(Yﬁr) if -7

I
vl\') —
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where
(3.17) CuXp) = [Zolel — |Xal) — Hi® @)WY (Hi(z))
-d[FY® (z) + Fy (—2)]
and
(3.18) Cwa(Ypr) = [ le(a — |Yarl) — H® ()]
J (Ha(2)) dIF>™ (z) + Fy'® (—2)]

and c(-) is defined in (3.15).
Now making use of (3.12) and (3.16), we obtain

2 i1 Na(Bixy + BiR
(3.19) = Mo N D0 By (X)) + N7 Zﬁ—l 208 Cra (X))
+ NafNo ™ 2F By (Yar) + N7 D51 DN Coo (Vi)
Finally, using (3.19), we can express By as
(3.20) By = Dt Nl INa™ 20%% (MaBi (Xar) + MaB2(YVar))
+ N7 51 28 {MaCla (Xpr) + A2aCoa (Ygr)}]

Now denote

(3.21) Na(Za) = 272 {MaB1 (Xar) + NaBoa (Yar)} /N
and

(3.22) £,0(Zs) = 2121 (MaCla (Xpr) + MaCoa (Yr)} /N

(note that 74 (Z.) is a function only of Za, - -, Zaxe and &, (Zs) is a func-
tion only of Zg: , « -+, Zgng where Z,, = (X,,Y,,)). Then from (3.20), (3.21)
and (3.22), we obtain

By = 2 e Ntna(Za) + 2 5ci Nt s ov®ts,0 (Zs)
(3.23) = et Nolna@a) + Xica 28 Now®ts. (Zs)
= 2 Vollna @) + 200 (onon™ ) ar (Za)]
= 2 et NN 2208 {B(Xar) + C(Yar))]

where B(Xar) = )\laBla (Xar) + (P @ )é Zv—l (PN(V)) )\valv (Xar) and C(Yar) =
)\2aB2a (Yar) + (PN(a) )§ Zv—l (PN(V)) >\2v02v (Yar)

The right hand side of (3.23) represents c-summations. They involve independent
samples of identically distributed random variables, and it can easily be shown
by the use of ¢-inequality that each of random variables B(Xar) + C(Yar)
has finite absolute moment of order 2 + &',0 < 8" < 1. Hence by the central limit
theorem [cf. Esseen (1965), page 43, Pur1 (1964), page 109], each sum properly
normalized has the normal distribution in the limit with the result that the sum
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of c-summations will have the normal distribution in the limit. The proof follows.
The computation of the covariance matrix is deferred to the appendix.

4. The limiting distribution of the proposed test under Pitman shift alterna-
tives. From this section onward, we shall be concerned with a sequence of
admissable alternative hypotheses Hy , which specify that foreacha =1, --- , ¢,
M(z) = I(z + veN"?), wherez = (2, %), ta = (bia, t2a), I1(z) is a fixed ab-
solutely continuous bivariate cdf diagonally symmetric about 0 and for some
pair (o, B), ¥« # us. Note that with this representation Fi® @) =
Fi(@ + meN ), B2 (y) = Fa(y + malN "), and F;(@) + Fi(—2) = 1,j = 1, 2.
The following theorem (the proof of which follows from Theorem 3.1) is used
in deriving the limiting distribution of the statistic £» and studying its efficiency
properties.

TueoreM 4.1. If (i) p8'® = paas N = 0 and 0 < po < l,a =1, -+, c.
(i) The conditions of Theorem 4.1 are satisfied. (iii) For each fized N, the hypothesis

Hy is true. Then, the random variables [Na*(Tm(a) — vt , Taoe — Mavzew ),
a =1, -+, c] have a limiting multivariate normal distribution as N — o« with
means zero and covariance matrix © = (%i.a8), %, J = 1,2; 0,8 = 1, -+, c where
(41) Tjj,a = BaﬁAizy ] = 1) 2: o, B = 1; e, C
(4.2) T12,08 = T2,a8 = 0apS12,

4.3) Al = [iJiw)du = [§1J;" @)I du, i=1,2
4.4) S = [i2e [12 I (Fi(@)) " (F2(y)) Il (2, y),

where J;(w) = ¥ (W), J;¥ (W) = ¥;" 7 (u) and bup is the Kronecker delta.

Proor. The asymptotic normality follows from Theorem 3.1. The only thing
we have to establish is that imy.«ow,ijes = Tijag, % = 1,2;0,8=1,---,¢.
To obtain this result, we note the following:

(a) JFw) + 750 —u) =0, J;@Qu—1)=J"@);
(b)  limy. 4, (@, y) = Fi@)(1 — F;(y)),
limy.. Ba (x, y) = dJ;* (F;(2)) dJ:* (Fi (),
limyaw C5” (@, 9) = 0, limwaw D3 (2, ) = 0,
limyaw Us(z, y) = Ji @Fi@) — 1)Ji' @F:(y) — 1)
= 1Y (F; @) (Fey),

(where A4,°, By, O3, DY and Uj, are defined in the Appendix), and
(¢) the application of the Lebesgue dominated convergence theorems permits
the interchange of the limit and integration sign.
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Then from (6.15)

.
Tjj,ac — th—»oo ON,jj,aa

4 [ fococycn Fi(@) (1 — Fi(y) dJ;* F;@)) dJ;* F;(y))

(4.5) + 4 [ fococycw (1 = Fi(2)) @ — F;(y)) &J;* F;(x)) dJ* (F3(y))
=4 [icucoa @ — 0)dJ* @) dJ* ) = [0 @) du
= f%sz(u) du.

From (6.16)

Ti20a = Tolaa = liMyawow 12,00
o [ [T (@, y) — Fi(@)F2 ()} + {TL(z, —y) — F1(2)F2(—y))}
+ {II(=2,y) — F1(—2)F:(y)}

+ {II(—2, —y) — Fi(=2)F:(=y)}] dF," (F1 () 42" (F2(y))
(4.7) = [Fw [, y) — Fi(@)F2 )] dJy* (Fr()) &2" (F2 1))

We now establish the equivalence of (4.7) and 8.

Let (X, Y) be a random variable whose joint distribution is IT (z, ¥ ) and whose
marginal distributions are F1(z) and F; (y) respectively. Then since Elc(x — X)
—Fi@)]cly — Y) — Fo(y)] = I (z, y) — F1(z)F2(y), we can write (4.7) as

= Cov (JZule(@ — X) — Fi(z) dJ1*[F1 ()],
[Zulely — Y) — Fa(y)]d]* Fa(y))

= Cov (JRdJ*[F1(@)], [T dJ2* (F2(y)))
= Cov (Ji*(F1(z)), Jo* (F2(Y))) which is the same as Sy, as defined in (4.4).

(4.6)

The other expressions can be evaluated in a similar manner.

CoroLLARY 4.1.1. Suppose that the hypotheszs Hy is true. Then under the con-
ditions of Theorem 4.1, the random variables [N Ty, Tz ), @ = 1, , ]
have a lLimiting multivariate normal distribution with means zero and covariance
matriz = = (Tijag), ] = 1,2;,8 =1, --+, ¢ given by (4.1) and (4.2).

We now revert back to our original notation. Then we have

COROLLARY 4.1.2. Under the assumptions of Theorem 4.1, the random variables

INL (Twiaiy — wwics s Twscisy — wwean, 1 £ 1 < J = ] where
4.8) ey = [omode(H: @) d[F,? () + F. (=2)],
r=121=5:<j=4,

have, in the limit as N — oo, the multivariate normal distribution wzth zero mean
atid covariance matriz © = rkl(m(”)) E,i=1,2,1<i<j=¢1= i<ji=t
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where,

4.9) TokGnGn = Sapwindr, k=1,2
Tk (i3 = TG = Opwindiz, k1

where Ay’ and $1; are given by (4.3) and (4.4) respectively and

dupin = +1 if i=4, j=7}

(4.10) =—-1 i i=75, j=4d;
=0 otherwrse.
Now let
(4.11) Urnii = D pmtini NiToicisy Vai= Z:;’=l.j;éi N T
(4.12) paiciny = D emtiei Nij panany » k=1,20=1,---,¢
(4.13) iy = limyoew Njuneip » Me(iny = Dot i)y

h=1,24=1,--,¢

and assume that 7z exists and is finite for £ = 1,2 and 1 £ 7 < j £ ¢. Then

we have the following.
TarorEM 4.2. Under the assumptions of Theorem 4.1, the random vector (Uy 1,
s s Unyiy Var, oo+, Vi) has asymptotically a multivariate normal distribution

with mean vector (Mua.y, ***, My, Meay, * -, 2(t-) and covariance matrix
M = (M) given by

My = i — 1)AL if 1
Beys; — 1)81e 1 Si =t t<j= 2
= (ip;— 1)82 HEt<iZ22,1=25= 4
= (to;; — 1)A5 ift <i4,j <2

and the rank of M 4s 2(t — 1) if and only if A"A;' — 812 # 0. The asymptotic
normality follows directly from Theorem 4.1 and Corollary 4.1.2. The covariance
terms are obtained by using

IIA

,J =t

(4.14)

Thnayy = Ai it 6,7)=@G,i)k=1=1,2
= -4 i @) =(@G,i)Nk=1=12;
= Si it G,7) = (7)), k= 1;
= —8y if ¢,5)=(,7), k=1
=0 otherwise;

and routine computations.
» To obtain the rank of the matrix M, we proceed as follows. Denote

(4.15) C = (Cy) = (W — 1)), Li=1,--,t
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<A1QC $12C >
M = :
812C A.°C
Let |M| = Determinant M. In ||M||, subtracting row 1 from each of the rows
number 2, - - - , ¢ and the (¢ + 1)strow from each of the rows number ¢ + 2, - - - 2¢
leaves ||M|| unchanged. Then add columns 2, ---, ¢ to column 1 and column
t+ 2, -+, 2t to column (¢ + 1). The resulting determinant has columns 1 and
¢t + 1 all zeros. Hence ||M|| = 0 and since it has two columns of zero, we have
that the rank of M is at most 2(t — 1).

Striking the 1st and (¢ 4+ 1)st rows and columns of the new determinant
leaves the minor

Then we can rewrite M as

.

LA 18l
1Sl  tA 221

where Iis (¢ — 1) X (¢ — 1) identity matrix. Since 4;" # 0 by assumption, we
may rewrite |M||* as

tA,T 0
Sl t(4s7 — 8h/AD)1
— t2(t—1)(A12A22 _ 8%2)t_1

and so |M*|| = 0 if and only if 4,°45" — Siz = 0.
Remark. We have proved above that the rank of the matrix M is 2 (¢ — 1) if
and only if the matrix

A’ S
(4.16) A =
Sz Ao?

is non-singular, that is, the dispersion matrix of [/ FEX)), L (F(Y))] s
non-singular. In what follows we make the assumption that the distribution func-
tion II (z, y) and the score functions J; and J. are such that the moment matrix
A is non-singular. The moment matrix will be singular if and only if J SF(X)) =
aJ ¥ (Fo(Y)) +b as. IL

Let us now define

(4.17) et =" Z:'=1 (Uxs, Vai)A™ Uy, VN'i),

and find the asymptotic distribution of £x*. We first state the following theorem
due to Sverdrup (1952).

Turorem 4.3 [Sverdrup]. Let X™ = (X, ... X,"”),n = 1,2, --- be an
infinite sequence of random vectors and g(z1 - - %) be a real-valued continuous
Junction for all &, - - - @, . Assume that the limit of the probability distribution of the
random vector X™ s the probability distribution of the random vector X = (Xy - -

M) =

M| =

” = -1 tz(Alezz — S%z)
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X,). Then the limit of the probability distribution of g(Xi™ -+ X,™) is the
probability distribution of g(X1 -+ X,p).

We may now establish

TrEOREM 4.4. Under the assumptions of Theorem 4.2, £x* = ¢ D ics (Un.,
Vi) A7 (Un.i, Vi) has asymptotically a non—central x*distribution with 2 (t — 1)
degrees of freedom and noncenirality parameter

(4.18) A’ = 7 3000 (many , e ) AT (g 5 M)

Proor. Let (¢, -+, &, £t41, +++, £20) = & be the normal vector to which
(Uxs, 3 Unyey Vaa, -+, Vu,:) converges in law. Then £ has a normal distri-
bution with mean

(4.19) no= (may, o, M), My Tt s M)
and covariance matrix M defined by (4.14).
Let
(4.20) AT = ((d")), ,j=12

and we may rewrite £x" as
Y= 3 [0 U + 207 Un, iV + a7V
= {d"UnUy + a®UxVy + o®VyVy + a®VyUy)

Lx

where

(4:.21) UN = (UN,l, ttt UN,t), VN = (VN.I; ) VN,t)‘

Letting
‘ , . a'l @I . .
(4.22) I ={ " s |0 I = ¢t X t identity matrix,
al a1
we have
(4.23) ev* = Uy, Va)I'(Uy, V).

By virtue of Theorem 4.3, £5* has asymptotically the same distribution as that
of £** = #r¥. Next, it is easy to check after routine computations that (i)
M@TMIr — )M =0and (i) 2(t — 1) = trace (MTI"). The result now follows
as an application of the well-known property (cf. Rao (1965), page 443 (viii))
of the multivariate normal distribution.

CoRrOLLARY 4.4. Suppose that the hypothesis Hy is true. Then under the assump-
tions of Theorem 4.2, £x" has limiting central x"—distribution with 2(t — 1) degrees
of freedom.

Now, let A be a consistent estimator of A, then it follows that £y — £»* con-
verges to zero in probability as N — «. Hence £y, too, has the limiting central
x'—distribution with 2(¢ — 1) degrees of freedom and so the critical function
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(4.24) ¢(Lx) =1 if &y = Xz(t—l),a,
=0 if &x < Xg(t—l),a;

where X2« is the (1 — &) percent point of the chi-square distribution with r de-
grees of freedom provides an asymptotically level « test of H, .

From Theorem 4.4, it is clear that any consistent estimator of A7 will preserve
the asymptotic distribution of the test statistic. In what follows we propose one
such estimator. Looking at the matrix A defined by (4.16), we find that we require
only to obtain a consistent estimator of 812 defined in (4.4) and this is done as
follows.

Define
(425) HN('% .7/) = IIN(x, y) + HN(—x_) y) + HN(w7 _y—)

+ Ty (—2—, —y—)
and
(426) H(x7 y) = II((U, y) + H(_x; .7/) + H(x) —y) + H(—(E, _?/),
and assume that
@27) Jio im0 NNV + 1) Hiny @) v (N (N + 1) Han (y))
—Ji(N (N + 1) Hin (@) e (NN + 1) " Hon (y)) dHx (2,y) = 0,(1),

where H; 5 (z) is defined by (3.1).
Consider the statistic

(4.28) S = N ZZ=1 Z;V;l Ewi pxanBine,mvan

where R (X.,) and R (Y.,) are the ranks of X, and Yer among (Xor,7 =1, -+,
Nuo,a=1,---,¢)and (Yer,r =1,-++,No,a = 1, - -+, ¢) respectively. Then
THEOREM 4.5. 8125 18 a translation invariant, consistent estimator of S1z .
Proor. Since the ranks of the observations themselves are invariant under
change of origin, it follows that 812 » remains translation invariant. Now, writing
S12,5 28

(4.29) Spy = f:=0 f;o=o Jni(N(N + 1) Hix(x))
T (NN + 1) Haw (y)) dHy (z, )

and proceeding as in Theorem 3.1 of Sen and Puri (1967) it follows that S1o.n
converges in probability to

=0 J =0 J1(H1(2))J2(Hs(y)) dH (z, y)

which equals S;2 . The proof follows.
In most cases, the quantities 7. = limy.e N.tuxjw take on simple forms
through the help of the following lemma similar to Lemma 7.2 of Puri (1964).
Lemma 4.1. If () F;@),j = 1, 2 is continuous cdf differentiable in each of the
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open intervals (— o, m:?), (@, &), -+, (@1, &), (@5, ©), and the deriva-
tive of F;(x) is bounded in each of these mtervals (ii) the function dJ;(F;(x)
— F;(—z))/ dx is bounded as x — == o and (iii) ¥;* () is symmetric and unimodel
with density % (x),7 = 1,2, then

it = liMraw No® [3m0
(4.30) T2 b o ®{Fi@ + psN ) — Fi(—z + wpN ]
AP @ + wuN ) + Fi(—2 + wul )]
= —2pa’tia [omo (d/dx)J2F;(x) — 1] dF; ().
In case the conditions of Lemma 4.1 are satisfied, then
(4.31) AL = 720k (0B, 2700, ) AT (0 s, 027 0s0)
=17 D0k (Fr, Fa,i) AT (B, Bai)

where
(4.32) o = —2 om0 (d/dx)iFi(x) — Fi(—2z)] dFy (), k=1,2
(4.33) i = D imtiia Pl ttnis k=1,2;0=1,---,1
A 2/(a *)2 Sio/ @ *a *
(4.34) A* =< Y ”ﬁ ' :2>
Sw/ay ar Al (a2 )

and A/, j = 1,2 and Sy are defined in (4.3) and (4.4) respectively.

SpecIAL cASES. (a) Let J; be the inverse of the chi distribution with one de-
gree of freedom. Then the £y test reduces to the bivariate paired comparison
normal scores, £x(®) test. [For ¢ = 2, this reduces to the one sample bivariate
normal scores test [15].] In this case the noncentrality parameter (4.28) reduces to

(4.35) Ay =t D ic (1 — po’) '[91,i05" — 201,:04,ipa03bs + 93,:bs)

where

(4.36) pp = [:2w [15w @ (Fi(x))37 (Fa(y)) dIl (=, y)
and
(4.37) Gy = :c-—oo {¢ CI:'_I (F1 (x))]}_lfl () da,

be = [Z ($[@7 (F2(2))]}7f () de $(x) = @ (2).

(b) Let J;* (@) = 2¢ — 1, then the £y test reduces to the bivariate paired
comparison rank sum test. [For £ = 2 this reduces to the one-sample bivariate
rank sum test [13].] In this case the non—centrality parameter (4.28) becomes

(4.38) Aem =t D ic112(1 — pi’) ' [81,i08° — 208th,i0s,iazbr + 83 ,ibe’]
,where

(4.39) =3 [iw [y [2F1(z) — 1][2Fs(y) — 1] X (z, y)
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(4.40) ar = [Yafl(x) de, br = [Tefl(z) da.

5. Asymptotic relative efficiency (A.R.E.). In this section we discuss briefly
the A.R.E. of the £5(®) and £y (R) tests with respect to the Sen-David Dy test
and the analysis of variance F-test. From [14], the Sen-David Dy test and the
analysis variance F-test have asymptotically the non-central chi square dis-
tributions with 2(t — 1) degrees of freedom and the non-centrality parameter
Ap and Ag respectively, where

(5.1) Ap = 4ft(1 — 6] 2in [05.70) — 2001,:8,.:(0)f2(0) + 93,4, (0)]
and
(52) As = 1t(L — p")] 7 2ica [@r,i/01)" — 200100,/ (0102) + (F2,i/02)7]

where ¢ = Var (F;),j = 1,2; and p = Corr (Fy, F,). Hence, using a theorem
of Hanan (1956), the Pitman efficiency of the £y (®) relative to the £y test,
the Sen-David Dy test and the F-test are

(5.3) esy@ . ym = As@)/Asw), eSy@ .0 = Aew/Ap,  esy@) 5 = Asw/As,

when Agw@), Agwr), Ap and Ag are given by (4.35), (4.38), (5.1) and (5.2) re-

spectively.
The above efficiencies depend upon not only the underlying distribution func-
tion IT (z, ) but also on the parameters &y,;, ds,:,7 = 1, -+ -, t and ¢, the number

of treatments. Thus, unlike the univariate situation where one usually arrives at a
simple numerical measure of the asymptotic (Pitman) relative efficiency, the
multivariate case offers substantial complications. However, in some special
cases, useful information about the relative performance of the test procedures
may be obtained.

Case 1. Bivariate normal case. Let us assume that the underlying distribution
funection II (x, y) is non-singular bivariate normal with mean vector zero and co-
variance matrix £ = (poi02). In such a case, proceeding as in Sen and Puri (1967)
and, Chatterjee and Sen (1964 ), it can easily be shown that

ecy@,5 = 1; 0.87 < ecym,g = 0.96; 1 = eey@y. ey = 1.15;

0 é@D,JSN(R) =< 0.73.

These results indicate that when the underlying distribution is bivariate normal,
the £x(R) test is asymptotically more efficient than the Sen-David test; the
£x (P) test is asymptotically as efficient as the F-test, and more efficient than
any other test.

Case 2. Independent coordinates. Let II(z, y) have independent coordinates.
Then ps = pr = p = 6 = 0. Insuch a case the results are the same as in correspond-
ing univariate theory. For example, in such a case

infnggro infy esy@,s = 1, infngg:o infy ep,g = %,

infr.s, infy ey, eym = &, infr.s, infs ecy@m,s = 0.864
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where ¥ is the class of all absolutely continuous diagonally symmetric unimodal
distributions.
The case when II (z, y) has identical marginals can similarly be dealt with.

6. Appendix: The dispersion matrix of [N%(B{sk + Biwi, Biv: + Bivk),
a =1, -+, c]. Denote

6.1) 4, @, y) = F @01 - F @)

B (z, y) = dJ;(H;(x)) dJ(Hi(y)), k=12
6.2) C5(z, y) = dFf” + F;° (=) dIF” (y) + F“ (=y)l, 4,k =1,2
6.3) D§¥ (x,y) = dH;(@) d[F (y) + F&® (=)l k=12
64)  Un(m,y) = JJH; @)W He @), . Gk =1,2

6.5)  Bu(z,y) = Ma(z,y) — F1 @) ()]

First we compute the variance of B3 + B, 7 = 1, 2. Integrating the right
hand side of (3.6) by parts, we obtain

(6.6) By = D) + Diw;
where
(6.7) DRy = — [Z0 [F5N (@) — Fi® (@)lJ{ (H;(z)) dH;(z)
and
6.8) Digh = — [ [Fi% (—a—) — F;“ (=2)V; (H;(@)) dH;(2).
Since E (B{Y; + Bsi%) = 0 we obtain
Var (Bix) + Bivi
(69) = E[Diys 4+ Div) + Bl

E(D{) 4+ BE(DSy)? + E(BSssTI' + 2E[D;DSR] + 2E[DSR); B
+ 2E[DS3;BS)]-

Now

EIDST = B{ fim [y=0 [F33) (@) — Fi° @)IF5S () — F/° ()]
(6.10) T H; (@) (Hj(y)) dH;(x) dH; (y))
N focacy<e J A (@, y)Bii (2, y).

Note that the application of Fubini’s Theorem permits the interchange of integral
and expectation. Similarly,

6.11) BDiv))
' = 2Na_x f0<x<y<oo f Aj(a)(_y) —x)Bij(x’ y)r
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E (B’
(6.12) = 2N X o [f oo J {4 A7 @, y) + 4,7 (—y, —2)}
-Usi(z, y)D5i’ (@, y) + fz—o S0 A (—y, ©) Ui (2, )
-D§i (x, y)],
(6.13) E(Di¥sDiv
N [ [0 A% (—y, ©)Bii (2, y),
E (Diﬁ,)jBéfé.)j + Di3iBi);
= — N fococscen [ {45 @ y) — A7 (=9, —2)} Ui (2, y)
(6.14) D5 (@, y) + fo<y<x<wf A7 @, 2) — A (= —y))
Ui (@, y)DS (@, y) — [0 fimo {4 (=g, —2)
— 4 (=2, )} Ui (2, y )D“”(x, y)l.
Hence using (6.10) to (6.14), we obtain

ON,jj,aa
= Var [Nj (B + Bii)]
= 2[f [ ococycw {457 (x, y) + A (—y, —2)}Bji(2, )
+ [ fi0 A:'(a) (=9, 2)Bji(z, y) + ov'® 2ics o
(6.15) U [ ococven 1457 @, y) + Ai(=y —2)}Usi(@, 9)C5F (2, )
— [0 [T A ( y, ©)Usi (@, y)C55 (2, y)]
— o' [ffo<z<y<w{  (2,y) + A, (—y, —2)} Usi (2, 9D (@)
— [ Jocycoce {4, (y, ®) + 4% (=2, —y)} Ui (=, y)D55’ (@, )
+ [f0 [T {A (“’( y, &) + 4, (==, )} Ui, y)D55’ (x, y)II.
Proceeding analogously, we obtain
Oxtrea = Ontaa = Cov [No} (Biih + Bi¥h), No' (Biv: + Biv:)]
= [0 70 (Ba@, y) + Ba(@, —y) + Ba(—2,9) + Bu(—2, —y)}
Bu@,y) — v [omo [y=0 {Ea(z,y) — Balz, —y)
+ Eo(—2,y) — Eu(—2, _y)}Dig)(% y) — PN(a) f;o=o f;o=o
(6.16) ABa(@, y) + Ba(@, —y) — Ba(—2,y) — Eua(—2, —y)}
D (g, z) + on'® i pn® [0 [3=0
AE.(z,y) — E:(x, —y) — E,(—2,y) + E,(—z, —y)}
Un(z, Z/)C{é") @, ¥),
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ow a8 = Cov [No} (Bish + Bind), Ng' (Bifz + Biva)] a =B
— (ow o )20 [0 {Ba @, y) + Ba(—2,y) — Bale, —y)
— Bu(—2, —y)}Un(=, y)Dis’ @, y)
(6.17) + [0 [0 (Be(z, y) + Es(x, —y) — Ep(—2, )
— Eg(—z, —y)} Un(z, y)Dsi’ (y, =)
- Zf=1 PN(T) =0 f;o=0 (B, (x,y) — E,(z, —y)
— B, (~2,y) + E:.(—2, —y)} Un(x, y)dis’ (@, y)],
ow.sras = Cov [N (B + Bin)), Ni* (Bi; + B )]
- (PN )PN(ﬁ))g[ff 0<a<y<eo {Aa‘ @ (x, y) - Aj(a)(—y, —z)}
Ui, y)DSP (z, y)
+ [ Jocycoca 145 @y, ) — A (=@, —y)} U (=, y)DIF (2, y)
(6.18) — e [ (A (—y, w) — A (=2, )} Ui, y)DSF (2, y)
+ [ ococuceo {A;® @, y) — AP (—y, —2)} U3 (=, y)DS5 (y, 2)
+ [ ocvcaca {40 (@, 2) — 4,7 (=2, —y)} Ui (@, y)D55 (y, @)
(6.18) — [ 20 (AP (—2,y) — A/ (—y, @)} Us (=, y)D5F (y, x)
+ Zr=1 pN(T){f f 0<z<y<eo Hjm ()1 — HJ'(T) ))Uji (=, y)
dF @) + F° (=) dF® () + F;? (—y))
+ [ [ ocyercn Hi” () (1 — H;® @))Uji (x, y) dF (@)
+ F(—2)) dF;® @) + F;* (=y))}l.
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