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A LIMIT THEOREM FOR CONDITIONED RECURRENT
RANDOM WALK ATTRACTED TO A STABLE LAW'

By BARRY BELKIN

Cornell University and Daniel H. Wagner, Associates

1. Introduction. Consider an ensemble of independent particles whose motion
describes a random walk on Z¢, the d-dimensional lattice of integers. If A is an
arbitrary subset of Z¢ and the random walk is assumed recurrent (consequently
d £ 2), then as time passes it becomes increasingly unlikely that any given particle
has avoided A. Suppose, however, that at each stage attention is restricted to only
those particles whose past history is such that A has been avoided. Then it is of
interest to investigate the possible distortive effects of:this conditioning on the
asymptotic behavior of the particle motion. Suppose A is finite and §,(0) # 0 (the
function §,(x) of potential-theoretic interest is defined below and the connection
between this condition and the motion of the random walk established) and sup-
pose that the underlying distribution F governing the particle transitions is attracted
to a stable law G,(1 < « < 2 is the index of the stable law). The principal result of the
paper (Theorem 2.1) states that the conditional distribution of the particles whose
past motion has avoided the set A is also attracted to a limit distribution H,. Except
for the case d =1 with G, a Cauchy distribution and the case d =2 with G, a
normal distribution, the distributions G, and H, are in general different. For d =1
and « = 2, under certain further restrictions on A, G, turns out to be a two-sided
Rayleigh distribution. It is the case, however, that the same constants normalizing
the particle position may be used in the statement of the attraction of the condi-
tioned motion to H, as in the statement of the attraction of the unconditioned
motion to the stable law G,. In preparation we first review some basic definitions
and record some preliminary facts about recurrent lattice random walk.

We let p: Z¢x Z% - [0, 1] be the transition function of the random walk. Thus,

(i) p(x1,%3) = p(0,x,—x,) for x;,x,€Z’
(ll) Zx eZzd p(O’ x) = 1’
and we inductively define

pn(xlst)=2ye2"pn—l(x19y)p(y,x2) for n=2’3'”'

An underlying probability space (Q, P, B) is assumed to have been constructed, on
which a sequence of independent random variables X}, i = 1,2, -+ (the increments
of the random walk) are defined, such that P[X; = x] = p(0,x),i = 1,2, .
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We denote by F the common distribution of the increments. The starting point x,
is fixed but arbitrary, and we use the notation P~ for the underlying probability
measure to indicate that x, = x. Similarly we let £/ = [ fdP* for any f: Q — R(the
reals) for which the integral on the right is defined. When x = 0 we simply write
P[A].

We will call S, = xo+) -, X, the nth partial sum of the random walk. Unless
explicitly stated otherwise the following assumptions will be made. All random
walks are (i) aperiodic, (ii) recurrent.

Aperiodicity is defined in [8], but for our purposes the following characterization
is more convenient. If ¢(z) with ¢ = (¢,,- -+ ¢,) is the characteristic function of X/,
then the associated random walk is aperiodic iff ¢(¢) = 1 implies each coordinate of
tis an integral multiple of 27.

A random walk is said to be recurrent if for each x, }nry p,(0,x) = Yo, P[S, =
x] = oo, and transient if the alternative is true. Again as a matter of convenience
in application we require the following equivalent statement (see [8] once again).
A random walk is recurrent iff

1)) LRC%U) =00, where C!={t:|t]<n, i=1,2,d}.
We now make a list of useful definitions and related notation. Let A be an
arbitrary subset of Z¢, then
(1.1 To=min[n>0:S,eA] ifsuchan n exists,
= 00, otherwise;

and r,(x,A) = P*[T, > n), for xeZ% n20, (T =T, and r,= P[T > n]). We
remark that by recurrence T, is finite with probability one and lim,,_, ,,7,(x, A) = 0.

0.9 (x, y) = 8(x, y)(the Kronecker &)
(1.2) Qa"(x, ) = PX[S, = y; Ty 2 1]
Q"(x,y) = QR (x,y);  f,=Q"(0,0).

(1.3)  Gax,y) =Y 2 00."(x, y) = the expected number of visits to y starting at x
up to and including the first visit to A.

(1.4) fa(x,y) = P[S;, =y] for yeA
=0 for yeA.

It is shown in [8] by applying the integral criterion (I) that for d = 3 all random
walks are transient, and so from now on d = 1 or 2. We now record some important
results about recurrent random walks for later use.

Let |y| denote the ordinary d-dimensional Euclidean distance from y to the

origin. If a random walk is recurrent and d = 1 with 6% =Y ®_ x?p(0, x) = o0 or
_d =2, then for A finite

(1.5) ga(x) = limp, ., ga(x,y) exists;
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while ford = 1 with 6% < ©
(16) gA(x) =3 limy—' + o [gA(xs y)+gA(x’ _y)] exists.

For the proof see [8]. In addition it is shown in [4] that for xeA, §,(x,y) =
IM_,(—y, —x). Thusford = 1 with6? = oo ord = 2and xe A

(1.7) Ga(x) =lim,, , I_ (= y, —x);
while for d = 1 with 6?2 < ®©
(1.8) gA(x)=%limy—>+oo[ﬁ—A(_ys—x)+ﬁ—A(y’—x)]'

Our primary aim in this paper then is to investigate the probability measures
Pl | T, > n] and the behavior as n — oo of the associated sample paths when A4
is a finite set under the condition that § ,(x) > 0 for appropriate x€ Z%. By checking
the definitions one sees that this is in the nature of a condition that the random walk
starting at x can escape to infinity along a path which avoids the set A. If we let I,
denote the smallest d-dimensional interval containing the finite set A, E, = Z4—1I,
andford =1

x+(A) = max{xeA}, x_(A) =min{xeA},
A, ={x>x,}, A_={x<x},
the precise statement is the following

PROPOSITION. Let A be a finite subset of Z°. If d = 2 or d = 1 with 6% < o0, then
forxeZ®

(1.9) Ga0)>0 iff PYTy, < Ta] >0
ifd =1 witho?® = o, then
(1.10) Ju(x)>0 iff both P[T,, <T,]>0 and P [T,_<T.]>O0.

Proor. We first show the sufficiency of the conditions in (1.9) and (1.10).
Inasmuch as for x¢ A

P"[TEAUm < Tpomy] >0 iff P [Ty, <T,]>0

with a similar result for A, and § Aum(x, ¥) £ a(x, ), there is no loss of generality
in assuming x€ A.

The main tool in the proof is the following adaptation of a result in [9]. If A, is a
collection of finite subsets of Z¢ increasing to Z¢, then for each fixed y and ¢ > 0
there is an n(y, ¢) such that n = n(y, ¢) and ye A, imply lim,,c,_,wﬁ A (X, ) <e We
apply this result to the reversed random walk, i.e. the random walk with transition
function p, such that p.(0, x) = p(x,0). Let A; = I,, but otherwise the A, may be an
arbitrary sequence of finite sets increasing to Z. Then

(1.11) limyy o PR[Ta,—1, < Ty, ] >0
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for n sufficiently large. Now if x,,x,€A, or x,,x,€A_ in the case d=1, or
X 1,Xx,€ E, in the case d = 2, we have

(1.12) P [Ty, < Ty ]>0.

For d =1 this is a consequence of the fact that by recurrence there is some path
from x, to x,, and thus, by choosing an appropriate permutation of the transitions
comprising this path there must in fact be such a path which does not enter A.
When x,, x, €A, for example, this may be achieved by taking a permutation which
puts all of the transitions to the right (positive steps) before all of those to the left
(negative steps). The argument for d = 2 follows similar lines.

By hypothesis, for d = 1 with 6% < 0o and for d = 2 there exists an x, € E, such

that

(1.13) P**[Sr, =x]>0;
while for d = 1 with 6? = oo there exist x,€ A, and x,’ € A_ such that
(1.14) P?[Sy,=x]>0 and P,*[Sr, =x]>0.
Combining (1.11) through (1.14) we obtain ford = 1 with6? = coand d = 2
(1.15) lim, ., P[Sy, = x] > 0.
For d = 1 with ¢® < oo we require the additional fact that
(1.16) lim, , _, M1, (y,x) = P[¢ 2 x]/E[¢],

where Z , is the positive integers and & is the positive ladder random variable. (See
[8] for the definition and a proof of (1.16).) A similar result holds for y » + oo for
Z _, the negative integers, and the negative ladder random variable. Combining this
result with (1.12) and (1.13) we obtain for d = 1, 6® < ©

(1.17) 1lim, ., (Py’[Sr, = x]+ Py [Sr, = x]) > 0.

It is shown in [4] that P,’[Sy, = x] = P7’[Sy_, = —x]. In view of (1.4) and (1.8)
therefore, (1.15) and (1.17) imply g ,(x) > O.

The necessity of the conditions in (1.9) and (1.10) is a straightforward consequence
of the definitions of the quantities involved. This completes the proof of the
proposition.

We will confine our attention until Section 4 to the case d =1 in which the dis-
tribution F of the increments of the random walk belongs to the domain of attraction
of a stable law of index « (0 < « < 2), i.e., there exist constants B, > 0 and 4, and a
distribution G, on R? such that

(1.18) lim,_,, P[S,/B,— A, < x] = G,(x).

Here again we require some preliminary discussion. It was shown by P. Lévy and
Y. Khintchine (a discussion appears in [2]) that if G, has characteristic function
“¢,» then the following representation theorem holds:

(1.19) In g, (1) = iyt —c|t|*(1 +iB|t] " to(t, @),
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where o, B,y and c are constants such that0 <o £ 2, —1 £ B £ 1 and ¢ = 0 with
o(t,o) = tan na a#1
=2n"'Injt|] a=1

It can be shown by applying the criterion (I) to the Lévy-Khintchine representation
that the assumption of recurrence for a stable law implies | < a < 2.

The following criterion (again discussed in [2]) is very useful for determining
when a distribution F'is attracted to a stable law.

THEOREM 1.1. (Gnedenko and Doeblin) In order that the distribution F belong to the
domain of attraction of a stable law of index o, 0 < o < 2, it is necessary and sufficient
that for0 < a < 2

() F(=x)/[1=F(x)] > ¢ /e, as x— o0, with 1,6, 20,
(ii) x*[1—-F(x)+F(—x)] = L(x) with L(x)slowly varying,
while for o = 2
X2 1512 AFO)/f 51 << ¥* dF(»)) >0 as x— 0.
Several comments concerning the theorem are necessary.

(A) A nonnegative function L(x) on (0, c0) is said to be slowly varying if for
every fixed y > 0lim, _, . [L(yx)/L(x)] = 1. Karamata showed in his classic paper [3]
that L is slowly varying if and only if it can be represented in the form

(1.20) L(x) = c(x)exp [Tt~ 1{(t) dt]

with lim,_, c¢(x) = ¢, 0 < ¢ < 00 and lim,_, ,{(x) = 0. It is easily shown from this
characterization that given any § > 0, there is an x, such that x = x, implies
L(x) < x°. We will make use of this fact later on.

(B) Under conditions (i) and (ii) F(x) in fact belongs to the domain of attraction
of the stable law of index a« with B = (¢;—c,)/(c;+¢,) for a1 and B =
(c;—c¢y)/(c; +c¢,) for a = 1. The constants ¢ and y of the limit stable law are not
uniquely determined. Once it is known that there is some choice of constants 4, and
B, for which (1.18) holds, then it is not difficult to see that for any a > 0 and b
there is a choice of the 4, and B, for which (1.18) holds with G (x) replaced by
G (ax+b). We can however make the following statement. Let y(x) = 1—F(x)+
F(—x) and define the inverse function y~!(x) = inf[y: x(») £ x]. Then it is em-
bodied in the Kolmogorov-Gnedenko proof of Theorem (1.1) that for 0 < « < 2 the
choice

(1.21) B,=y"'(n" (e +¢2)

is possible, in which case for a = 1, ¢ = 1[(c, +¢;)r]; while for 0 < £2,a # 1,
e = (c;+¢,)I' (1 —a) cos Lmat.
Our analysis will require more detailed information about the sequences 4, and
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B,. We have already indicated a choice for the B, in the case 0 < « <2. For o = 2
we have from [2] (Section 26 Theorem 4 and its proof)

(1.22) B> = n[f| 4 <c,¥* dF(x) = (f1x) <c, X AF(x))*],

with C, a sequence of constants the only properties of which concern us are:
(i) C,—» o0 as n— oo and (i) C, = o(B,) as n — 0. For 0 < a < 2 it follows from
Lemma 2-A of [11] that under the hypotheses of Theorem 1.1

limg, o, [x~'X)/x~ '(xy)] = y'* forfixed y>0.

Hence B, = n'/*L(n) where L(x) is slowly varying.

The treatment of the case « = 2 requires a different approach. The argument we
give now holds in fact for any law attracted to a symmetric stable law when the 4,
may be taken to be zero (which we will see below to be the case for 1 <o <2 if
[® xdF(x) = 0and for 0 < o < 1 in general).

Let F™ = FxFx---+F (n times) be the nth fold convolution of F and let G, be the
limit stable law. Since all stable laws have continuous densities (Section 36 of [2])

F™(B,x) — G,(x) uniformlyinxas n— co.

Let k,e N be fixed and let X, X, - be independent, identically distributed with
distribution F. Then asn —» o

P T ey K £ Y IR

B B, ~ B,

n

on the one hand, and on the other differs for large n from G,*°(xB,,,/B,) by
very little (inasmuch as for probability distributions F,; and F,,, F, - F,
and F, , = F, imply F, \*F, , > F *F, (see, e.g., Lemma 1 of Section 17 in [6])).
But by the stability and symmetry of G,, this latter expression is the same as
G(xko™'/* By,,/B,), and therefore By,,/B, — ko'/* as n—co. Thus B, has the form
B, = n'/*L(n) with L(n) slowly varying for o = 2 as well. We note that if we extend
the definition of B, to R, by setting B(x) = B,;, then B(x) remains of the form
x!*L(x) with L(x) slowly varying.

For the sequence A4, we use another basic result of Kolmogorov and Gnedenko,
Theorem 4 of Section 25 in [2], stating that the most general choice of 4,, is

(1~23) An = n§1x|<IXdF(Bn x)—})n(t)9

where ¢t > 0 is fixed and y,(¢) is any convergent sequence. From this characterization
it is shown in the Appendix of [1] that
A, =nB,~ ' [% xdF(x), l<a<?2,
(1.24) =0, a<l,
=nIm[1-¢B,” 1], a=1
- are possible choices. First we remark that if F lies in the domain of attraction of
a stable law of index «, then it is known (Theorem (3) of Section 35 in [2]) that it
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possesses all dth order moments for 0 < § < a. In particular then, for 1 < « < 2 the
mean u exists and our assumption of recurrence implies x4 = 0. Consequently, we
may take 4, = 0. However, when o = 1 a first moment may or may not exist and it
is necessary to introduce the notion of normal attraction.

DEFINITION. A distribution Fis said to belong to the domain of normal attraction
of a stable law G, of index a, 0 <« < 2 if it belongs to its domain of (general)
attraction with B, = n'/* a possible choice for the norming constants.

An equivalent way to formulate the criterion for normal attraction is to require
for a < 2 that the slowly varying function in the relation x*y(x) = L(x) haveanon-
zero finite limit as x — oo, and to require a finite variance for « = 2 (see Theorems
4 and 5 of Section 35 in [2]).

We now state the following result (proved in [1]).

THEOREM 1.2. Let F belong to the domain of normal attraction of a stable law of
index 1. Then

® lim,, , Im[¢™' (1= ¢())] = p  if and only if
(ll) hmx-'aojx—xCdF(‘:) = H.

In particular, it follows from (1.24) that the centering constants 4, may be taken
to be zero if and only if (ii) holds for p finite.

Finally we record the following result. The proof is essentially a generalization of
the argument relating the asymptotic tail behavior of the distribution of a symmetric
stable law to the behavior of its characteristic function near the origin. A detailed
proof appears in [1].

THEOREM 1.3. Let F be the probability distribution of a random variable X. Assume
F satisfies the hypotheses of Theorem 1.1. Then in the notation of that theorem:

() Forl <a<2and E[X]=0

O
1A/t erte,

lim, o4 (1 +iptan inoa).

(ii) ForO <o < 1

126 _ ¢ (1 1iptanina).

/i) erte,
(iii) Foroo =2 and E[X] = 0

lim, o4

O UM, x*dF(x) 2
(iv) Foro = 1.

| =], .
llm,_,o Re[mji] = ‘;—ﬂ,
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and if for o = 1 the additional hypothesis is made that F is normally attracted to its

limit stable law, then
1—¢(t) ]
lim,_ o Im| ———5— |= 5.
o [In LRy

2. Basic limit theorem. The discussion in this section will be limited to the special
class of one-dimensional recurrent random walks whose increments have their
common distribution belonging to the domain of attraction of a stable law of index
0,1 a2, '

THEOREM 2.1. Let S, = Xo+ Y k=1 X, be the nth partial sum of an integer-valued,
recurrent, aperiodic walk. If F is the distribution of X, we assume

(i) F belongs to the domain of attraction of a stable law vf index a, 1 < oo < 2. Thus
there is a sequence B, > 0 such that

lim,_, o, P[S,/B, £ x] = G(x) X€ER,
where G, is a probability distribution with a char acteristic function ¢, of the form
In@ (1) = —c|t](1 +it]t| ' Btanina) = —b 1]

withc>0and -1 S =< 1.

Alternatively, we assume _

(ii) F belongs to the domain of normal attraction of a stable law of index o. = 1 and,
in addition, lim,_, , [ . {dF({) = p < o0.

Thus there is a sequence B, > 0 such that lim,.  P[S,/B, < x] = G,(x), xeR,
where G, has characteristic function ¢, such that In ¢ (1) = —c|t| with ¢ > 0.

Then in both cases (i) and (ii) if T = T\, we have that

lim,, , P[S,/B, £ x| T > n] = H,(x),

where H, is a probability distribution with a bounded continuous density h, with
characteristic function ¥, given by

(2.2) W (1) = 1=b|t Jo xM2 1@ [1(1 —x)'/*] dx.

The two special cases « =2 (normal) and o =1 (Cauchy) permit an explicit
evaluation of the limit law:

hy(x) = 307 2x* exp [ —367%x*] (a two-sided Rayleigh density),

where 62 = 2¢ is the variance of the limit normal law with characteristic function
¢,: ‘

1 ¢

hy(x)=- .
1(x) ne?+x?

Before proceeding to the proof we make several remarks and prove a lemma.
" First, in the statement of the theorem we have made use of our earlier remark
that for o > 1 the sequence A4, of centering constants may be taken to be identically
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zero. For o =1 we note that by Theorem 1.2 Condition 2.1 guarantees that
lim,_, o Im [t ~*(1 — #(¢))] = w. It then follows from Condition (I) for recurrence and
statement (iv) of Theorem 1.3 that the underlying random walk must be recurrent
and that f =0 in the limit stable law (and therefore y = —pu). Consequently,
lim,_ , P[S,/B,—u = x] = G{(x+ p). Therefore taking G, as the limit law we may
assume A4, = 0 for « = 1 as well.

The second fact we need is that without any loss of generality we may assume B,
to be of the form B, = n'/*L(n), 0 < a < 2, where Lis a slowly varying function.
In the particular case « = 1, we further require lim,_,,, L(z) is finite and non-zero
(i.e., the attraction must be normal). Finally, we remark that in the Cauchy case the
theorem states the interesting result that conditioning on the event [T > n] plays no
role in the limit.

We now prove the following lemma.

LeEMMA 2.1. Under the hypotheses of Theorem 2.1 for 1 < a <2
nr, _sinm/a
B, mg,0)°
where g, is the density of G,; for a = 1 lim,_,, r,Inn = 2%l where | = lim,_,,, L(n)
is finite and non-zero.

PROOF. Let R(x) = Y > o r,x"and U(x) = > 2 g u, x". ThenR(x) = [(1-=x)U(x)] .
By the local limit theorem for lattice variables attracted to a stable law? (recalling
our assumption of aperiodicity) we have that

(2.3) lim,.,

lim,_ o, B, p,(0,0) = lim,, , B,u, = g,(0).
By a standard Abelian theorem it easily follows that

901 = )1 —x)/2~!

) as x—1—.

U(x)
Hence

(2.4) R(x) ~ —d/1=)

~ (1= x) " as x-ol—.
g0 (1— lloc)( )

Finally, since r, is a nonincreasing sequence, we may apply Karamata’s Tauberian

theorem for o # 1to (2.4) to obtain

L(n) 1

_ Ln) sinmo S n— oo
n' =g (0) )

Since B, = n'/* [(n) we have demonstrated (2.3) for 1 < a < 2.

. ?As stated in Section 49 and Section 50 of [2] the theorem is valid except when o = 2, 02 = 0.
However, the latter case is proved by C. Stone in [10].
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The case a = 1 is contained in the proof of Theorem 18 in [5]. This completes the
proof.

PrROOF OF THEOREM 2.1. For x # 0, a simple decomposition of the event [T < n]
gives
(2.5) P[S,/B,edx|T>n]=r,”'P[S,/B,edx]—r, 'Y rZ f, P[S,-i/B,€dx].
After a summation by parts this expression reduces to
(2.6) Yuzors 'r(P[S,-i/B,edx]—P[S,_—/B,edx]).
If we let ¥, , be the characteristic function of this probability measure, we obtain
Woult) =Yizora 'nild" (1B~ 9" 1(1/B,)]

=2k=or 'T(P[Sy—k = 0] = P[S,— -1 = 0]);

andsince Y p_oFytly—y = 1,
2.7 Wonlt) =1=3%Z0r 'r1—¢(t/B,)]¢" " '(1/B,).

Now we recall that B, = B(n) = n'/*L(n) with L a slowly varying function.
Therefore
B(n—(k+1)) B(n(1—(k+1)/n))

B(n) B(n)

By our hypotheses lim,_, ., ¢"(¢/B,) = ¢,(¢), with the convergence uniform for ¢ on
finite intervals. Thus

2.8 lim, ., ("~ “*(t/B,)— ¢ [1(1—n"'(k+1))'*]) = 0,

with the convergence uniformin0 < k < (1 —¢)n.
It is an easy consequence of Theorem 1.3 that

(29) lim,,, n[1—¢(t/B,)] = c(1+isgn(t)B(tanina)|t|) for 1 <a <2;

and lim,_, , n[1—¢(#/B,)] = c|t|fora = 1.

By Lemma (2.1) we have that uniformly for en < k < n, rfr, ~ (n/k)! =/ as
n—>oforl <a=<2andr/r,—>lasn— oo fora=1.

Therefore, we see that 1= (179" r, " 'r,[1—¢(1/B,)]¢" " **V(t/B,) is approxi-
mated by (their difference tends to zero as n — )

1=Y(L2m(nfk) ~ b |t]*n = ¢, [1(1 —n~ ' (k+1))"],
where b = c¢(1+isgn(¢)ftandna) for 1 <a =<2 and b =c for a = 1. This last
expression in turn is an approximating sum to the Riemann integral
1=be*fi e xMD= ¢ [1(1—x)""*]dx for 1Sa<2.
Now [§x1/~1¢ [#(1—x)'/*] dx is an absolutely convergent integral. Hence, in
order to show that for every te R
(2.10) lim,_ o W, (1) = 1=b|t]* [§ x/0 ™ 1¢,[1(1 — x)"/*] dx,

k+1\!/= :
<1——:';> forlargenand 0 =<k < n(l—e),
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it is enough to show

Q.11 lim sup, .o limsup, . , | Y i
+ZZ=(1 —&)n rn_ 1rk[l _¢(t/Bn)]¢n—k— l(t/Bn)I = 0

We estimate the expression in (2.11) using Theorem 1.3 and Lemma 2.1: Fsrst
(2.12) 1—¢(t/B,) = K,n™|t|*

for some constant K,. For 1 < o < 2, lim,_, ,,[r,n' ~1/¥/ L(n)] is finite and non-zero.
Fora = 1,lim,_,, r, Inn is finite and non-zero.
Thus we obtain

M a M 3
el 1 |t]*(M +1)
2.1 — =< |t® = = = '
(2.13) kgor,, n =l kgon”“L(n) n'’*L(n) _}0. as mm e
for each fixed positive integer M. Also
en e 1 e /p\1-(1/a) lﬁ(k)
2.14 ta —_—-—= ta - — =T .
( ) | | k=Ml | | k=ZM<k> n L(n)

The expression on the right in (2. 14) is asymptotically of the same order as

&n L(X)
l/aL(n) 1 (I/a)

We now appeal to an argument given in the Appendix of [1] which shows that we
make take L to be differentiable. We may therefore apply L’Hospital’s rule in
estimating this ratio. It follows that

&n L(x)
(2.15) limy, ., Hlimsup - ”"‘E(n)f = im 4% = e
Finally.
n . 1
(2.16) k<K,
k=(1—¢)n ryn
where

"k L(k)
K, = Supnsup(l—s)n§k§n;'” = Wﬁ/_‘z)suPns‘lpu s)n<kSnL( )

~

since Lvaries slowly. Combining the estimates (2.12)~(2.16), we get (2.11). Thus for
1 < a £ 2 we have proved lim,, , P, ,(t) = W, (?).

That W, is in fact the characteristic function of a probability distribution is a
result of |[1—¥ (1) < |b|[|* f6 x"/*~ ! dx, which implies ¥, is continuous at the
origin. Actually a stronger result holds. By an easy dominated convergence
argument

y a(t) ! (1/2)—1
(2.17) 11m,_,0 || =b| x"¥ 1dx.

0
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The estimates for « = 1 are very much the same and we omit the details.
The only two cases in which we attempt an explicit evaluation of H, are for
o =1, 2. A routine computation shows ¥,(t) = exp(—ct). The case « = 2 can be
handled as follows. The characteristic function ¥, corresponding to the density
hy with hy(x) = 307 2|x|exp (=30~ 2x?) is P,(t) = 1—1[§ exp[ — 07 2x*] sin xt dx.
Now
Y,(f) = 1 —41%6? [f x "*exp[—41%a?(1—x)] dx.

To see that ¥, = ¥, we define
@) =17 '[1=¥,(D] and @y(t) =17 '[1-F,(D].
It is then a simple matter to check that
(1) 72(0) = 9,(0) =0
(ii) dp,/dt = [1—1p,]6%; do,/dt = [1—1¢,]c’.

To complete the proof of the theorem it remains only to demonstrate that for
1 < a < 2,¥, corresponds to a probability law with a bounded continuous density.
For this we will show

(2.18) [ |0 dt < oo
Now
|W.(0] = |1 = ble|*fo x0T exp [ — b|t|"(1 — x)] dx|
< |b|e|* 672 x /™ Y exp [ — b|t|*(1 — x)] dx|
+ 1 =blt|* [} -5 x/9 ™  exp [ blt|*(1 — x)] dx|
< |be| [0 x 0™ exp [ —eft](1—x)] dx
+|1=b|t|* [1 - sexp [ - b|t]*(1 = x)] dx|
b {25 (e~ — 1y exp [ — b|t[(1 —x)] dx].

The first two of these terms are dominated by A4|bt*| exp [~ c|¢|* 5] and exp [— c|t|*6]
respectively, for some constant 4. Both of these functions are integrable. The third
term is dominated by

] -5 (<197 = Dexp [~ clf{(1 ] d.
However,

[e e fios(x® =1 exp [ —ct*(1 —x)] dx dt
1 x(l/a)—l_l ©
=J dej t*exp [ = ct*] dt
1 [

—6(1 _x)l +(1/a)

! dx
<K 7. < 0, for some constant K.
1-s(1—x)

This completes the proof of Theorem 2.1.

”
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3. Generalization to finite sets. In this section we prove an analogue of Theorem
2.1 when the event [T > n] is replaced by [T, > n], where A = {x;,X,,"* "X} is a
finite set of integers with §,(0) # 0. A rather interesting phenomenon occurs in that
the limit distribution H, , depends on A only when F has a finite variance. The full
statement of the theorem is as follows.

THEOREM 3.1. Under the same hypotheses as Theorem 2.1, if A = {x;,x,,***, Xps}
is a finite set of integers such that § ,(0) # O, then
(3.D lim,., , P[S,/B, < x| Ty > n] = H, o(x) forevery xeR.
H, , is a probability distribution with characteristic function ¥, , with the following
properties:

(i) If 1 =« <2 ora=2and Fhas infinite variance then ¥, =Y, iec. the limit

distribution is independent of the set A.
(ii) If & = 2 and the variance of F'is finite

¥2.4(0) = ¥5()—i(3m)*E[S7,][§A(0)] " 'o™ "texp(—3t*a?)

and
hy A(x) = 3072 exp (367 2x?)[|x| - (6?§A(0)) ™ 'xE[S1,]].
PROOF.
P[S,/B,edx|Ty> n]

= {P[T,>n]}""
'(P[Sn/Bnde]_Z:=l Zﬁl P[T, = k; Sy, = x;]P*[S,_/B,€dx])
= {P[T, > n]}~'(P[S,/B,edx] =}~ P[Ty = k]P[S, /B, dx])
+{P[Ty>n]}™"
{Zk 12 1 P[Ty = k; S, = x;)(P[S,-4/By€dx]—P*[S,_/B,edx])}
= p, V(dx) + p, 2 (dx).
A summation by parts gives
1 (dx) = P[Soedx]—Yrs {P[T, > k]/P[T, > n]}
(P[Sy-+1)/By€dx]—P[S,—,/B,€dx]).

Consequently, if we let ¥, = ¥{!) and ¥, = W) , be the contributions to
the characteristic functlon of the probablllty measure P[S,/B, edxl T, > n]
corresponding to 1,V and p,® respectively, then

¥, (0) = 1= 3325 {P[ Ty > k]/P[T, > n]}[1-(t/B)]¢"~“" V(1/B,).

By Theorem 4a in [4], when §,(0) # 0, {P[T, > k]/P[T, > n]} has the same
asymptotic behavior for large k and n as r,/r, ; hence

(3.2) lim,_, , W, (1) = lim,, . , ¥, ,(1) = ¥,(1),
by Theorem 1.1.
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Also we may rewrite u,®)(dx) as
{P[Ty>n]} ™' Y- X1 PLTh = ki S, = xi]
(P[S,-4/B, € dx]— P[(S,-4+x))/ B, € dx]).
Thus we conclude that
W, () = {P[Ty >n]} ' Yhe i X121 P[Ta = k; Sy, = xi]
-[¢"7(/B,)—¢"~"(t/B,) exp (itx;/ B,)].
Once again performing a summation by parts we find that
Y, O(t) =Y, a2 {P[Ty > k; Sy, = x;)/P[T, > n]}¢"~ “*1(t/B,)
-[1—¢(1/B,)][1—exp(itx;/B,)]
(3.3) + YL, {P[Ty > n]} ™ 'P[Sy, = x;J[1—exp(itx;/B,)]¢"~ '(t/B,)
=Y {P[T, > n; Sy, = x]/P[T, > n]}[1—exp (itx;/B,)].

Since B, —» co as n— o, the third term on the right in (3.3), which is bounded
by Y1, |1 —exp(itx;/B,)|, tends to zero as n— co. The first term is dominated in
absolute value by

|20 [1—exp(itx/B)] YAzt { P[Tx > k)/P[T, > n]} [1 — ¢(t/B,)1¢"~“* V(¢/B,)|.

Since the expression in the inner summation was already shown to have a finite
limit as n — oo, the first term on the right in (3.3) tends to zero as well.
To estimate the second term we consider two separate cases:
Case(i).1Za<?2.
First we have
|t —exp(itx;/B,)| = O(tx;/B,) as n— 0.

Also,forl <a < 2,
P[T, > n] ~ §o(0)r, ~ GA(O)L(n)/n'~(/® as n— oo;
while for o = 1.

P[T, > n] ~in*1G,(0)/lnn as n— co.

Consequently,

(3.4) |t —exp(itx;/B,)|/P[Ty> n] < Kn' =@/ |[L(n)]* > 0
for some constant Kwhen 1 < a < 2;

(3.5) |1 —exp(itx;/B,)|/P[Ty>n] £ Kn"'lnn—0
wheno = 1.

~ For a =2, when the variance of F is infinite by our choice of the sequence B,
“(see (1.22)) B, = n [, x> dF(x), and since C, > oo we obtain n/B,*> —»0. Thus
once again we have that lim,_, , || —exp (itx;/B,)|/P[T, > n] = 0.
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Combining this with (3.4) and (3.5) it follows that the second term in (3.3) tends
to zero.

Case (ii). « = 2 and F has finite variance.
Then we have

lim,. , ¢""'(t/B,) = exp[ —4t?6?],  1—exp(itx;/B,) ~ —itx;/B, = —n" ¥itx,,
and
{PLTa > n]} ! ~ [Ga(0)r,] 7! ~ [§a(0)0] '(dm)¥nt.
Combining these facts with (3.2) gives lim,, ,, [¥$') (1) -+ ¥$L ()] = ¥, 4(¢). This

completes the proof of Theorem 3.1.

4. The 2-dimensional finite variance case. To this point we have restricted our
attention to random walks with state space Z. We now consider the 2-dimensional
case.

Lévy’s formula [7] for the characteristic function of a d-dimensional stable law
G,0<a=2is

4.1 Je" *dG(x) = exp {id-t—A|t]"[c,() +ic, (D]},
where A4 is a constant vector, A a positive constant and
()= ”t|“‘|0-t|“dH(0),
c() = —fsgn(0-)tan(3ne) 1710 1|*dH(0)  for «+# 1,
=2n"'[(|t|7'0-In(0- ) dH(0) for a=1,

with H a probability measure on the unit sphere in R’.

For a genuinely d-dimensional (as defined in [8]) recurrent random walk with
increments X, = (Y,\V, - -+ ¥,'9) having their common distribution in the domain of
attraction of a stable law, it can be shown by applying the criterion in (I) of the
Introduction that either d =1 or d =2, « = 2. The case d = 1 has already been
considered so there remains only the case where the distribution F of X, belongs to
the domain of attraction of a bivariate normal distribution. We require in addition
that £ IX 1 |2 < 0. By (7.7) of [8], if ¢ is the characteristic function of F, we then have

4.2) lim, o [Q(O)] ™ [1-¢(1)] = 4,

where Q(t) = Q(t,,1,) = E[(X-1)?]. Wedefines,? = Var Y,'V,¢,2 = Var ¥,*Pand
p =[0,0,] ' E[ Y,V ¥,®] and state the following analogue of Lemma 2.1.

LeMMA 4.1. For an aperiodic, recurrent, genuinely 2-dimensional random walk with
E|X,|* < oo we have

(4.3) lim,_, , r,Inn = 210, 0,(1—p?).
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PRrROOF. As stated in the proof of Lemma 1.1 we have

U(x) = 2m) " 2fc,([1 —x¢(1)] ™ dt.
By aperiodicity we have for any fixed 6 > 0

i U(x)
lm’C—'l']n(l/l—x)
i 1 ) dt
= MMt - 2n)?In(1/1 —x)ch 10 +(1—x)
) 1 2r (*o(1—x)—1/2 r
= e I (11 =) L L 30(cos b, sin oy 14
(4.4)
_i 1 2% In ([Q(cos 8, sin 0)/2(1 — x)] 62 +1) "
=Mt o (1 1=%) Jo 0(cos 6, sin 0)

Y de B 1 7
" (2n)? ), 0O(cosO,sinf)  2no, 0,(1—p?)*"

Since U(x) = (1—x)R(x), applying Karamata’s Tauberian theorem we obtain
4.3).

THEOREM 4.1. Under the hypotheses of Lemma 4.1 if A is a finite set in Z* such
that G,(0) > O, then

4.5) lim,,, P[S,/n* < x| Ty> n] = G(x),

where G is the bivariate normal distribution with parameters ¢, ¢, and p.?
Thus we find that conditioning on the event [T, > r] plays no role in the limit
(c.f. (ii) of Theorem 2.1).

PROOF. Proceeding as in the proof of Theorem 2.1 we let ¥, be the characteristic
function of the probability measure P,, where P, (dx) = P[S,,/n*edxl T > n]. Then
by (4.2), the Central Limit Theorem, (2.6), and Lemma 4.1 we have

Y(1) = lim,,, , ¥,(1)
=lim,o, {1 =347, 'n1—d(n™*]¢""“* D(n™41)]
= 1-40(1) fo exp (—3Q(1)(1 —x)) dx

= exp(—310(1)),

and (4.5) follows immediately for A = {0}. The generalization to finite A with
g a(0) # 0 proceeds as in the proof of Theorem 3.1.

3 Wesay (x1,71) = (x2,72)if x; S x;and y; £ y,.
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5. Counterexample. We saw in the proposition in the introduction that the
condition §,(x) > 0 is equivalent to the requirement that the random walk is able to
escape to infinity along some path which starts at x and avoids the set A. In the case
d = 1,0% < oo this was to be interpreted to mean that the random walk could reach
both arbitrarily large positive and arbitrarily large negative values without entering
A. It is clear that Theorem 1.1 would fail to hold if an A were so chosen that the
condition T, > n on S, would force the partial sums of the random walk to be
bounded both above and below. However, it is not a priori clear what the appro-
priate restatement of the theorem should be if the condition T, > n confines the
random walk to a half line. We now give an example showing that Theorem 1.1 as
stated may indeed fail in this situation. However, for this particular example an
analogous result will hold. .

Let F be a distribution function corresponding to a left-continuous (i.e.,
p(0,x) = 0 for x = —2), recurrent random walk in the domain of normal attraction
of a stable law of index & with 1 < « < 2. In particular, then

(5.1) X [1—=F(x)]>c as x— 0.

(For simplicity we take ¢ = 1.) Take the set A to be the point {—1}. Then by
Theorem 1.3

(5.2) lim, o4 (1= ¢(1))/|t|* = T(1 — o)) cos (3na)(h + i tan (4nar) ),

Defining R;(x) =Y 7= or,(1, {0})x" and U (x) =Y %o p,(1,0)x", it is easily seen
that
Ry(x) = [(1=x)Ux)]™'[U(x)=U,(x)].
Now the potential kernel a(x) defined by a(x) = ) %, [p,(0,0)— p,(x,0)] has the
Fourier analytic representation a(x) = 2n) ™' [Z [1 —x@(1)]~ ' (1 —e") dt.
Consequently,

lim,,, (U(x)=U,(x)) = a(l) = 2n) "' [ [L—=p®)] (1 —e")d1.
However, for left continuous random walk with ¢* = oo it is known that a(x)

vanishes on the right half line x > 0 (see Section 30 of [8]).

Therefore we may write
lf" (1= x)p()(1—e") it
2 (I=M)1=x¢(t)

V)= Ui(x) =5

It follows that for 6 > 0as x — 1
U -U,) L f pY1=¢) L J pi-e)
azizs (1= 6(1))? 2n ) _s(L=p(M)(1 —xp(1))

Now it is a straightforward argument using (5.2) to show that for arbitrary ¢ > 0
and fixed § small enough,

(1—x)2~@ f P(O(1 - ")
)= =xg(1)

[—x 2n

(1-¢)K = dt <(1+¢)K
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for x sufficiently close to 1, where

K= 1 “  du _cse(2njo)
AT =] ) u et a[T(1—a)]*/*"

Consequently, as x — 1

)11
R,(x) ~ — ese(2rfo)(1—x)

g (O(1 = 1/a)[T(1 —a)]?/*’

and by Karamata’s Theorem

n—l/«

~ 2n0g (0) cos /o[ T(1 —a) ]**

One now observes that in contrast to the situation in Lemma 2.1, where r, tended
to zero asymptotically like n*/®~!, we now find that r, (0, { —1}) tends to zero like
n~ (/™% It is clear from its proof that Theorem 3.1 may now be restated for our
example with

as n— oo.

I'"(O, {_ 1 })

W (1) = 1=b|t]* [§ x™ /¢, [1(1—x)"*] dx.
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