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LARGE DEVIATIONS AND BAHADUR EFFICIENCY
OF LINEAR RANK STATISTICS!

By GEORGE G. WOODWORTH

Stanford University
1. Introduction. R, R,," -, Ry are the ranks of N random variables Z,, -+, Z,.
A linear rank statistic is one of the form

(1.1) Ty =Y -1 an(R;/N+1,j/N +1),

where ay(u,v) is a function on the unit square called the weight function. For
example, let X, -+, X,, and Y, -+, Y, be two samples and define (Z,,-*+,Zy) =
Xy X Y, Y,), N=m+n. A two-sample ‘“‘scores” statistic (Chernoff-
Savage statistic) can be written in the form

(1.2) TN=le'vzlJN(Rj/N+1)LN(j/N+])
where Ly(u) = 0 or 1 according as u £ or > m/N+ 1. Some well known choices of

the score function, Jy, in (1.2) and the names of the corresponding two-sample test
statistics are

Name Score Function
Wilcoxon-Mann-Whitney Jyw)=Jw)=u—1%
Fisher-Yates (normal scores) IyW) = iy j—1= Nu<j,j=1,-,N
median (W) = J(u) = sgn(u—1),

where p; |y is the mean of the jth smallest of N independent standard normal
random variables.

This paper is concerned with large deviations of linear rank statistics under the
null hypothesis that (R, - - -, Ry) is equally likely to be any of the N! permutations of
(1, -+, N). The main result (Theorem 1) extends the work of M. Stone ([8], [9]) and
can in fact be derived from Hoadley’s Theorem 1 [5]; it is not an extension of
Hoadley’s theorem since its only concern is linear rank statistics under the null
hypothesis. However, for such statistics the results in this paper are more general
than Hoadley’s and the proof is simpler; to give two examples, the results of this
paper apply to tests of independence or trend (such as Spearman’s rho), while
Hoadley considers k-sample tests only, and they apply to two-sample scores
statistics with unbounded scores (the normal-scores statistic for example) while
Hoadley, page 362 line 22, requires bounded scores.

2. Asymptotic properties of the probability of a large deviation. Consider the
following special case. Ty is defined by (1.1) but the weight function is a step
function over a rectangular grid; i.e.,

(21) aN(u,D) = a(u7 l)) = aij’ (u, D)EC;j, 1 é l é I, 1 é] é ka
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where C;; is the rectangle: C;; = {(u,v)|u,~_1 Su<uyvi_; Sv<v;}, and 0=
Ug<u; < -+<u=10=vy <v, <+ <p, = 1are constants.
Define the random matrix X™ ={X{P; 1<i< /1 £j < k} as follows: X{V=
#{a | (R,/N+1,0/N+1)eC;;}, where “ # stands for “the number of integers in”".
It follows from this definition and (2.1) that

(2.2) Ty=:Y;a; X}

Let x denote a realization of XV, thus x = {x;;; i=1,-"-,j=1,~k} is a
matrix of nonnegative real numbers with fixed marginal totals?:

(2.3) X; = ij,j = m, i= l,"',l, and
x~j=Zixij=njv j=1,---,k, where

my=#[(N+Du;_y, (N+Duy), i=1,--,1, and n;= #[(N+1v;_;, (N+ 1)),
j=1,"k.
The distribution of XV is multi-hypergeometric, to wit:

P[X™ =x] = Himi!l—ljnj!/N!Hijxij!a

provided of course x satisfies (2.3).

The key to the main result of this paper is the simple fact that X‘™ has a con-
ditioned multinomial distribution; in fact, suppose that Y™ ={Y{V |1 <i< 1<
Jj £ k} has a multinomial distribution with sample size N and cell probabilities

(2.4) pij=(ui_ui—l)(vj_vj~1)=“ivj’ say.
Then, for any x satisfying (2.3)
P[X™ =x] = P[YM =x| Y™ =m, YV =n;, forall i,j]
(2.5) =P[Y¥=xand Y}V = m, Y =n;, forall ij]
: [Hi(mi!ﬂinmi)/N!][Hj(nj! v;"")IN 1]
=P[Y®=x and YM=m,YV=n, forall i,jlexp[Ney]
where, after application of Stirlings approximation,
ey = 3 ;(n;/N)log(n;/Nv,)+ O(log(min,(n,))/N)
+ ¥ (mIN) log (m;Npz)) +O(log (min, (m;))/N).
Clearly
(2.6) m;/N -y, and n;/N->v; as N - o,

thus ey > 0as N - 0.

2 The dot notation used throughout this paper indicates summation (not averaging) over the
dotted subscript.
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It follows from (2.2) and (2.5) that, for any sequence of constants {ry},
—~N~'logP[Ty = Nry] = =N~ '1ogP[}.;Y ;a; Y\ = Nry and Y™ =m,
YV =n;, forall ij]—ey.
It follows from this and Hoeffding® [6, Theorem 2.1] that
(2.7) —=N"'logP[Ty = Nry] =min {>,; Y (x;;/N)log(x;;/Npip) | 3: Y ai;xi;
= Nry,x, =m,x;=n;,  x; areintegers =0}+o(l)

where p;; = y;v;, defined in (2.4).
That part of (2.7) (and similar expressions below) lying between “]” and “}” will
be called the constraint.

LEMMA 1. Let q={q;;|1 S i< 1,1 <j<k} be nonnegative real numbers and
define

(2.8) r(a) = ZiZjaij Pij»
(2.9) Fa) = Supq{ZiZjaijQij|‘Ii~ =HUi,q.; =V, forall ij},
with p;;, 1 and v; as in (2.4), and define
I(r;a) = qu {ZiZj qijlog(qij/pij)'ZiZjaijqij 2
qi. = i, q.;=v;, forall ij}.

If Ty is defined by (1.1) and satisfies (2.1) and {ry} is a sequence of constants
approaching a constant r < F(a) then limy_, .{— N "'log P[Ty = Nryl} = I(r;a). If
r < r(a), the above limit is zero.

(2.10)

PRroOF. The case r < r(a) is trivial since Ty/N converges in probability to r(a).

Let x™ be a value of x for which the minimum* is attained on the right side of
(2.7). Since 0 < x{})/N £ 1 there exists a subsequence of N’s (which for simplicity
of notation will be taken to be the origina] sequence) such that for each i and j,

x{MIN converges to some number ¢ Clearly q° = {¢’;i=1,"*+,Lj=1,""k}
will satisfy the constraint in (2.10). Thus from (2.7) and (2.10)

(2.11) limy_ . {=N""1ogP[Ty = Nry]} = limy_ . 3: Y ;(x{Y/N)log(x{}’/Np;;)
- Z Z] qUIOg(qU/pu) 2 l(r a)

Suppose that the above inequality is strict. Then it is possible to select 6 > 0 small
enough that

(2.12) limy_, {—N""log P[Ty = Nry]} = I(r;a)+34.

It follows from the definition (2.10) that I(r;a) is a nonnegative, nondecreasing
convex function of r, hence it is continuous where it is finite. Since the inequality in

3 Warning: Hoeffding and I use the notation /(: ;-) in different ways.
+ x™ is unique but I neither need nor prove the fact here.
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(2.11) was assumed to be strict I(r; a) must be finite and thus it is possible to select
& > 0 small enough that

(2.13) r+2¢ < #(a) and
(2.14) I(r+2¢;a) < I(r;a)+6.

It follows from (2.9), the definition (2.10) of I(r+2¢;a), (2.13) and (2.14) that
there exists q* such that

(2.15) Y iqia; = r+2e, ql = u;, qY=v;, forall i,j, and
(2.16) Y i4qiilog(g/piy) S I(r+2e;a)+6 < I(r;a)+28.

Define
(2.17) Zg'“ = [qilj m/n;/[Np;], ~ 12igl, 15j5k,
where [ - ] denotes the greatest integer function and
(2.18) m; = min (m;, [Ny;]), n; = min(n; [Nv]).

Clearly from (2.15), (2.17) and (2.18) one has
(2.19) zZM<m; and ¥ <n; forall i,j,

and from this and (2.17) it follows that
(2.20) limy_ o, z{VIN = p limy_, o z/N = v;, forall i,j.

Define ¢,V =m;—2z{M,d™ =n;—z® and for each N select’ nonnegative
integers {y{M; 1 <i< 1, 1<j<k}suchthat y{¥ = ¢,V and ) = ;™. Now set
x{ =z 4y, thus x{M = m; and xI = n; and, by (2.4), (2.6), (2.17), (2.18) and
(2.20),

(2.21) limy., , x)/N = q}.

It follows from (2.15) and (2.21) that, for large enough N, Y ;" x{Ma;;/N = r+e.
Thus xX™ = {x{"} satisfies the constraint in (2.7) with ry set equal to r+& and from
this fact and (2.7), (2.16) and (2.21) it follows that

limy_, {—N"'log P[Ty = Nry]} £ limy_, {—N"'log P[Ty = N(r+¢)]}
< limy Zi Zj (xﬁ-v’/N) log (xS‘V)/Npij)
= ZiZj q;jIOg(qz!j/Pij) £ I(r;a)+29.

Since the latter contradicts (2.12), the inequality in (2.11) cannot be strict and the

lemma is proved.
Requiring, as in (2.1), that ay(-,*) be a step function makes Lemma 1 too

5 Such a selection is always possible: for example, assume that ¢; < d, (otherwise reverse the
roles of the c’sand d’s) and set y;, = ¢;and y;; = O0forj=1,---,k—1.Nowdefine k' = k, I’ = [-1,
o' =c,i=1,--,0'd/=d;,j=1,--+,k’'—1d = di— ¢, and repeat the previous sentence.
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restricted to cover many interesting statistics so it is desirable to widen the claés of
weight functions to which this lemma applies. To achieve this end let us define a
pseudometric d as follows:®

(2.22) d(a, b) = sup, . » | | { (a(u,v)— b(u, v) Yh(u, v) du dv|,
where a and b are real functions over the unit square and
(2.23) # ={h(,)|h=0,  [h(u,v)du=1= [h(u,v)dv}

is the set of all bivariate densities with uniform marginals.
It will be assumed hereafter that the sequence {ay(-, )} satisfies

Property A.
(i) For each N, ay is constant over the rectangles {i~/< Nu < i, j—1 £ Nv <j},

1<i,j<N.
(ii) There exists a function a( -, - ) over the unit square such that

(2.24) d(ay,a) = sup,. »|f [(ay—a)h| >0, as N - oo.

Despite its formidable appearance, Property A is satisfied by all the standard
linear rank statistics, in particular by any statistic satisfying the Chernoff-Savage
[4] conditions ((1)~(3) page 974) or Bhuchongkul’s [3] conditions ( (1)-(5) page 139)
or more generally, the sufficient condition proved below (Theorem 2).

DEFINITION 2.1. A sequence of statistics {Ty}, each of form (1.1) with weight
functions a,(-, ) satisfying property A will be called a type A sequence of linear
rank statistics.

For a function a( -, - ) over the unit square satisfying d(a, 0) < oo, let

(2.25) r(@=|fa,

(2.26) #(a) = sup{[[ah|he st}

and, for r <#(a), define

(2.27) I(r;a) = inf{[[hlog(h)|[[ah = r,he #}.

With a little effort one can see that the above reduce to (2.8), (2.9) and (2.10)
when a(-,-) satisfies (2.1), and that I(r;a) is nonnegative, nondecreasing and
convex in r (hence continuous).

Moreover if a, is a function such that

(2.28) d(a,a,) =, then
(2.29) I(r—¢g;a) £ I(r;a,) £ I(r+¢;a).

Another property of I(r;a) which will prove useful is the following: for

¢ When the range of integration is unspecified it is understood to be (0, 1).
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any integrable functions a,(¥) and a,(v) 0 <u <1, 0<v <1, and any positive
constant ¢

(2.30) I(r;a) = I(cr+a,+a,; ca+a;+a,),
where @, = [a, and a, = [a,.
THEOREM 1. If {Ty} is a type A sequence of linear rank statistics (Definition 2.1)
and {ry} is a sequence of constants approaching a constant r then
limy,, {—N""logP[Ty = Nry]} =1(r;a)  r<#a),
=0 r<r(a);
where r(a), F(a) and I(r; a) are defined by (2.25), (2.26) and (2.27).
ProoF. Define the bivariate density iy as follows
2.31) i, )=N  (uov)eD, j=1,--N,
=0 elsewhere;
where D; = {(u,v) | (R;—1)/N S u < Ry/N, j—1/N S v <j/N} and (R, *", Ry) are
defined in the first line of this paper. Clearly hy has uniform marginals and, by (1.1)
and part (i) of Property A,
(2.32) Ty = N[ [ayhy.

It follows from (2.24) that for each ¢ > O there is a function a,(-,") over the unit
square such that g, satisfies (2.1) for some k = k(¢) and /= I(¢) and such that
d(a,, ay) < eforlargeenough N and d(a,, a) < &. Let Ty, = Y )= @,(R;/N+1,j/N+1).
Since a,(R;/N+1,jIN+1) # N*fp;fa, only if there is some o or some § such that
R;—1 = Nu, < R; or j—1 = Ny; <, where u, and v, are defined after (2.1), and
since this can happen at most once for each « < k(¢) or f < I(¢) it follows that

(2.33) |Tv/N—{[a,hy| S (maxa,—mina,)(k(e)+I(e))/N = .

The latter is non-random and approaches zero as N — oo, because a,(-,*) takes on
at most k(¢) - I(¢) distinct values.
Since hy € # it follows from (2.23), (2.32) and (2.33) that

|Ty—Te|IN < [fla.— anlfiy+ | Tno/ N— [fa,iy| < e+ 0y
for sufficiently large N. Consequently, with ry’ = ry—0dy, 7y’ = ry+0dy, for large N,
P[Ty, = N(ry" +€)] £ P[Ty = Nry] < P[Ty, 2 N(ry'—8)].
It follows from the above, (2.29) and Lemma 1 applied to Ty, that
(2.39) I(r—2¢,a) < I(r—e;a,) < limy_, , {—N"'log P[Ty = Nry]}
< I(r+e;a,) £ I(r+2¢,a).

Since ¢ is arbitrary and I(r; a) continuous, the theorem is proved.
It was remarked earlier that Property A is usually satisfied ; the following theorem

“makes this statement more specific.



DEVIATIONS AND EFFICIENCY OF LINEAR RANK STATISTICS 257

THEOREM 2. If ay(u, v) is of the form
(2.35) ay(u,v) = Zf’: 1 Ini()Lyy(v),

where p is fixed and finite, and the 2p functions, Jy,, Ly, [ = 1,"--,p, are constant
over intervals like [(i—1)/N, i/N),i = 1, -+, N and converge in quadratic mean (qm) to
square integrable functions J,, L,,1 = 1, -, p, then Property A is satisfied.

Proor. Clearly part (i) of Property A holds.
Define

(2.36) a(u,v) = Zf: 1 S Ly(v).

For convenience in establishing part (ii) consider p = 1 and drop the [-subscripts;
the generalization to any fixed finite p is routine. Since J and L are square integrable
they can be approximated arbitrarily well in gm by functions constant on the
intervals [i—1/k,i/k),i = 1,-+,k for k sufficiently large. The result then follows in
an obvious way from the fact that for any square integrable functions J*, L* and
any density 4 with uniform marginals one has

JF1I* @) L*(0) = () L(v)| h(u, v) du dv
< (I [7*) — @] du [T o} + ( [L°0) ~ LT S I@T

COROLLARY 1. If {ay} has property A, then for every & > O there exists a bounded,
continuous function a,* such that limy_, ,, d(ay, a,*) < e and d(a, a,*) < e. ‘

PROOF. Let N, be large enough that d(ay, a) < ¢ for N = N,. Let a, = ay,. Clearly
a(u,v) = Y2, J(u)- L(v) where p = N,,J; and L; are elementary functions. Now
proceed as in the proof of Theorem 2 except approximate J; and L; by bounded,
continuous functions.

3. Evaluating I(r; a). Suppose 4 > 0 is an arbitrary constant and s(v),0 Sv =1
is an arbitrary function such that for almost every v,0 < v < 1,

t(u) = log {f exp [A(a(u, v) — s(v))] dv}/A < 0.

If one defines g(u,v) = exp [A(a(u, v)—s(v)—t(u))], then for each u, g(u,v) is a
density on 0 < v < 1. If f(u, v) is a density with uniform marginals, then

[ log (g(u, v)/f(u, v) )f(u, v) dv < 10g {fr>019(u, V) dv} < 0.
Consequently [[flogf = Alffa(u, v)f(u, v)— [s(v)— [t(u)], and if [faf = r then
(3.1) [fflogf = ALr—{s(v)—[tw)]

= A[r—[s(v)]—[log {[ exp [A(a(u,v)—s(v))] dv} du.

If A and s(v) can be chosen so that g(u, v) is a density with uniform marginals and
*[fag = r then equality can be attained in (3.1) by setting f = g. The above remarks

imply
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THEOREM 3. If there exists a constant A > 0 and a function s(u) such that

exp [Aa(u, v)—s(v))]

(3:2)

= J Texp [AMa(u, v') = s@'))] dv’ 0<v<l and
_ [ a(u,v)exp [Ma(u, v) = s(v))] dv
ey e J [exp [Aa(u,v)—s(v))] dv du, then

3.9 I(r;a) = Ar—{s)—[log{[exp[A(a(u,v)—s(v))] dv} du.
ReMARK. The roles of # and v can be reversed in the above discussion.

ExamPLE 1. The Fisher-Yates (normal-scores) correlation coefficient is a statistic
of form (1.1) with ay(u, v) = Jy(u) - Jy(v), where Jy(u) = EZ; |y, (j—1)/N = u < jIN,
and Z;, y is the jth smallest of N independent standard normal random variables.
It is well known that Jy(u) converges in quadratic mean to @~ !(x), the inverse of
the standard normal cdf. Thus the sufficient condition (Theorem 2) for Property A
is satisfied with a(u, v) =@~ '(u)®~*(v) = apyc(u, v), say.

The function s(v) = b[® ' (v)]?, where b = [— 1 + (1 +44%)*]/41 satisfies (3.2) with
a = apyc. By solving for 4 = 01in (3.3), which can be done for 0 < r < 1, and substi-
tuting the result in (3.4) one obtains

3.5) I(r;apyc) = —ilog(1—r?), O<r<l.

k-Sample scores statistics. In the k-sample problem let n,, - - -, n, denote the sample
sizes, n; + **+ +n, = N, and suppose that n;/N — p;(#0,1) as N - co. Let S;; be
the rank in the combined sample of the jth (unordered) observation from the ith
sample. Under the null hypothesis that the & samples were drawn from identical
continuous populations, the ranks (Ry,**, Ry) = (Sy1, ", S1n,3 S215 "5 Samss 3
Si1> " Sim,) are equally likely to be any permutation of (1, *, N).

A k-sample scores statistic’ is one of the form:

(3.6) o Z?;l Jni(Si/N +1),

where Jy;(u), i=1,---,k are functions which are constant over the intervals
i—-1=Nu<i,i=1,--,N. Let vg;=(n+ - +n)/N, i=1,""k, vyo =0, and
define Ly;(v) to be 1 for vy,;_; < v < vy; and O otherwise. Then the above becomes
SN 1 an(R;/N +1,j/N +1), where ay(u, v) = Y =y Jyi(#) - Ly v).

Since vy; = v; = p; + *++ +p; it follows that if Jy,(u) - Ji(u) in quadratic mean,
then, by Theorem 2, ay has Property A with

3.7 a(u,v) = J(u), Vi Sv<v,  j=1,0k,
=a(u,v;J,p), say

where J = (J19’H9Jk)andp = (pl ”"pk)‘
Writing I(r; a( -, ; J, p)) more simply as I(r; J, p) one has:

“ 7 Such statistics were considered by Andrews and Truax (1] for £ = 3 and, of course, for &k = 2
they have been extensively studied.
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THEOREM 4. If a(u,v) is of form (3.7), J;(u), j=1,""",k are integrable, and r
satisfies:

(3.8) Yipifli=rsr<i= SuP{Zipi_fJifiIZiPifi =1},
(f1s** . Sx being densities over (0, 1)) then there exist constants 1,s,, -, s, such that
(3.9 I(r;3,p) = Ar—13 p;s;—[log{} p;[exp(AJ (u)—s,)]} du,
where (1,5, " -, 5;) is the essentially unique solution with 1 = 0 of
(3.10) 1= fexp[A(J () —s)]/Y. piexp [MJ(u)—s)]du, j=1,--,k, and
(3.11) r=[y p;J j(u)exp [A(J (u)— S,)]/Z pjexp [A(J (u)—s;)] du.
“Essentially unique” means that if (', s,’, - - -, 5,/) is dnother solution with A’ > 0,
then A=21" and s;/ = s;4+c for i=1, -,k and some constant ¢. If r < r, then
I(r;3,p) = 0.
ProoF. If a solution (4,s,,,s,) does exist, and one defines s(v) = Sjy Uiy =
v < vy, then clearly 4 and s(v) satisfy (3.2) and (3.3) so that (3.9), which is simply
(3.4) specialized to the present example, holds.
By Corollary 1 of the appendix, for any 4 = 0 there is a solution s,(4), - -, 5,(1),to

(3.10) having the uniqueness property described above. With s; replaced by
s{(A),j =1, k, the right side of (3.11), call it m(4), becomes:

(3.12)  m() =Y p;J(u)exp [A(J (u)—s ) /Y. piexp [A(J (u)—s,(4))] du.

To complete the proof it suffices to show that the equation m(1) = r has a root for
every re(r, 7). Since m(0) = r, it is enough to show that m(4) is strictly increasing,
continuous and m(1) » 7 as A — co. This is proved in Lemmas 4, 5 and 6 of the
appendix.

Application to two-sample scores statistics. These statistics, which were defined by
(1.2) are also of form (3.6) with n; = m,n, = n, Jy,(u) = 0 and Jy,(u) = Jy(u) =
Jinsi—1/N < u < i/N, where Jy,, -, Jyy are the scores on which the test is based.
If Jy(u) converges in quadratic mean to a function J(u), then, with p = p, =
lim(n/N), p=p,=1-p, s=s,—5, and I(r;J, p) = I(r;(0,J),(p, p)), it follows
from Theorem 4 that

(3.13) I(r;J,p) = Ar—ps)—[log{p+pexp[AJ(u)—s)]} du

where (4, s) is the unique solution of

(3.14) 1 = fexp[A(J(u)—$)]/(p+ pexp [A(J (1) —s)]), and
(3.15) r = [ pJ(u)exp [A(J(u)—5)]/(p+ pexp [A(J(u) —s)]),

for any r such that

(3.16) piISr<sup {pfJfl0Sf<p ' [f=1}.

This result was first reported by M. Stone [9] who required slightly stronger
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conditions; in addition to gm convergence of Jy to J he required that J,* converge
toJ " in 24 6th moment for some § > 0.
If J(u) is nondecreasing then (3.16) becomes

(3.17) pfJw)du < r < [LJ(u)du.

For the special case p = 4 and J(u) = —J(1 —u), for any A the solution of (3.14)
iss = 0. Thus

(3.18) I(r;J,%) = lr—jlogcosh(%u(v))du,
where A is the solution of
(3.19) 2r = [ J(v) tanh (3AJ(v) ) dv.

ExAMPLE 2. The two-sample median test is based on the number of observations
from the second sample greater than the median of the combined sample or
equivalently upon the difference between the numbers of observations above and
below the median. Thus the median test is based on the two-sample scores statistic
with Jy(u) = J(u) = sgn(u—1%). Starting from (3.13)-(3.17) a routine calculation
yields I(r; Median, p)= K(p)—[K(p+r)+K(p—r)]l, 0 =r <min(p,p), where
K(x) = —(xlog(x)+ (1 —x)log (1 —x)). Values of I(r; Median, p) for p = 4, 1, , %
and various r-values are found in Table 2b.

ExaMpLE 3. The Wilcoxon test is based on the two sample scores statistic with
Jy(u) = J(u) = u—1%. From (3.13)-(3.17) one obtains after a little manipulation

I(r; Wilcoxon) = 2Ar+plog(exp (pd)—1)
+ plog (exp(p2)—1)—log (exp () — 1)+ K(p) + App
where A is the unique solution of

_ J ! uexp [A(u—p)] du
o exp [A(u— p)]+ (1 —exp (pA) )(1 —exp(pA)) ™!

Both Hoadley and Stone ([5], [8]) report this result®; the correspondence between
the present notation and Hoadley’s is as follows: r = ppe, p, = p, p, = p, and his
Alp.p, corresponds to A. Values of I(r; Wilcoxon, p) for p = 4, 4, 4, % and selected
r-values are found in Table 2c.

_%P, 0§r<%pﬁ'

ExampLE 4. The Fisher-Yates (normal scores, ns) test is based on the two-sample
scores statistic with Jy(u) - J(u) = ®~!(u), the inverse of the standard normal
distribution function. Again from (3.13) through (3.17) one obtains:

I(r;ns, p) = Ar—Aps— [, log [p + pexp (A(x —s))Jo(x) dx,

8 Gerald L. Sievers also reported this result in his 1967 thesis.
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where(x) = (d/dx)®(x) and (4, s) is the unique solution (with A = 0) of

- J' ©  exp[Mx—s)]
- P+pexp[Ax—s)]

o[ el
wp+pexp [Ax=9)]

o(x)dx and

p(x)dx, O0=r <@ '(p))

This was first obtained by Stone [9].

Values of I(r; ns, p) for p = 4, 1, §, 1% and various r-values are found in Table 2a.

Type A linear rank statistics. If Ty is type A (Definition 2.1), then for any ¢ > 0
there exists a function a, satisfying (3.7) for some k = k(¢) such that d(a,a,) < e.
From this and (2.29) it follows that I(r;a) can be approximated arbitrarily closely
by I(r;a,). But one can use (3.9)-(3.11) to evaluate IZr;ae), so I(r;a) can be calcu-
lated as accurately as one wishes.

In fact, from (2.29) and the convexity of I(r; a,) one can derive the bound

(3.20) [I(r,a)—I(r;a)| S e(r"—r) " '[I(";a)—1(r';a,)], for r <7, r+e<r".

This method was used to calculate values of I(r; a) for Spearman’s rank correla-
tion coefficient rho (Table 1); i.e. for a(u,v) = 12(u—3)(v—1%). The approximating
function was a,(u,v) = 12(u—3) (k" '(G—H -4, (G- Dk v <jlk,1 £j <k, with
k = 320. In order to use (3.20) one needs to know an upper bound for

(3.21) e=sup{f[|a—a,|h;hes}.

Since a(u, v)—a,(u, v) = a(u, v+j/k)—a,(u,v+j/k) it is clear that one can, without
loss of generality, assume A(u, v) = A(u, v+ j/k) in (3.21). Thus A*(u, v) = h(u, v/k) is
in &, and

[f@=a)h =12k 3 5 (u =10 —Hh*@u,v) du dv
S 1267 [Jow—D’Pfo -] = Lk.

Consequently ¢ < k™! = .003125. Error estimates using (3.20) are included in
Table 1. Notice that for small and large r the error estimates are quite large; for
small r this appears to be due to the crudeness of the error bound as the following
argument suggests.

An expansion for I(r;a). If one assumes that (3.2) has a solution s(v; 1) and that
s(v;A) = —log[g(v; A)J/A can for A~ 0 be expressed as g(v;A) =1+4g,(v)+
22g,(v)+ - - -; then by solving for g,(v),g,(v), - - in (3.2) and substituting the result
into (3.3) and (3.4) one obtains for 1 =~ 0

(3.22) r=JAc, +312%, + 113, + -

I(r;a) = $A%c, +3A3¢c, +4A%c* 4+,
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TABLE 1
Index of large deviations of Spearman’s rho*
Error} Error
r I(r; rho)t Bound r I(r; rho) Bound

.03 .034505%* 312 .57 .1886 14
.06 .0,1803 131 .60 2133 13
.09 .0,4063 81 .63 .2406 13
12 .0,7240 59 .66 .2708 13
15 01135 46 .69 .3046 13
18 .01640 38 2 .3426 13
21 .02243 33 75 .3857 13
24 .02946 28 .78 4354 14
27 .03751 25 .81 4935 15
.30 .04664 23 .84 . .5634 16
.33 .05689 21 .87 .6496 18
.36 .06831 19 .90 7613 21
.39 .08097 18 .93 9172 29
42 .09495 17 .96 1.169 XAk
45 .1103 16 .99 1.820 Rk
48 1273 15 999 2.944 —
Sl .1458 15 .9999 4.086 —
.54 1662 15

* Spearman’s rho is Ty = 12(N+1)"2Z R,(j—3(N+1).
t I(r;rho) = —limN~'log P[Ty = Nry], whenry — ras N —» 0.
1 The error bound is in parts per thousand and is obtained from (3.20).

** The notation 03 means 000.
*** From this point on I(r; rho) is calculated from (3.26); no error estimate is available.

where
c=ife =i,
¢y =[fa*=3[[[a*u,v)a*(u,w)dudvdw—3[[[a*(u,v)a*(w,v)dudvdw
+3(ffa*? and
co=[fa*=2[[fa*(u,v)a*(u,w)dudvdw—2{[|a*(u,v)a*(w,v)dudvdw
—~[[J a*(u,v)du] dv—[ [ a*(u,v)dv] du+3(f [a*)?, provided
(3.23) fa(u,v)du = [a(u,v)dv =0.

If a(u,v) = J(u) L(v), then the coefficients reduce to ¢, = J,L,, ¢, =J3L;, and
¢3 =4 =J4Ly—3J,2L,—3J,L,*+3J,°L,?, where J,=[J',L, = [L", provided
Ji=L,=0.

By inverting (3.22) to obtain A as a power series in r one obtains:

1 c c ¢
3.24 I(r;a) = r*{ — )=r3| -2 af 24 22 73 ...,
(3:24) (ra)=r <2c1> d <6c13 +r 8,* 8c,° 6¢c,* +
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If (3.23) is not true then one should replace a(u, v) by a*(u,v) = a(u,v)—a,(u)—
a,(v)+a,, where a,(u) = [a(u,v)dv, ay(v) = [a(u,v)du, a,, = [Ja = r(a). Also on
the right side of (3.24) r should be replaced by r—r(a) = r—a,,. These remarks
follow from (2.30).

In particular for Spearman’s rho (3.24) becomes

(3.25) I(r;rho) = .5r2 4 .19r% 4 -~

This agrees with Table 1 within one part in a thousand in the range .03 < r < .24
and suggests considerably more accuracy there than does (3.20).

For large r(r~ 1) another intuitive argument® suggests
(3.26) I(r;rho) = —3log (1 —r)—%(log(in)+ 1) +.40604(1 — r)t - - -
= —3og(1—r)—.523054.40604(1 —r)¥ +- - -
4. Bahadur efficiency of type A linear rank statistics. For a definition of Bahadur

efficiency see Part II, Sections 4 and 5, of [2]. One method of evaluating Bahadur

efficiency (given in [2]) is as follows:

Let (Z'y, #y); N = 1,2, -, be measurable spacesand let P = {Py} and Q = {Qy}
be sequences of measures on these spaces. Sy‘!? and Sy® are two statistics defined
on (Z y, &y). Suppose one uses rejection regions of the form Sy® = ky®, i =1 or 2,
to test the null hypothesis!® Py versus the alternative Qy and the test statistics
converge in probability under Q to some constants, call them r,(Q)i = 1,2;i.e.,

(4.1) SNPIN -4 r(Q), i=1,2.
If there are continuous functions /;, i = 1,2, such that for any sequence of constants
Xy converging to a constant x
4.2) limy, o {—N"'log P[Sy® = Nxy]} = I,(x), i=1,2.
then the Bahadur efficiency of Sy") compared to Sy® for rejecting P in favor of
Qis
(4.3 1,(r(@))/1(r2(Q)),
provided numerator and denominator are neither zero nor infinity.

The quantity 2,(r(Q)) is called the exact slope of Sy'” at the alternative Q; thus

(4.3) states that the Bahadur relative efficiency of one test statistic compared to

another is the ratio of their exact slopes.
Notice that if Ty is a type A linear rank statistic (Definition 2.1) and if Ty/N

converges in probability under a sequence Q of simple alternatives to, say, r(Q)
then, by Theorem 1 the exact slope of Ty against Q is

4.4 21(r(Q); a).

9 See [11] page 14 for details; note that r of this paper is 12 times the r of [11]. The constant

and logarithmetic terms are thought to be exact.
10 More generally we may take Py (or Qy) to be classes of distributions provided a test statistic

has the same distribution throughout a class.
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Thus to calculate exact slopes one needs to be able to evaluate the probability limit
of Ty/N for alternative hypotheses of interest.

Two examples of probability limits.

ExaMPLE 1. Ty is a type A linear rank statistic and R,," -, R y are the ranks of
N independént random variables Z,- -+, Zy. Under the alternative Qy the Z’s
have distribution functions Fyy,- -+, Fyy, Which are assumed to have no discrete
probability points in common.

Let Hy*(x,v) = N™'Y Y., Fy(x)I[j < Nv], where I]-]is the indicator function.

If Hy*(x, v) converges to a bivariate cdf H*(x, v) at continuity points of H*(x,v),
then Ty/N converges in probability and the probability limit is given by :

4.5) Ty/N =4 |2 [ a(F(x),v) dH*(x,‘v),
where F(x) = H*(x, 00).

PrOOF. Define NH,*(x,v) to be the number of observations among Z,,---,Z s
j = [Nv], which are less than or equal to x. Then Fy(x) = Hy*(x, ) is the empirical
cdfof Z,, -+, Zyand, since R; = NFy (X, it follows from (1.1) that

© 1 N N N
Ty/N =JL00J‘0 aN<N+1FN.(x),N+lv>dﬁN*(x,v)

111 N N
= J\o fo aN(m u,mv>dﬁ1v(u, U),

where H (u, v) is the cdf which puts probability N ~! at the points (R JIN+1,jIN+1).

Now let a,* be the uniformly continuous function guaranteed by Corollary 1,
and let Hy(u, v) be the cdf corresponding to the density &y of (2.31). If dy* is the
modulus of continuity of a@,* over a square of size N ™!, then clearly

|[fa* d(By— )| < 205*.

Thus |Ty/N— [fa,* dAy| = |[{ay dHy— [[a.* dHy| < d(ay, a,*)+26y* < e+25y* for
large N. Since

N N
Jfae*dﬁN = ffaz*(N+1FN.(x),N+1v)dﬁN*(x,v)

the result follows at once from the uniform continuity of a,* and the easily verified
fact sup, , |Hy*(x,0) — H*(x, v)| = 0.

EXAMPLE 2. (X,Y), -+, (Xy, Yy) are independent and identically distributed
random vectors with cdf H (x,y) having continuous marginals F(x) and G(y). The
null hypothesis P is that H = FG and the alternative Q is that H is some fixed
cdf # FG.

« Let (X(;), Y0, 7 =1, , N, be the sample arranged so that X, < -+ < Xy, and
let Ry, ,Ry denote the ranks of Ypj,***, Yy Under the null hypothesis,
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(Ry, ", Ry) is equally likely to be any permutation of (1, -, N). If Ty is a type A
linear rank statistic, then under the alternative Q

(4.6) Ty/N —o | [ a(F,G)dH.

PROOF. Let Hy(x,y) be the bivariate empirical cdf and let Fy(x), Gy(y) be its
marginals, then clearly

, N . N .\.-
TN/N= ay ml"N,']V—_HGN dHN.

An argument similar to the above yields the desired result.

To conclude this section the results of this paper are applied to several testing
problems.

The two-sample case. In the two-sample case described in the introduction, let F
and G denote the distributions and m and » the sample sizes of the X'and Y samples,
respectively. The null hypothesis P is that F = G, continuous, and the alternative
Q is that F and G are some fixed cdf’s, F# G. If /N - p #£ 0,1 as N » o0 and Hy*
is defined as in Example 1, then

Hy*(x,v) » H*(x,v) = F(x), 0<v<p,
=G(x), p=v=sl;

where p = | —p. If Ty is a two-sample scores statistic (see (1.2) ) with score function
Jy converging in quadratic mean to J, then as in the sentence containing (3.7) it
follows that Ty is type A.

Thus by Example 1,

4.7) TyIN = p [Z o JGF()+pG(x)) dG(x),
If G(x) = F(x—0), then
4.8) TyIN = p 2.0 J(OF(x +6)+ pF(x)) dF (x);

an interesting special case is p = 4 (equal samples), F(x) = 1 — F(—x) and J(u) =
—J(1 —u), in which case, after some manipulation, (4.7) becomes

49 TyIN = [§ JG(F(x+0")+ F(x—0")))dF(x+0")— {1 J(u) du,

where 0’ = 10.

Exact slopes and Bahadur efficiencies of two-sample scores tests. It was remarked
above (see (4.3)) that the Bahadur relative efficiency of two statistics is the ratio of
their exact slopes. It follows from (4.4) and (4.7) that the exact slope at the alterna-
tive F, G of a two-sample scores statistic with score function J is 21(r(F, G, p); J, p),
where r(F, G, p) is the right side of (4.7) and I(r; J, p) is given by (3.12); this exact
slope (without the 2) is tabulated in Tables 2 through Table 4 for G(x) = F(x—0)
normal, double exponential, logistic, p = 1, %, 4, 1%, various 6 values, and J cor-
responding to normal scores, Wilcoxon and median tests.
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For the special case p =%, J(u) = —J(1—u), and F(x) =1—F(—x) the exact
slope at the alternative G(x) = F(x—0) is twice the right side of (3.18) with r set
equal to the right side of (4.9). An interesting numerical agreement between his
work and that of Klotz [7] was pointed out by Hoadley [5] page 381 ; we are now in
a position to explain this agreement. Notice that Klotz’s “‘exponent” e p) ((1.4)
page 1760) is'' I(3p; J, 1), the right side of (3.18) with our J(«) equal to Klotz’s
G 'Qu~1)fort £u<1and J(u) = —J(1—u) for 0 < u < } and Klotz’s p and A
correspond to 2r and 34 of this paper.

Let Sy denote the one-sample signed rank statistic given by Klotz’s (1.2). Under
the alternative Q that the observations in the sample are drawn from F,(x) =
F(x—p) it is easy to see that Sy/N — op(u) = 2r(u). where r(u) is the right side of
4.9)with ' = u,p = 1.

To obtain relative efficiencies, Klotz evaluates e(p) with p equal to p(u). Con-
sequently Klotz’s “exponent” e (p(u) ) equals I(r(n); J,3) and

the entry in the “I”’ column equals the entry opposite
under p = 4 opposite 0 of u =10 of Klotz’s
Table 2a Table I, col. 3
Table 2b TableI, col.4
Table 2¢ Tablel, col.2
Table 3, “median” Table 11, col. 4
Table 3, “Wilcoxon” Table I1, col. 2
Table 3, “normal scores” TableIl, col. 3
Table 4, “median” Table 11, col. 7
Table 4, “Wilcoxon” TableIl, col. 5
Table 4, “‘normal scores” Table II, col. 6

By an argument which need not detail us here the *“I”’ column of Table 2d under
p = % corresponds in a similar way to Klotz’s Table I, column 6.

Exact slopes and Bahadur efficiencies of some tests of bivariate dependence. The
Fisher- Yates normal scores correlation coefficient was defined in Example 1 of
Section 3. In this case the right side of (4.6), call it r(H; FYC), isr(H; FYC) =
[f@~'(F(x))®~'(G(y))dH(x,). In particular, if H has normal marginals, then
r(H; FYC) equals p, the product moment correlation between X and Y. From (3.5)
and (4.4), the exact slope for testing independence of X and Y versus the alternative
His —log(1—r*(H; FYC)) or —log(1—p?) in case H has normal marginals and
p >0. Let T’ denote the sample product-moment correlation coefficient. From
Klotz’ [7] formula (3.3) and the fact that (under the null hypothesis that X and Y
are independent and normally distributed) (N —2)*Ty'/(1—Ty'?)? is distributed as
Student’s ¢ with N—2 degrees of freedom, it follows easily that the exact slope of
Ty' for testing a normal null against any alternative H with correlation p > 0 is
—log (1 —p?). Thus the Fisher-Yates correlation coefficient has Bahadur efficiency
one relative to the product-moment correlation coefficient for testing the null

#

'1 This is a new use of the symbol “p”’.
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TABLE 2a
Probability limit and exact slope (times %) of the two-sample normal scores test against the
normal shift alternative: F(x) = ®(x), G(y) = F(y—0).

p 3 1 p ¥ 16

6 ¥ 1 r 1 6 ¥ I r 1

25 .062017 .0,7752 .046601 .0,5825 25 .027250 .0,3406 .014621 .0,1828

50 .12126 .03031 .091587 .02289 .50 .053922 .01348  .029071 .0,7268

75 17551 06577  .13349 .05003 75 .079396 .02977  .043140 .01618
1.00 .22333 1114 17116 .08544 1.00 .10303 .05147  .056558 .02827
1.25  .26407 1642 .20388 1269 1.25 .12426  .07746  .069019 .04307
1.50 .29773 2211 23140 1721 1.50 .14271 .1064 .080229 .05995
1.75 .32474 2793 25382 2189 1.75 .15820 1369 .089979 .07815

2.00 .35807  .3365 27156 .2652 2.00 .17080  .1677 098172 .09687
225 .36180  .3908 28520 3095 225 .18072  .1975 .10482 1154
2.50 .37361 .4408 29538 .3506 2.50 .18830  .2256 11005 .1331
275 .38209  .4860 30277 3878 275 .19392 2513 11402 1496
3.00 .38802  .5255 30798 4206 3.00 .19795  .2743 11695 .1644
325 39204 5594 31155 .4490 325 .20077  .2943 11903 1775
3.50 .39470  .5881 31393 4730 3.50 20267 3114 12047 .1888
3.75  .39640  .6117 31546 4929 3.75  .20392  .3257 12143 .1984
4.00 .39746  .6310 31642 5092 4.00 .20471 3375 12205 2064
425 .39811 .6464 .31701 5223 425 .20519  .3470 12244 2129
450 .39848  .6584 31735 5325 450 .20549  .3545 12268 2181
475 .39870  .6678 31755 .5405 475 20566  .3604 12282 2222
5.00 .39881 .6749 31766 .5466 5.00 .20575  .3649 12290 2253
525 .39888  .6802 31772 5511 525 .20580  .3683 12294 2277
5.50 .39891 .6841 31775 5549 5.50 .20582  .3707 12296 2295
5.75 .39893  .6869 31776 .5569 5.75 .20584  .3724 12297 2308
6.00 .39894  .6890 31777 5587 6.00 .20585  .3735 12298 2316
o .39894  .6932 31778 5623 o .20585  .3768 12299 2338

hypothesis that (x, y) are independent and normal versus the alternative hypothesis
that (x, y) are dependent with normal marginals and positive correlation.

No comparison between the product-moment and normal-scores correlation
coefficients has been made for null distributions with nonnormal marginals since
the exact slope of the product-moment correlation coefficient in such cases is not
known (at least, not by the author).

A widely used test statistic for bivariate dependence is Spearman’s rank correlation
coefficient rho.'? Let H(x, ) be a bivariate density with continuous marginals F(x)
and G(y) such that H(x, y) # F(x) G(y). Itis well known, and follows from (4.6) that
the probability limit of rho/N, call it r(H; rho), is

(4.10) r(H;rho) = 12 [ [ F(x)G(y)dH(x, y)—3

12 a(u,v) = 12(u—4%) (v—1).
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By (4.4), the exact slope of rho for testing independence against the simple alterna-
tive H is 2I(r(H; rho); rho). For example, when H(x, y) is bivariate normal with
correlation p the right side of (4.10) becomes 6n~!arctan(p(4—p?)~%); for
p = .1256 the above equals .12 so for this particular p-value the exact slope of rho
is 21(.12; tho) = .01448 (from Table 1). In comparison, the exact slope of either
the product-moment or normal-scores correlation coefficient is —log (1 —p?) =
.01590 so the Bahadur efficiency against this alternative of rho compared to either

of these other correlation coefficients is .01448/.01590 = .911.

Another competitor of Spearman’s rho is Kendall’s coefficient zau. It is shown in
[11] that the exact slope of tau against the alternative H is 2e(r(H; tau); tau) where

(4.11) r(H;tau) =4[ [HdH—1
(=2n"tarctan(p(1—p?)~ %) |
when H is bivariate normal with correlation p)
TABLE 2b

Probability limit and exact slope (times %) of the two-sample median test against the
normal shift alternative: F(x) = ®(x), G(y) = F(y—6).

P ¥ * P ¥ is

6 r 1 r 1 6 r 1 r 1

25 .049738  .0,4956 .037231 .0,3707 25 .021665 .0,2155 .011588 .0,1152

.50 .098706 .01961 .073448 .01455 .50 .042434  .0,8377 .022593 .0,4450

75 14617 04336 .10768 .03172 75  .061489 .01796 .032509 .0,9448
1.00 .19146 .07522 .13902 .05390 1.00 .078169 .02985 .040965 .01550
1.25  .23401 1139 .16670 07936 1.25  .092042 .04276 047776  .02188
1.50 .27337 .1580 .19017 .1061 1.50 .10295 .05542 1052940 .02794
1.75  .30921 2058 20911 1321 1.75 .11103 06677 .056620 .03318
2.00 .34134 2557 22355 1554 2.00 .11663 .07612 059079 .03734
2.25  .36971 .3062 23387 1747 2.25  .12027 .08322 .060619 .04040
2.50 .39435 3558 24076 1896 2.50 .12248 .08820 061524 .04249
2,75 .41543 4034 .24503 .2001 275 12374 09145 1062022 .04381
3.00 .43319 4479 24749 .2070 3.00 .12440 .09341 062279 .04458
3.25  .44792 4886 .24880 2111 3.25 12473 .09452 062404 .04501
3.50 .45994 5250 .24947 2135 3.50 .12489 .09510 062460 .04522
3.75  .46960 .5570 24977 2147 3,75  .12496 .09538 .062485 .04533
4.00 .47725 5846 .24991 2153 4,00 .12498 .09551 062494  .04538
425 48321 .6079 24997 2156 425 12499 .09557 062498 .04540
450 .48778 6272 .24999 2157
475 49123 .6429
5.00 .49379 .6554
525 .49567 6653
5.50 .49702 6728
5.75 .49798 .6786
6.00 .49865 .6829

0 3 69315 ! 21576 © 3 095602 % .045406
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and e(r; tau) = Ar+4A+log (1) —log(e*—1), A being the solution of

A
r= 1+4U xdx —/1]/,12.
o€ —1

An extensive table of e(r; tau) (Table 5), computed since [11] was written, is in-
cluded here to facilitate comparisons between tau and rho; we emphasize that tau
is not a linear rank statistic and cannot be handled by the methods of this paper.

Efficiencies against bivariate normal alternatives. From the above and (4.3) it
follows that the Bahadur efficiency of tau with respect to rho against the bivariate
normal alternative with correlation p > 0 is

e(2n™ ! arc tan (p(1 — p?)~¥); tau)/I(6n ™ arc tan (p(4 — p*) ™ ¥); rho).

This ratio was calculated, using Table 1 and Table 5, for various values of p, it
equals one for p = 0 and p = 1 and appears to be always greater than one but no

TABLE 2c
Probability limit and exact slope (times ) of the two-sample Wilcoxon test against the normal
shift alternative: F(x) = ®(x), G(y) = F(y—0).

14 b1 P P ¥ 16

7] r ! r 1 6 r I r 1

25 01754 .0,7416 .01315 .0,5564 25 .0,7674  .0,3247 .0,4111 .0,2421

.50 .03454 02914  .02591 .02189 .50 01511 .01279  .0,8095 .0,6860

75 .05051 .06368 .03789 .04793 75 .02210 .02808  .01284  .01509
1.00 .06506 .1087 .04880 .08208 1.00 .02847 04827  .01525 .02600
1.25 .07791 1615 .05843 1224 1.25 .03408 07234  .01826 .03910
1.50 .08889 .2189 .06667 .1667 1.50 .03889 .09921 .02083 .05390
1.75 .09801 2779 .07351 2129 1.75 .04288 1279 .02297  .06995
2.00 .10534 .3360 .07900 2592 2.00 .04609 1574 02469  .08688

2.25 .11105  .3910 .08329  .3040 2.25 .04858 .1869 .02603  .1043
2.50 11536  .4416 08652 .3459 2.50 .05047 2156 02704  .1219

275 11852 4867 .08889  .3841 275 05185  .2426 02778 1391
3.00 .12076  .5262 .09057 4179 3.00 .05283  .2672 02830  .1554
3.25 12231 .5600 09173 4471 3.25 .05351 .2890 .02867  .1703
3.50 12333 .5885 09250 4717 3.50 .05396  .3076 02891 1834

3.75 12400  .6120 .09300  .4920 3.75 .05425  .3231 02906  .1946
4.00 12442  .6311 .09331 .5086 4.00 .05443 3357 02916  .2037
4.25 12467  .6464 .09350  .5219 425 .05454  .3459 02922 2112

450 .12482  .6585 .09361 .5323 4.50 .05461 .3538 .02925 2170
4.75 12490  .6678 .09368  .5404 4.75 .05464  .3600 02927 2215
5.00 .12495  .6749 09371 .5468 5.00 .05466  .3647 029285  .2249
5.25 12497  .6801 09373 5511 5.25 .05468  .3682 029291 2275

5.50 .12499  .6841 09374 5544 5.50 .05468  .3708 029293 .2294
5.75 12499  .6869 09375 .5569 575 .05468  .3726 029295 2308
6.00 .12500  .6889 09375 .5586 6.00 .05469  .3740 029296 2317
o 125 .6932 09375 .5623 o 7/128 3768 15/512 2338

; =.05469 =.029297
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TABLE 2d
Exact slope (times ) of the two-sample t test against the normal shift alternative:
F(x) = ®(x), G(y) = F(y—90).

p 3 1 } 16

0 I I I I

25 0,77521 .0,58253 .0,34063 0,18277

.50 .030312 1022905 .013488 0,72711

s 065788 050135 1029853 016214
1.00 11157 .085425 051898 1028471
1.25 .16488 .12847 078886 .043801
1.50 22314 .17599 .11001 061921
1.75 28425 22688 14445, 082521
2.00 34657 27981 .18145 .10528
2.25 40893 33371 22032 .12988
2.50 47049 .38780 26047 15602
2.75 53074 44146 30138 .18340
3.00 .58933 49431 .34265 21177
3.25 .64608 .54604 .38396 .24087
3.50 70090 .59649 42504 27051
3.75 75377 64554 46570 .30051
4.00 80472 69315 .50580 .33070
4.25 85379 .73929 .54522 .36095
4.50 90106 78398 .58389 39116
4.75 .94660 82725 62176 42122
5.00 .99050 86914 65879 45106
5.25 1.0328 90968 .69497 48063
5.50 1.0737 .94895 73030 .50987
5.75 1.1132 198698 76479 .53874
6.00 1.1513 1.0238 79843 .56721

greater than about 1.05 (this value occurs near p = .85). Because of the large error
bounds in Table 1 the above findings are tentative; nevertheless, the author con-
jectures that tau is more efficient than rho against the normal alternative for all
positive p-values. This means that for large N if tau and rho are adjusted to have
equal power, then tau will have the smaller type [ error; this must be contrasted
with van der Waerden’s finding [10] that for small and moderate N, the reverse is
true.

Let @, denote the bivariate normal cdf with zero means, unit variances and
correlation p; the best test of H = @, versus H = @, is of course the ‘“‘simple vs
simple” likelihood ratio test (LRT). In [11] it was found that this test has the same
exact slope, —log(1—p?), as the product moment correlation test (PMCT) which
was shown above to have the same exact slope as the normal scores correlation test
(INSCT). Calculations reported in Figure 4 of [11] show that the Bahadur efficiency
of tau with respect to the LRT is always greater than the Pitman efficiency (3/732
and increases to one as p — 1.
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Summary of efficiency relations of tests of independence
against the bivariate normal alternative

LRT = PMCT = NSCT > tau
tau'3 > LRT - (3/n)?
1.05:rho'?® > tau = rho

If one balances efficiency against ease of calculation of the test statistic and availa-
bility of tables of its critical values, tau would seem to emerge as the best choice of
the nonparametric tests. Of course this statement so far applies only to the normal
alternative for large (perhaps very large) N. For nonnormal alternatives tau
need not be more efficient than rho, for example, if the alternative is H(x,y) =
xy(14+0(1—=x)(1-y)), 0= x,y<1, 0<0 <1, then (4.10) and (4.11) become
r(H; tho) = /3 and r(H; tau) = 26/9. Thus when 6 = .36 I(r(H; rho); rho) =
1(.12; rho) = .007240 while e(r(H; tau); tau) = (.08 ; tau) = .007219.

APPENDIX

A fixed point lemma. Let Kj(u), j=1,---,k, be almost everywhere (a.e.) positive
functions on 0 <u <1 and define K.(u) =Y%_,p;K;(u), where p,,**+,p, are

positiveand Y p; = 1.

LEmMA 1. If' Kj(u)/K.(u) is bounded away from zero, say Kj(u)/K.(u)>a>0,
0<u<l,j=1, - k,then there exist constants g,, - -, g, such that

(A.1) Ypig;i=1, a<g;<b=1/min(p;), and
Y Ki(u)
(A.2) = =L du, j=1,- k.
97 o oK

ProoF. Define the function T(x) = (T(x), -, T\(X) ), mapping the positive part
of k-dimensional Euclidean space into itself, as follows

K@) K. O
71J(x) - J; K(u) Zpl K‘.(u)/x,- du N J~0 E}TEK;)TXI a

1
=L I%%m(u;x)du, say.

Since m(u;x) is a probability density it is clear that ) p;T;(x) =1 and since
a = Kju)/K.(u) < b it follows that also @ < T;(x) <b. Thus T maps the com-
pact convex set A = {x: Y p;x; =1,a < x; < b} into a subset of itself. Since T is

13 Conjectures based on numerical calculations.
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continuous on this set there must, by the Brouwer fixed point theorem, exist a
point g € A such that T(g) = g. Thus,

K w)
A3 =c| = ,
(A.3) gi=¢ OzpiKi(u)/gi !

¢! —jl _ K@ du
B 0 ZP.’K,'(“)/Q.' '

Multiplying each side of (A.3) by p;/g; and summing, one sees thatc = 1. [}

j=1,---,k, where

TABLE 3
Exact slopes (times %) of nonparametric tests against the logistic shift alternative:
Flx)=(1+e "', G(y) = F(y—0).

pr=% p=1%
Normal Normal
6 Median Wilcoxon  scores 6 Median  Wilcoxon scores
5 .007752 .01031 .009851 .5 .005780 .007736 .007398

1.0 .03030 .03999 .03828 1.0 .02220 .03006 .02886

1.5 .06566 .08561 .08214 1.5 .04668 .06452 .06234
2.0 .1109 1424 .1370 2.0 .07564 .1077 .1048
2.5 .1628 .2050 .1980 2.5 .1053 .1559 1527
3.0 2181 .2689 .2606 3.0 1325 .2058 .2027
3.5 2738 .3001 3215 3.5 1554 2547 2519
4.0 .3278 .3869 .3781 4.0 1733 .3006 2982
4.5 3784 4373 .4290 4.5 .1866 .3423 .3403
5.0 4246 4810 4739 5.0 .1961 .3793 3774
5.5 4659 5184 5124 5.5 .2027 4112 .4095
6.0 .5023 .5500 .5451 6.0 2072 4384 4369
6.5 .5338 .5763 .5725 6.5 2102 4612 .4599
7.0 .5608 .5982 .5952 7.0 2121 .4801 4791
7.5 .5837 .6162 .6140 7.5 2134 4957 .4949
8.0 .6030 .6309 6294 8.0 2143 .5085 .5079
8.5 6192 .6430 6420 8.5 2148 .5189 .5186
9.0 .6327 .6528 6522 9.0 2151 5274 5273
9.5 .6438 .6607 .6605 9.5 2154 5342 .5343
10.0 .6530 .6671 .6672 10.0 2155 .5398 .5400
10.5 .6605 6724 6725 10.5 .5444 .5446
11.0 .6667 6766 .6766 11.0 .5480 .5482
11.5 6717 .6799 .6798 11.5 .5509 5511
12.0 .6758 .6826 .6822 12.0 .5532 .5533
12.5 .6792 .6847 .6840 12.5 .5550 .5550
13.0 .6819 .6864 .6852 13.0 .5565 .5562
13.5 .6840 .6878 .6861 13.5 5577 5571
14.0 .6859 .6889 6867 14.0 .5586 5578
14.5 .6873 .6897 .6871 14.5 .5594 .5582
15.0 .6885 .6904 6874 15.0 .5599 .5585

0 .6932 .6932 .6932 0 2158 .5623 5623
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LEMMA 2. Lemma 1 remains true with a = 0; moreover g; > 0,j =1, k.

PROOF. For arbitrary 6 > 0 replace K;(u) by 6+ min(K(u), 5~ "); then the con-
ditions of Lemma 1 are satisfied. Let g,(5), " - -, g,(0) denote a solution of (A.2) satis-
fying (A.1) for this modification of K. Since 0 < g;(0) < b, there exists a sequence
8, — 0 as n— oo such that g (,) > g, say. Let K;,(u) = 8, +min (K;(u),6,” "), and
gjn = 9;(6,). Since

an(u) < gjn < b2

Sipi K9 = p; =

TABLE 3—continued

p=% pP=1s
Normal Normal
0 Median  Wilcoxon scores 6 Median  Wilcoxon scores
.5 .003347 .004516 .004323 5 .001785 .002420 .002318
1.0 .01259 .01758 .01695 1.0 .006628 .009434 .009120
1.5 .02566 .03787 .03692 1.5 .01327 .02073 .01998
2.0 .04004 .06355 .06279 2.0 .02032 .03431 .03424
2.5 .05361 .09267 .09274 2.5 02674 .05028 .05114
3.0 .06512 .1023 1248 3.0 .03201 .06745 .06972
35 .07414 .1545 1572 3.5 .03606 .08519 .08902
4.0 .08085 1847 .1883 4.0 .03902 .1030 .1081
4.5 .08563 2131 2172 4.5 04111 1203 1264
5.0 .08895 .2391 .2430 5.0 .04254 1368 1430
5.5 .09121 2623 2657 5.5 .04352 1521 1578
6.0 09273 2825 2852 6.0 04417 .1658 1707
6.5 .09373 .2997 .3017 6.5 .04460 1177 .1818
7.0 .09439 3140 3156 7.0 .04489 .1880 1912
7.5 .09482 3259 .3270 7.5 .04507 .1966 1991
8.0 .09510 .3356 .3365 8.0 .04519 .2037 .2056
8.5 .09528 .3436 .3443 8.5 .04527 .2095 2110
9.0 .09540 .3501 .3507 9.0 04532 2143 2154
9.5 .09547 3554 .3559 9.5 .04535 2181 .2190
10.0 .09552 .3596 .3601 10.0 .04537 2212 2219
10.5 .3630 3635 10.5 2237 2243
11.0 3658 .3662 11.0 2258 2262
11.5 .3680 .3684 11.5 2274 2278
12.0 .3698 .3701 12.0 2287 .2290
12.5 3712 3714 12.5 2297 .2300
13.0 3723 3724 13.0 .2306 .2307
13.5 3733 3732 13.5 2312 2313
14.0 .3740 3737 14.0 2317 2318
14.5 3745 .3741 14.5 2321 2321
15.0 .3750 3744 15.0 2325 2323

0 .09560 .3768 .3768 0 04541 2338 2338
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TABLE 4
Exact slopes (times %) of nonparametric tests against the double exponential shift alternative:
F(x) = {1 +sgn(x)(1— exp(—|x]))], G(y) = F(y—0).

pP=3% p=1%

Normal Normal

6 Median  Wilcoxon scores 6 Median  Wilcoxon scores

5 .02467 .02223 .01908 5 .01739 01669 .01433

1.0 .07954 .07910 .06939 1.0 05259 .05959 .05243
1.5 1465 .1536 1380 1.5 .09043 1163 .1052
2.0 2158 2325 2133 2.0 1240 1772 1643
2.5 .2823 .3074 2872 2.5 .1508 2363 2235
3.0 .3434 3744 .3551 3.0 1710 .2904 .2788
35 .3979 4321 .4149 3.5 1854 .3380 .3281
4.0 .4456 .4806 4661 4.0 1955 .3789 .3705
4.5 .4868 .5208 .5089 4.5 2024 4133 4064
5.0 .5219 .5539 .5444 5.0 .2070 4418 4362
55 5516 .5809 5734 55 .2101 4651 .4606
6.0 .5766 .6028 .5971 6.0 2121 .4841 .4806
6.5 .5975 .6207 .6162 6.5 2134 .4996 .4968
7.0 .6149 .6351 .6316 7.0 2142 .5120 .5099
7.5 .6292 .6467 .6441 7.5 2148 .5221 .5205
8.0 6411 .6560 .6541 8.0 2151 .5300 .5290
8.5 .6508 .6635 .6621 8.5 2154 .5366 5358
9.0 .6588 .6695 .6685 9.0 2155 .5418 5413
9.5 .6653 6721 6737 9.5 .2156 .5460 .5457
10.0 .6706 .6782 6779 10.0 2157 .5494 .5492
10.5 .6750 .6813 6812 10.5 .5520 .5520
11.0 .6785 .6837 .6838 11.0 5541 5542
11.5 .6813 .6856 .6858 11.5 5558 .5560
12.0 .6836 .6872 .6874 12.0 5572 5574
12.5 .6855 .6884 .6887 12.5 .5582 .5585
13.0 .6870 .6894 .6897 13.0 .5591 5593
13.5 6882 .6901 .6904 13.5 .5598 .5600
14.0 .6892 .6908 .6910 14.0 .5603 .5605
14.5 .6900 6913 6915 14.5 .5607 .5609
15.0 .6906 .6916 6919 15.0 .5609 .5612
0 .6932 .6932 .6932 0 2158 .5623 .5623

it follows from the dominated convergence theorem that

in(U) K (u)
Ad) g;=lim,., g, =1lim,., . ?
(A4 g, =lim,-g m ,pr, ...(u)/g,,, ,[Z piKiu)/g; du-
Also

(A.5) Ypigi=1lim, ) p;gn=1.

Thus it is not possible that, for example, g; = 0 since then K j(u)/ZpiKi(u)/g,-) =0,
which would by (A.4) imply that g; = 0 for all j contrary to (A.5). []
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TABLE 4—continued

p=% pP=r1s
Normal Normal
/] Median  Wilcoxon scores /] Median  Wilcoxon scores
.5 .009471 .009750 .008379 5 .004870 .005228 .004495
1.0 .02710 .03496 .03086 1.0 .01356 .01880 .01662
1.5 .04459 .06872 .06264 1.5 .02191 .03713 .03398
2.0 .05914 .1057 .09935 2.0 .02871 .05752 .05449
2.5 .07024 1427 1374 2.5 .03384 .07839 07646
3.0 .07830 1778 1741 3.0 .03753 .09889 .09847
3.5 .08396 .2101 2078 3.5 .04011 .1185 1195
4.0 .08786 .2389 2375 4.0 .04188 1367 .1385
4.5 .09049 .2638 .2630 4.5 .04308 1531 1553
5.0 109225 .2850 .2843 5.0 .04388 1675 .1696
5.5 .09342 .3026 .3020 5.5 .04441 1799 1816
6.0 .09419 3171 3165 6.0 .04476 .1902 .1916
6.5 .09469 .3288 .3284 6.5 .04499 .1987 .1998
7.0 .09502 .3383 .3380 7.0 .04513 2057 .2065
7.5 .05923 .3460 .3457 7.5 .04524 2113 2119
8.0 .09536 3522 3520 8.0 .04530 2158 .2163
8.5 .09545 3572 .3570 8.5 .04534 2194 .2198
9.0 .09551 3611 3611 9.0 .04536 2224 2226
9.5 .09554 .3643 .3643 9.5 .04538 2247 2249
10.0 .09556 .3669 .3669 10.0 .04539 2265 2267
10.5 .3689 .3690 10.5 .2280 2282
11.0 .3705 .3707 11.0 2292 2294
11.5 3718 .3720 11.5 2302 .2303
12.0 3728 3730 12.0 2309 2311
12.5 3737 3739 12,5 2315 2317
13.0 3743 3745 13.0 .2320 2321
13.5 .3748 .3750 13.5 2324 2325
14.0 3752 3754 14.0 2327 2328
14.5 .3755 3757 14.5 2329 2330
15.0 .3758 .3759 15.0 2331 2332
0 .09560 .3768 .3768 00 04541 .2338 .2338

LemMA 3. There is only one solution to (A .2) satisfying Ypig;=1

PrOOF. Let g;' be any other non-zero solution to (A.2) (with @ = 0 asin Lemma
2). By dividing each side of (A.2) by a constant one can assume Y p;g;" = 1.
Let g;* = 4(g;+g;). It follows from the concavity of (1/x+1/y)™' that for

each u

(ijjKj(u)/gj*)-l 2 'L(ijjKj(u)/gjl)_ ! +%(ijjKj(u)/gj)~ !
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TABLE 5
Index of Large Deviations of Kendall’s tau*

r e(r)t r e r e
.020 0344998 .184 .038624 .348 .14355
.024 .0;64813 .188 .040346 .352 .14706
.028 .0;88230 192 .042108 .356 .15062
.032 .0,11525 .196 .043910 .360 15423
.036 .0,14588 .200 .045751 364 .15789
.040 .0,18012 .204 .047632 .368 .16160
.044 .0,21797 .208 .049552 372 .16536
.048 .0,25945 212 .051513 .376 .16918
.052 .0,30454 216 .053514 .380 17304
.056 .0,35325 220 .055556 .384 .17696
.060 .0,40560 224 .057638 .388 .18093
.064 .0,46157 228 .059761 .392 .18495
.068 .0,52119 232 061925 .396 .18903
.072 .0,58444 236 .064130 .400 19317
.076 .0,65134 .240 066377 .404 19736
.080 .0,72189 244 .068665 .408 .20160
.084 .0,79609 .248 .070995 412 .20590
.088 .0,87396 252 .073367 416 .21026
.092 .0,95550 .256 .075781 .420 21467
.096 .010407 .260 .078238 424 .21915
.100 011296 .264 .080737 428 22368
104 012222 .268 .083280 432 .22827
.108 .013185 272 .085865 436 .23292
112 .014185 276 .088494 .440 .23763
116 .015222 .280 .091166 444 24240
120 .016296 284 .093883 .448 .24723
124 .017407 .288 .096644 .452 25212
128 .18556 292 1099449 .456 .25708
132 19742 .296 .10230 .460 .26210
136 .20966 .300 .10519 464 26719
.140 22228 .304 .10813 468 27234
144 23527 .308 11112 472 27755
.148 .24864 312 11415 476 .28283
152 .26240 316 11723 480 .28818
156 .27653 320 .12035 484 .29360
.160 29105 324 12352 488 .29909
.164 .30594 .328 12674 492 .30465
.168 32123 332 .13009 .496 .31028
172 .33690 .336 13332 .500 31598
176 .35295 .340 .13669 .504 32175
.180 .36940 344 .14010 .508 .32760

* Kendall’s rau is Sy = [N(N—1)]~ ' ZXsgn (j—i)sgn (R, — R)).

te(r) = e(r;tau) = —lim N~ !log P[Sy = Nry],whenry— ras N — o~
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TABLE S5—continued

277

r e(r) r e ¥ e
512 .33352 676 .65758 .840 1.2871
516 .33951 .680 .66805 .844 1.3106
.520 .34559 .684 .67869 .848 1.3348
.524 .35174 .688 .68948 .852 1.3597
.528 .35797 .692 .70045 .856 1.3854
.532 .36428 .696 71159 .860 1.4118
.536 .37067 .700 72291 .864 1.4390
.540 .37715 .704 73442 .868 1.4671
.544 .38370 .708 74611 .872 1.4961
.548 .39034 712 75799 .876 1.5261
.552 .39707 716 77007 380 1.5572
.556 .40389 .720 .78236 .884 1.5894
.560 .41079 724 79485 .888 1.6227
564 41778 728 .80756 .892 1.6574
.568 .42487 732 .82049 .896 1.6934
572 43205 736 .83365 .900 1.7309
.576 .43932 740 .84704 .904 1.7700
.580 .44669 744 .86067 .908 1.8108
.584 45416 .748 .87456 912 1.8536
.588 46172 752 .88869 916 1.8984
.592 46940 756 .90310 .920 1.9455
.596 47717 .760 91777 924 1.9951
.600 .48505 764 93273 .928 2.0474
.604 .49303 .768 94798 932 2.1029
.608 .50112 172 .96356 .936 2.1618
.612 .50932 776 .97942 .940 2.2247
.616 51764 .780 .99561 944 2.2920
.620 .52607 784 1.0121 948 2.3644
.624 53462 .788 1.0290 952 2.4428
.628 .54329 792 1.0462 .956 2.5281
.632 .55207 .796 1.0638 .960 2.6217
.636 .56099 .800 1.0818 .964 2.7254
.640 .57003 .804 1.1002 .968 2.8416
.644 .57920 .808 1.1190 972 2.9734
.648 .58850 812 1.1383 .976 3.1259
.652 .59794 816 1.1580 .980 3.3066
.656 .60751 .820 1.1782 984 3.5280
.660 61723 824 1.1989 988 3.8141
.664 62710 .828 1.2201 992 42179
.668 63711 .832 1.2418 .996 4.9093

672 .64727 .836 1.2641
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with equality only if K (u) (g;—g,) =0 for j=1,---, k. But Kj(#) > 0 for almost
allu, thusif g; # g, for some j, then
1
K (u)
e ——du>(g;+g;)2= K
J‘o Zipi Kiu)/g;* %9, 9
which is impossible. []

COROLLARY 1. For each A = O there exists a solution s,(4), -+, 5,(4) to (3.10) and if
8y'(A), *+ -, 8/(A) is any other solution then s (A)—s; (1) is constant injforj=1, -+ k.

PRrOOF. Set K (u)=exp [AJ;(w)]. []

Continuity of m(2). Define m(4) as in (3.12) and let g (4) = exp[is;(4)]. By
Corollary 1 one can assume without loss of generality that

(A.6) ijgj(/l) =1

.

1.0

3/%

0.9

p-1/2

0.7~

2/ 1/4
Q.6p=m/n.5"

Efficiency

o.up

Fic. 1. Bahadur efficiencies for normal shift alternatives.



DEVIATIONS AND EFFICIENCY OF LINEAR RANK STATISTICS 279

LemMMA 4. m(4) is continuous in A.

PROOF. Rewrite (3.12) as
(A7) m(A) = [ [ a(u, v)h,(u, v) du dv,
where a(u, v) is defined by (3.7) and
(A8)  hy(u,v) = exp [A(J )= 5,V Lipiexp [AI )~ 5], 0;-1 Sv <0,

is, by (3.10), a density with uniform marginals. Thus, by Corollary 1 of Theorem 2,
for any &> 0 there is a bounded, continuous a,* such that |m(1)—m(1)| <
|[fa.*(h, —h;)1+2¢; since a,* is bounded and h; < b= 1/min(p;) it is, by the
dominated convergence theorem, sufficient to show that the g;(4), subject to (A.6),
are continuous in 4.

>
3]
=
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-l
o
-~
G
sl
\
[\
o
0.3 s
3
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dol — | 1 N | | P | —
0 1.0 2.0 3.0 4.0 5.0 6.0

Fic. 2. Bahadur efficiencies for normal alternatives.
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F1G. 3. Bahadur efficiencies for logistic shift alternatives.

Suppose not; then there exists a sequence 4, — 4, such that, say, | gi1(A)—g l(Ao)l =
6 > Ofor all n. By (A.1)and Lemma 2, 0 £ g;(4,) < b. Thus one can extract a sub-
sequence, say 4, for convenience, such that g;(4,) —» g;*, say, as n— oo for j=
1,-+-, k. It follows as in the proof of Lemma 2 that g;* is a solution to (A.2) satis-
fying (A.6), thus by Lemma 3 g ;* = g (40). [I

Strict monotonicity of m(4).

LEMMA 5. If Ju), j =1, , k, are integrable and at least one is not almost every-
where constant then m(1) is strictly increasing in A = 0.

PROOF. In the notation of (A.7) what needs to be shown is that [fah, is
strictly increasing or, since 4, has uniform marginals it is enough to show that
’fj'[c a(u, v)+a,(u) + a,(v)]h,(u, v) du dv is strictly increasing for some ¢ > 0 and some
integrable functions a, and a,.
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FiG. 4. Bahadur efficiencies for double exponential shift alternatives.

Take any 4, < 4, and for each fixed v define the density

l(u;v,0) =h 0[——‘] +fh 0[—‘] du
| h,, | by,

where 0 < 6 < 1. Notice that /(u; v, 1) = h, (u,v). The above can be rewritten as
I(u;v,0) = c(0)Q)exp [0T (1)), where the dependence of ¢, Q and T on v is sup-

pressed and, by (A.8) and (2.16),

T(u) = log [h;,/h;,] = (A1 — Ao)a(u, v) +a,(u) + ay(v)
with

a,(u) = log {Zipi exp [Ao(Ji(u) —5i(4o) )]/Zipi exp [A,(Ji(u) — 5:(4,))]},
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and
ay)(v) = AoSi(Ao) —A15i(Ay), vy Sv<v;, j=1,--k

-1 =

Since T(u) is clearly not almost everywhere constant, it follows from well-known
properties of exponential families of densities that, for each v,

[l(Ay=Ao)a+a, +a,lh;, du
= [T(u)l(u; v,0)du < [T(u)l(u; v,1)du
= [[(4, — Ao)a+a, +a,lh;, du.
Since a; and a, are integrable and 1, — 4, is positive, the lemma is proved. (]
LEMMA 6. m(1) > Fas A — o0.

ProoF. Recall the definition of F as the supremum of [ p; fi(u)J(u) du subject to
Yp,fiw) = 1,1, . f, being densities on 0 < u < 1.
For arbitrary constants (s, * * -, 5,) = s the modified expression

§2pif i ()= s;]
subject to the weaker constraints Y p; f;(#) = 1 and fj(u) = 01is clearly maximized by
fiuss) =1, Jiu)—s; > max;,;(J(u)-s;)
(A9) = A{(u), =
=0, <

where Zp ;A1) = 1 but otherwise A, " - -, 4, are arbitrary.'* Clearly one can replace
s; by s;— Y p;s; without changing (A.9) thus one can assume

(A.10) Y pis;=0.

If it is possible to select s so that fj(u;s), j=1,---,k are densities then f(u;s),
J=1,---,k,is asolution to the original maximization problem and

(A11) F=[o25=1p;fus9)[J () —s;]du.

Consider s,(2), -, 5,(4), the solution to (3.10) satisfying (A.10). If, say, |s,(3)]| is
unbounded as A - co, then there exists a sequence 4, — co such that s;(4,)—
5{(44) = oo for some pair (j,j'). But thenforv;_, S v <v;,

by, (u,0) = {3 =1 piexp [A(J () = T () = s:(An) +5,(2))]}
-0, as n—> o

which is impossible since A,(u,v) < 1/min(p;) and jh 2w, v)du =1, for every v.
Since |s J-(A)| remains bounded there exists a sequence 4, — co such that s;(4,) - s,
say. Clearly forv;_; < v <vj, h;, (u,v) converges to an expression like the right side

14 This is a new use of the symbol A.
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of (A.9) and of course fj(u;s) = limh, (u,v), v;_; < v <vj, is a density. Since one
can write

m(A) = I(l) Z§=l Pij(u)hz(u, Uj*) du,

where v;_, <v;* <v; and the integrand is dominated by Zp i {u)/min (p;), the
lemma follows at once. []

REFERENCES

[1] ANDREWS, F. C. and TRUAX, D. R. (1964). Locally most powerful rank tests for several sample
problems. Metrika 8 16-24.
[2] BAHADUR, R. R. (1967). Rates of convergence of estimates and test statistics. Ann. Math,
Statist. 38 303-324.
[3] BHUCHONGKUL, S. (1964). A class of nonparametric tests for independence in bivariate
populations. Ann. Math. Statist. 35 138-149.
[4] CuErRNOFF, H. and SavAGE, I. R. (1958). Asymptotic normality and efficiency of certain non-
parametric procedures. Ann. Math. Statist. 29 972-994.
[5] HoADLEY, A. B. (1967). On the probability of large deviations of functions of several
empirical cdf’s. Ann. Math. Statist. 38 360-381.
[6] HoerrDING, W. (1965). Asymptotically optimal tests for multinomial distributions. Ann.
Math. Statist. 36 369-401.
[7] Krotz, J. (1965). Alternative efficiencies for signed rank tests. Ann. Math. Statist. 36 1759-
1766.
[8] SToNE, M. (1967). Extreme tail probabilities of the two-sample Wilcoxon statistic. Biometrika
54 629-640.
[9] SToNE, M. (1968). Extreme tail probabilities for sampling without replacement and exact
Bahadur efficiency of the two-sample normal scores test. Biometrika 55 371-375.
[10] WAERDEN, B. L. VAN DER (1957). Mathematische Statistik. Page 331. Springer-Verlag, Berlin.
[11] WoopworTH, G. (1966). On the asymptotic theory of tests of independence based on bi-
variate layer ranks. Technical Report No. 75, Department of Statistics, Univ. of
Minnesota.
[12] WoopwoRTH, G. (1967). On large deviations of linear rank statistics. Technical Report No.
98, Department of Statistics, Stanford Univ.



