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SPECTRAL ESTIMATION WITH RANDOM TRUNCATION

By JamEs Pickanps It

Virginia Polytechnic Institute

0. Summary. Let f(w), —n < w < 7 be the spectral density function of a discrete
coordinate real-valued time series, stationary to order four. Assume that the covari-
ance function r(k) is such that —log r2(k) ~ Ck”,and —log(r?(k + 1)/r?(k)) ~ Cyk?™ !,
as k — oo, for some C, y,0 < C,y < . Then there exists a non-random sequence
1(n) which is such that the estimator f*(w) = 2m)™ ' Y 12_,,, (1 —n~'|k]) #(k) €* is
efficient where#(k)=(n— |k|) ™' Y1 ZHU(X () — X)X +|k]) - X), X =n""31_, X()),
and an estimator f(w) is said to be efficient if

lim,,, o, 27 {2, (f () ~f (@))* doo/I30(n) = 1,

where I;;,(n) is the smallest integrated mean squared error which can be achieved
using an estimator of the form flw) = 2n)~* Y4zl -1, a(k,n)?(k)e*®, where
a(k,n) is nonrandom. In general a sequence #(n) which is efficient for one covariance
function is inefficient for another. A class of estimators f(w) is presented which are
of the form f(w) = 2m) ™' Y i®_;,,(1 —n~*|k|)?(k) €**, where i(n) is a function of
the observations. In an appropriate sense i(n) ‘‘estimates” #(n). For any covariance
function satisfying the above conditions sup_n§w§n|f(w) —f'*(a))]/]min(n) -0, in
probability, where f*(w) is the unattainable efficient truncation estimator.

1. Introduction. The problem of estimating the spectral density function of a
stationary time series is of considerable practical importance. Let {X(n),
1 <n< oo} be a sequence of random variables, and assume that all moments of
order four are finite. Let

(1.1 u=EX(n),
(1.2) r(k) = E(X(n)—p)(X(n+k)—p), —0 <k < o0, and
q(k,1,m) = E(X(n)—)(X(n + k) —)(X (n + 1) — p)(X (n+ m) — ),

—o0 < k,l,m < 0.

(1.3)

These are, respectively, the mean, the covariance function, and the fourth moment
function. It is assumed that they do not depend upon #. In other words, the sequence
X(n) is stationary to the fourth order. It is also assumed that the terms of the
sequence are real valued. We can conclude from this, that

(1.4) r(—k) = r(k), —w<k< oo
The function
f@=0Cn 'Y _orike*, -nsosm,
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if it exists, is called the spectral density function. It follows from (1.4) that f(w) is
real valued. By Bochner’s Theorem, in order that a function r(k) be a covariance
function, it is necessary and sufficient that it be positive definite. But this is true if
and only if f(w) = 0 for all w, —7 < w < 7. So, in order that a function f(w) be a
spectral density function, it is necessary and sufficient that f(w) = 0, and that f(w)
is integrable.

All of the spectral density functions considered in this work will be square
integrable. That is [ f*(w)dw = 2m) ™' Y ;2 _ , r’(k) < co. The same is true of the
estimators f(w). The most common criterion for error or “figure of merit” for an
estimator is

(1.5 I*(n) = 27E[* . (f(0)—f(»))* do.

An estimator is said to be consistent (in integrated mean square) if 12(n) - 0, as
n - 0. Two obvious estimators for f(w) are f(w) = (2r) " * Y#zL -1, #(k) €**, and

J@) =@n iz to- A —n7|kDi(k) €™,

where
(1.6) (k) = (n—|k|)~ 12 M) - X)X+ |kD-X), and
(%) =n""Y5-1 X(j).

The second of these is the well known periodogram estimator. Unlike most of the

estimators in the literature and unlike the first above, the second guarantees that

f(w) = 0. Strangely, as natural as these estimators are, neither of them is consistent.
The class of estimators most widely employed consists of those which can be

written
(1.8) (@) = @r)~ ' YrzL oo yalk, n)i(k) €™,

where a(k,n) does not depend upon the observations and a(k,n) = a(—k,n). The
conditions which are necessary and sufficient in order to insure consistency are well
known. See, for example, Parzen [4] and [5], and Lomnicki and Zaremba [3].

In this paper, we are not concerned with consistency but rather with efficiency.
The function a(k, n) can be chosen so as to minimize I%(n). The corresponding value
of I*(n) is called I2,,(n). The problem is that in order to minimize 1%(n) it is necessary
to know the covariances r(k). But if we knew this, we would not need an estimator.
The asymptotic efficiency of an estimator is

eﬁ = lin‘ln* © I;in(n)/lz(n)’
if it exists.

When estimating a vector-valued parameter, it is usually possible to find an
estimator which has efficiency 1, for every value of the parameter except possibly
for those in some set having Lebesgue measure zero. See Bahadur [1]. The same is
not true for an estimator of the spectral density function. An estimator which has
_efficiency 1 for one process may well have efficiency O for another. The same
problem arises in estimating a probability density function. See, for example,
. Watson and Leadbetter [7] and the author [6].
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In Section 2, it is shown that under certain conditions, there exists a “truncation
estimator” which is efficient, that is which has efficiency 1. A “truncation estimator”
is one which is of the form

(1.9) F*(@) = @n) T2 ) (1= n7 KR(K) ¥,

for some integer-valued function #(n). Clearly this is a special case of an estimator
of the form (1.8). Again, of course, the problem arises. In order to know what
sequence #(n) will yield an efficient estimator, it is necessary to know a great deal
about the covariance function. So, it is not generally possible to obtain the esti-
mator f*(w).

In Section 3, a class of estimators is introduced, wherein the truncation point is
allowed to depend on the observations. A fairly general class of covariance
functions is considered. For any such covariance function there exists a truncation
function #(r) and an estimator f*(w) which is efficient. Furthermore, if the estimator
f(®) is any estimator in our class of estimators, and r(k) is any covariance function
in our class of covariance functions, then

(1'10) SuP—ugwgulf(w) —f*(w)‘/Imm(n) - 09

in probability as # — oo, where f*(w) is the efficient truncation estimator.

A method of estimating a spectral density function, using a random truncation
point has been given by Leppink [2]. His method of determining the truncation
point is entirely different from the present one, and it does not appear to enjoy the
property (1.10).

As is true of most of the estimators considered in the statistical literature, those
considered here do not guarantee that f(w) = 0. But if a negative estimate occurs
for some w, the result can be replaced by 0. Since we know that f(w) = 0, this can
only reduce I*(n).

In Section 4, it is indicated that the results hold for a process in continuous time.

The approach taken in this work is similar to that taken by the author with
respect to probability density functions (see [6]).

For a discussion of the problem of truncation, see Zaremba [8].

2. Minimum mean squared error and truncation estimation. In this section, con-
ditions are given, under which there exists a truncation estimator which is efficient.
The truncation function #(n) is given explicitly in terms of the covariance function
r(k). First let us collect some facts and give some definitions concerning the fourth
moment function g(k, /, m). These are given in Parzen [3]. Let

(21) q(ks l,M) = qG(ksla m) + qNG(k9 la M),
where
2.2) qg(k,1,m) = r(k)yr(m— D+ r(Dr(k—m)+r(m)r(1—k).

‘We call q4(k, I, m) the Gaussian part, since it is the fourth moment function for a
stationary Gaussian sequence. Not surprisingly gyg(k,/,m) is called the non-
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Gaussian part since for a stationary Gaussian process, it is identically zero. The
absolute summability of the non-Gaussian part will be a condition assumed in what
follows.

THEOREM 2.1. Let {X(n),1 <n< oo} be a stationary time series with finite
moments to the fourth order. Assume that it is stationary to the fourth order with a
covariance function r(k) which is such that

(2.3 Rl<w, 1=1,2, where
(2.4 R=Y2 _,|r®)|,

and that the non-Gaussian part of the fourth moment function is absolutely summable,
that is that Y i) = — o |ane(k,l;m)| < 0. Then E(#(k)— r(k))* satisfies the inequality

2.5) A(m)— B(k) < mE(#(k)—r(k))* < A(m)+ B(k),

where m = n— |k|, and A(m) and B(k) are functions, which are such that

(2.6) © lim,,.,, A(m) =R*= 2n) [ *.f ¥(w) do,

.7 A(m) £R?, for all m, and
.8) lim, .., B(k) = 0.

The equality on the right side of (2.6) holds by the Parseval identity.
ProoF. By definition (1.6),
(2.9) #(k) = (n—[k)™* L3 (X ) =X+ X = XN (XU +k)-X)+ X = X))
= (n— kDT LX) - XWX G+ =X )+ (X' = XUX - X),

where

(2.10) X'=@n—|k)t XM X)), and
@11 X' ==k 1 X0,

and, of course, X is given by (1.7). But

(2.12) (=)~ LM (XD - X)X G+ |k -X")

= (n— k)~ LIz X(DX G +k)-X'X".
Combining (2.9) and (2.12), it follows that

(2.13) #k) =#(k) - X(X'+ X"+ X2,
where
(2.14) #(k) = (n—|k) " XX ()X G +|K],

and it is assumed, without loss of generality that pu = 0. First, let us consider
E(#'(k)—r(k))>. Clearly, E@®(k)*=m"2Y" -, EX()X(i+|kDX()X( j+|k‘)
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where m=n—|k|. But, by definition (1.3), EXG)XG+ |k)X()X(+|k|) =
q(k|,j—1i,j+|k|—1). So, by (2.1).
E@' (k) =m Y5, (A—m™|IDq(|k|.L, [k|+ 1)
(2.15) =m Y, (L—m~IDgg(|k|, k| +1)
+m~ Y (L=m™ Dane(( k], L, [K| +1).

m Y (A —m™ Y Dge(k|, L [k|+ D)
(2.16) =m Y L (L=m IR +m ™ Y (L —m” 1)
+m Y (—m”YIr(k| - Dr(k]+D.

Consider the first term on the rightside of 2.16). Clearly m~* Y 1= _,,(1 —m ™ |I|)r*(k)
= r?(k). The second term is defined to be A(m)/m and clearly lim,,_, , A(m) = R?,
where R? is given by (2.4). Furthermore, clearly A(m) < R*. The absolute value
of the third term is dominated by C(k)/m, where C(k)=Y 12 _, |r(k—Dr(k+1)|, and
clearly lim,_, ,, C(k) = 0. Recalling (2.1), consider the non-Gaussian part. Clearly

|m=t Y (A —m~ | Dane([k|, 1|k + D] S m™ Y2 _ o, |awe([k], L | K[+ D),

which is finite, by assumption. Furthermore, it follows by the same assumption,
that lim,, , Y12 _ o |[ana(|k|; I, |k| + D] = 0. So, the theorem would hold provided
that #(k) were replaced by #' (k).

Now, we evaluate the term E(#(k)—#'(k))?. By definition, recalling (2.13),

2.17) #k)—#'(k) = X*-X(X'+X).
Consider the second term on the right side of (2.17). Clearly
E(XX' = n~2m~2 Y0, Y-t EXDX(DX(RX(D)
=n"?m7 Yo Y ii=1(qe(i—i, k=i, 1= )+ qne(j—i, k—i,1—1)).
But, recalling (2.2), it follows that
”-Zm—ZZi':F 1 2m=1496(J—i k—i,1—i) S 3(m~ 121': -m |"(l)|) 2

So, E(XX")? <3(m™ 'Y _.|[rD*+m ™3 e - o |ane(ks Ly m)|. By identical
reasoning it follows that the same inequality holds for E(XX"")*> and EX?. By the
Schwarz inequality, the cross-terms are similarly bounded and E(#(k)—#'(k))* <
27(m 1Y [r(R))?+9m 3N e - o [ane(k, I, m)|, which depends only on m.
By the condition (2.3), with / =1, it follows that lim,,., ., mE(#(k)—#'(k))* =0,
uniformly for all k. Recalling the Schwarz inequality and the fact that the theorem
has already been proved for #'(k), the result (2.5) follows, and the theorem is proved.

But

THEOREM 2.2. Under the conditions of Theorem 2.1,
0 <|E#(k)—r(k)| £ 3m™'R",
where m = n—|k|, and R* is given by (2.4).
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ProOF. Recalling (2.13) and (2.14), E#(k)—r(k) = E(X*>—X(X'+X"")), where
X, X', and X" are given respectively by (1.7), (2.10) and (2.11), since Ef(k) —r(k) = 0.
First, let us consider the term EXX'.Clearly EXX < n™'m™ 'Y, ™=, EX()X(j).
So |[EXX'| < m™'R". By the same reasoning, this inequality is valid for the other
two terms as well. The theorem is proved.

THEOREM 2.3. Among all estimators of the form (1.8), the one which minimizes the
mean square error 1*(n) is the one for which

(2.18) a(k,n) = r(k)E#(k)/EF*(k).
In this case

IA(n) = Inu(n) = Y4t -1, 7°(k) Var F(k)/E* (k),
where, of course, 1%,,(n) is the smallest possible value of I*(n).

The proof is direct. The terms E(a(k, n)#(k)— r(k))? are individually minimized by
differentiation and equating to zero. When the mean is known, assuming without
loss of generality that it is zero, #(k) is replaced by #'(k), as defined in (2.14). Then
. E#(k) = r(k) and the result of Theorem 2.3 would correspond to the result given by
- Lomnicki and Zaremba [3].

THEOREM 2.4. Let r(k) be a covariance sequence, which is non-zero for an infinite
number of integers k. Assume that
(2.19) lim,_, ., klog(r*(k+1)/r*(k)) = — 0.
Then there exists an integer k* which is such that r*(k) is nonincreasing for all
k = k*. Let t(n) be the smallest integer greater than or equal to k* + 1, which is such
that r*(k) £ n~'. Then I2;,(n) ~ 2n~'((n)R?, as n — oo, where R?, given by (2.4),
is finite.

Before proving the theorem, two lemmas are presented.

LemMA 2.1. Under the condition (2.19) of Theorem 2.4, for any € > O there exists a
ko which is such that if ko < k; <k, r*(ky)[r’(k,) £ (kyfk,)™ " It follows im-
mediately from this, that r*(k) is nonincreasing for all sufficiently large k.

ProoOF. By assumption (2.19), for any & > 0 there exists a k, which is such that
for any k= ko, klog(r’(k+1)/r’(k)) < —1/e. Equivalently, (r*(k+1)/r*(k)) <
exp(—&~ 'k~ 1).Soforany k,, k, suchthatk, < k; <k, < o,

(P (ko)[r?(ky)) S exp{—& (ks + (ke + 17+ (k=17 1)}
Sexp(—e™ 2 dtft) = (ko [ky)™ "
The lemma is proved.

LeMMA 2.2. Under the conditions of Theorem 2.4,

(2.20) lim,_, , #(n) = oo,
andforany e > 0,
(2,21) lim,_ ,n~°t(n) =0,

where t(n) is as defined in the statement of Theorem 2.4.
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ProoF. Recall that by Lemma 2.2, r2(k) is nonincreasing for all k greater than or
equal to some k*. Recall, also, that it is assumed that infinitely many of the
covariances are non-zero. It follows from this that for any positive integer [ > k*,
ming. ¢ <; (k) > 0. For any n > 1/ming. ¢y <, 7%(k), clearly, #(n) = I. Thus (2.20)
follows.

Now, we prove (2.21). For any ¢ > 0, by Lemma 2.1 there exists a finite positive
constant C;, such that r?(k) £ C,k~ ', for all sufficiently large k. By definition
n~! < r¥(t(m)—1) £ Cy(t(n)—1)" ', Equivalently, #(n) < 14(C;n)>. The result
(2.21) is proven, since ¢ was arbitrary.

PrROOF OF THEOREM 2.4. The first part of the theorem follows from Lemma 2.1.
We proceed to prove the second part. Let ¢ > 0 be arbitrgrily chosen. By Theorem
2.3,

(2.22) Iin(n) = Yo AU ),

where
A(Ln) = Y me o r2(k) Var #(k) EP*(k),

AQ2,m) = 2Y5OA, (k) Var A(k) EF (),
A3,n) = 23 K000+ 1 (k) Var #(k)EF?(K),
and A(4,n) = 23 k2l ey +1 P2(K) Var #(k)/EF* (k).
Let us consider the individual summands. Clearly
(2.23) Var#(k) = E(#(k)—r(k))* —(Ef(k) — r(k))?
< m™Y(A(m)+ B(k))+9m~2(RY)?,
where m = n— k|, by Theorems 2.1 and 2.2, where A(m) and B(k) satisfy (2.6),
(2.7), and (2.8). Similarly
(2.24) Var#(k) = m~'(4A(m)+B(k))—9m~%(R")?.
Also,
Ef?(k) = E(r(k)+(P(k)—r(k)))?
(2.25) = r(k) + E(#(k) — r(k) ) + 2r(k) E(#(k) — r(k))
< r}(k)+m~ 1 (A(m)+ B(k))+6m™ ' |r(k)| R".
Similarly,
(2.26) E#*(k) 2 r’(k)+m™'(A(m)+ B(k))—6m~ " |r(k)| R*.
Let us consider the term A(2,#). By Theorem 2.3 and Lemma 2.2, for sufficiently
large n, [t(n)e] > k*, where k* is defined in the statement of Theorem 2.3. So
uniformly for all &, [#(n)e] < k = [t(n)(1—e¢)], by the condition (2.19) and Lemma

2.1, r’(k) becomes large in comparison to n~!, equivalently »~!. Furthermore
Var#(k) ~ m~'R?> ~ n~'R?, as n — co, uniformly for all such k. Therefore,

(2.27) A(2,n) ~ n~'Y(n)(1—2¢)R?, as n-— oo,
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Now consider the term A4(4,n). By the condition (2.19) and Lemma 2.2, r2(k)
becomes small with respect to E#%(k) as n — oo, uniformly for all k& = [t(n)(1 +¢)].
Therefore A(4,n) ~ Y vZlim +e1+1 7 (k), as n— oco. But by definition, for suf-
ficiently large n,

Zﬁ;[‘rma +e)] r’(k) < Zl(:o=t(n)+1 r’(k) < r'z(t(n))Zi?Lr(..)H (r*(k)[r*(t(n)))
ST Y e (PRFP(E(N))) S 0T Yy 1 (K[H(R)) T
SR Gsim) " Veds = n" () [T uT Vo du
=n"t(n)e(1—e)~ 1.

That is

(2.28) A4,n) £ n"'t(n)e(1—e)” (1 +a(1)), as n-— 0.

Each term r2(k) Var #(k)/E#+*(k), is of the form E(A?(k)—r(k))* where A is chosen
so as to minimize it. Clearly, then, it is at least as small as it would be for 4 = 1.
So r%(k) Var#(k)/Er*(k) < E(#(k)—r(k))* £ m~ '(R*+C,), where C; = sup, ; B(k).
Thus A(1,n)+ A(3,n) < 4n~ 't(n)(R*+ C,)e(1+0(1)), as n— oo. Combining this
with (2.22), (2.27), and (2.28), and recalling the fact that ¢ was arbitrarily chosen,
the theorem is proved.

THEOREM 2.5. Assume that the conditions of Theorem 2.4 hold. Let f*(w) be given
by (1.9), where t(n) is as defined in the statement of Theorem 2.4. Then f*(w) has
efficiency 1, in the sense that

I*(n) ~ 2n~'t(n)R?,
as n — oo, where I*(n) is given by (1.5), for f*(w), and R? if given by (2.4).
PrOOF. By definition,
P(n) = QrE [, (f*(0)—f(@))* do .
=Y E((L=n" kDA = (k) )? +2 Y k2 my 41 72 (K)-
But
2Dy E((1 =1 k)P(k) = (k) )?
(229) =Y E((1—n"YkD@RK) — (k) + r(k)((1—n" k)= 1))
=0 o (L=n" K] 2E@(K) — (k) + Y4y 1~ 2|k 22 (k)
=230 0 k| (1= n7 Y kr(K)E(R(K) — r(K)).

Observe that by the condition (2.19) and Lemma 2.1, it follows that R* < oo, where
R! is given by (2.4) with / = 1. So, we can apply Theorem 2.1. Consider the first
term on the right side of (2.29). Clearly Yi®_, ., (1—n"'|k])2E(F(k)—r(k))* =
{0y Aln— [K])Jn = k) + T4y BRY(n = K[}~ ™1 Q@1(m) + DR +0(n ™" 1(n))
<as n— co. Furthermore, recalling Lemma 2.2, Y i0_, . (1 —n ™ [k|)2E(P(k) — r(k))* Z
(L=n= ) *TiD_ Al — |k (n = [k]) + YiL— oy BU (1 = [k[) ~ n ™ 21(n) + )R
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+o(n~'Y(n)), as n— 0. So Y4®_,, (1 —n~|k|)2E(#(k)—r(k))* ~ 2n~ '((n)R?, as
n— oo. Let us now consider the second term on the right side of (2.29). Clearly

W2 _mn” 2|k|?ri(k) < n~22(n)R? = o(n~"'t(n)), as n— oo. Now, consider the
third term. Before doing so, however, we should examine the term E(?(k)—r(k)).
But by Theorem 2.2, |E(f(k)—r(k))| < 3(n—|k|)"*R'. Returning to the third term
on the rightmost side of (2.29), [Y4%_,., n~ k| (L= n~Y|k|r(k)E(F(k)—r(k))| <
T 2072 )R} (L—n" ()" = o(n"'t(n)), as n— 0. But, for any &> 0,
Zi;fm rik) £ "Z(t(n))Zl:o=z(n)+ L (PR3 (1(n)) = n~ IZk°o=t(n)+ 1 (k[(m)) =
n= s (s/t(m))"Yeds = n~ t(n) [T u” ' du = n"'t(n)e(1—e)” !, as n—> 0. But &
was arbitrarily chosen. The theorem is proven.

THEOREM 2.6. Let fi(w), i = 1, 2, be two estimators which are efficient in the sense
that

27E [, (fi@)~f (@))? doo/Ii(1) > 1,

asn— 00,i=1,2. Then

(2.30) 21E [ 2 (f1(0) —f (@) (Jo(@) —f (@) do/Iu(n) = 1,
asn— oo, and
(2.31) 2nE [* . (fi(@) = fo(0))? do/I2;(n) = O, as n— .

This theorem obviously applies when f,(w) is given by (1.8), where a(k,n) is
given by (2.18), and f,(w) = f*(w), given by (1.9). The reasoning in the proof is
very similar to that used in proving the analogous result relating two efficient
estimators of a vector-valued parameter.

PROOF. Let us define the estimator /3() = 3(f;(w) +/5(®)). Then E [ * . (f3(w) -
f(@))do=3E [T (fi(w)—f(0))* do+ 1E[ X, (fy(w)—f(0)*do+ E [T (fi(w) -
f(@)(fa(w)—f(w))dw. Multiplying throughout by 2n/I2;.(n), it follows that
liminf,_, ,, 27E [ * . (f1(0) —f () )(f2(@) = f (0)) do[I2(n) = 1. That the limsup
is =1 follows by the Schwairz inequality and tl}e definition of IZ;,(n). Sq (2.30)
holds. Now E %, (fy(@)—/x(@))* do = EJ*(Jy(@)~f(©))* do+E |, (x(w) -
f(@))? do—2E [ 2. (J(0) —f () X(f2(0) =f (@)) do. Multiplying by 27/I7,(n), (2.31)
follows, The theorem is proved.

3. Estimators with random truncation. We begin by proving the following
theorem.

THEOREM 3.1. Let {X(n), l Sn< o} be a time series with finite moments of
order four, stationary to order four with covariance function r(k) satisfying the
conditions of Theorem 2.4. Let 1(n) be a function of the observations, which is such
that

@3.1) lim,, , P{i(n) < t(n)} =0, and
(3.2 lim, ., ., P{i(n) = t(n)(1 +&)} =0,
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for any & >0, where t(n) is as defined in the statement of Theorem 2.4. Let
flw) = 2r) " Yi_; 0 (1 —n"Y|k|)A(k) €. Then

(33) SUP - g0 g | /(@) =/ *(@)|/Lmin(m) = O,
in probability, as n — oo, where f*(w) is given by (1.9) and I, (n) is ihe minimum
mean squared error, the minimum taken among all estimators of the form (1.8).
PrOOF. Let ‘
(3.4) A(n) = (21)*sUp_ 505 (F (@) =T *(0))?,

and for every ¢ > 0, let A(g,n) = A(n), if t(n) < i(n) < t(n)(1+¢), 0 otherwise. By
definition (1.9), A(e,n) < YY1 —n"1|k)*P?(k) < Y FOGT91#%(k), where
[x]is the greatest integer less than or equal to x. By the Schwarz inequality,

EA(e, n) < Y RO TP (R)+2 L E00 T P r(k)(E(P(k) — r(k) )

+ YRS TPV ER(k)—r(k) )2,
Let us consider the first term on the right side of (3.5). Clearly Y %"+ 91,%(k) <
([t(m)e]+ Dri(t(n)+ 1) < n~'([t(n)e] +1) ~ n~'t(n)e, as n — o0, by the definition of
t(n). Now, let us consider the third term on the right side of (3.5). By Theorem
2.1, YHOSIPIER(k)—#(k))? < YRS LD A(n— |k])/(n—|k])+ XEEAG 1 DI B*(k)/
(n - Ik')9

where
(3.6) B*(k) = Sup; > B(1),

and B(k) satisfies (2.8). From this, it follows that lim,_, B*(k)=0. So
YRS s 21 B(k)/(n—|k|) = o(n~*t(n)) as n — co. Furthermore by (2.7) of Theorem
2.1,

@3.5)

LS 12 Al k) K]

3.
@7 S n Y ([((n)e] + 1)L —n"[t(n)(1 +&)])R? ~ n™ 't(n)eR?,

as n — 00, by Lemma 2.2. So, it follows that
(3.8 YREGIDER(R) —r(k))* < n™ H(n)eR*(1+o(1)),

as n — 00. Now consider the middle term on the right side of (3.5). By the Schwarz
inequality, the term is dominated by the square root of the product of the other
two terms. That is

(3.9) e+ P r(k)ER(K) = r(k))*)* < n™ () (R*)*e(1 +0(1)),

as n— oo0. Recalling (3.5), (3.7), (3.8), and (3.9), it follows that EA(e,n) <
n~t(n)e(1 4+ (RY*)?(1+0(1)), as n— co. By Theorem 2.3, then EA(e, n)/12;, (n) <
el +(R?*? (14 0(1)), as n — 00. So by the Markov inequality, P{A(e, n)/I12;, (1) >

x} = (e(1+(R*))?/x)(1+0(1)) as n > o0, for any x,0 < x < co. But by the assump-
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tions (3.1) and (3.2) it follows that for any &> 0, lim,_, , P{A(n) # A(e,n)} = 0.
Since & was arbitrarily chosen, the result (3.3) follows.

COROLLARY 3.1. Theorem 3.1 would still be valid if f*(w) were replaced by f(w),
given by (1.8), where a(k, n) is given by (2.18).
The proof follows by combining the results of Theorems 2.4, 2.5, 2.6, and 3.1.

COROLLARY 3.2. Under the conditions of Theorem 3.1, for any real ¢,0 < ¢ < o0,
(3.10) limsup,_, , E{min ¢, 2z [* , (f(w0) —f (@) ) dw/12.(n)} £ 1,
where I2,.(n) is as defined in Section 1, and in the statement of Theorem 2.3.

Proor: Clearly
Ef* (@) ~f (@) do = E [, (J*()~f (@))* do

+E [, (f(@)=]*(®))? do+2E [, (7*(@) ~f (©))F (@) -7*(@)) do,

where f*(w) is given by (1.9). By Theorem 2.5,
(3.12) 2E |2 o (f*(@) =f (@) dooI5n(n) > 1,
asn— c0. Let ¢, 0 < ¢ < 00, be arbitrarily chosen. Then clearly, by Theorem 3.1,
(3.13) limsup,., , E{min (¢, 2z [ * , (f(@) —f*(®))? do/I2:.(n)} = 0,

since for a sequence of uniformly bounded positive random variables convergence
in probability implies convergence in expectation. Now consider the third term on
the right side of (3.11). By the Schwarz inequality,

|27 [ 2 2 (F*(@) =f () )(F (@) =] *(@)) deo| Isu(m)|
(3.14) < @ X, (f* (@) ~f (@))* do/Ifu(n)*
*@2nf X, (J(@) =f*(@))* do/I5(m))*.

Let &, &, > 0 be arbitrarily chosen. But P{2x [, (f*(w)—f(»))? dw/I%;(n) >
2/e;} < (g4/2) +0(1), as n — oo, by the Markov inequality. Equivalently

P{Q2n |2 (F*(@) —f (0))* dw)*|I5in(n) > (2/e))*} < (Be)+0(1),  as n— co.

For all sufficiently large n, by Theorem 2.5, P{(2x [ * , (f (@) —f *(@) )* dw)*/I (1) >
32(-}31)*} < %¢,. In order that the term on the right side of (3.14) be greater than
€,, it is necessary that either (2n[Z,(f*(w)—f(®))*dw)*/Ln(n) > (2/e,)* or
@n [*. (f(@0)—F*(@))? dw)*/I min(1) > 82(%"31)ir So

P2n [, (F¥(@) —f (@) X[ (@) =]*(@)) do/I5u(n) > &}
< P{2n |2, (J*(@)—f (@))? do) | Lyin(n) > (2/e1)*}
+P{27 [ 2, (F (@) =T*(@))? d)}/Lin(n) > £2(3 61)* }
= e, +1e, +0(1) = &y +0(1).

(3.11)
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Since ¢; and ¢, were arbitrarily chosen, it follows that the term on the left side of
(3.14) converges to zero in probability. Let us again recall the fact that for a
uniformly bounded sequence of random variables convergence in probability
implies convergence in expectation. Thus

(3.15)  limsup,-, E{minc, 27 |2, (f*(@)=f (@) )(f(0)=/*(@)) do/I3;(n)} = O.
Recalling (3.11) through (3.15) then the result (3.10) follows. The corollary is
proved.

THEOREM 3.2. Assume that the covariance function r(k) is such that for some
C7,0<Cy<oo,
(3.16) —logri(k) ~ Ck’, . and
(3.17) —log (r*(k+1)/r*(k)) ~ Cyk?~*,

as k — oo0. Then 1(n) satisfies the conditions of Theorem 3.1, provided that it is defined

as follows. We let
i(n) = [B(n)+2)(1 +dm)]+ 1,

where [x] is defined to be the greatest integer, less than or equal to x, $(n) is the
number of integers from O to a(n) which are smaller than k*, or are such that
#2(k) = a(n)/n, the integer k*, as defined in the statement of Theorem 2.4, is the
smallest integer which is such that r*(k) is nonincreasing for all k = k* and a(n) and
d(n) are functions which satisfy the following conditions. The function a(n) is integer
valued and is such that

(3.18) lim,_, ., loga(n)/logn = 0,

and for every o, 0 < o0 < 00,

(3.19) lim,_, , a(n)/(log n)* = co.

The function d(n) is such that for some > 1,

(3.20) lim,_, ,, d(n)log n/(loglog n)? = oo,

(3.21) lim,., , d(n)lognfloga(n) = co, and
(3.22) lim,_, ,, d(n) = 0.

The conditions of Theorem 3.2 are satisfied if, for example
a(n) = [exp(logn)®]+1, and d(n) = (logn)®~!,

where0 < 6, <0, < 1.
Clearly, the condition (2.19) is satisfied if (3.16) and (3.17) hold, for some

7,0 <y < 0.
Before proving the theorem, several lemmas are given.

~LEMMA 3.1. Under the condition (3.16),
(3.23) t(n) ~ C~?(logn)', as n— oo.
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Proor. Let ¢ > 0 be arbitrarily chosen. By the condition (3.16), it follows that
for all sufficiently large n, —logr?(t(n)) £ (C+¢)(t(n))’. By the definition of #(n) as
given in the statement of Theorem 2.4, it follows that —logr2(¢(n)) = logn. Com-
bining the two inequalities, #(n) = (C+¢)~ ?(logn)*/? for all sufficiently large n.
By similar reasoning —logr2(¢(n)—1) = (C—e)(t(n)—1)?, and —logr?(t(n)—1) <
logn. So t(n) £ (C—e)~"(logn)!/?+1, for all sufficiently large n. Since & was
arbitrarily chosen, the result (3.23) follows. The lemma is proved.

LeEMMA 3.2. Let a(n) be a sequence which is such that (3.18) and (3.19) hold. Let
k* be defined as in Theorem 2.4. Let s(n) be the smallest integer k, which is such that
k = k* and r*(k) < n™'a(n). Then, if the conditions of Theorem 3.2 are satisfied,

(3.24) s(n) ~ t(n),
asn — 0. Furthermore,
(3.25) (t(n)—s(n)—1)[(t(n)—1) < (1 +o(1))log a(n)/ylogn, as n— oo,

PRrOOF. By exactly the same reasoning as that used in Lemma 3.1, s(n) ~ C~1/*
(log (n/a(m)))!/” = C~'/"(log n—loga(n))'/’ = C'/(log n)'/"(1 — log a(n)/logn)'”* ~
t(n), as n — o0, by Lemma 3.1 and the condition (3.18). That is (3.24) holds.

Now, let us establish that (3.25) holds. By definition of #(n), r*(t(n)—1) =
n~!, and so —logr?(t(n)—1) < logn. By definition of s(n), r?(s(n)) < n~'a(n),
and so —logr?(s(n)) = logn—loga(n). Thus —logr’(t(n)—1)—(—logri(s(n))) <
loga(n). But —logr?(t()— 1)— (—logr(s(n))) 2 (1(n)— s(n) — )Cy Minygmygigiom—1
k"', ‘Therefore, (t(n)—s(n)—1) <loga(n)/Cy ming,)<y<im-1 k'~ ' Clearly
Cmingy<igim-1 k771 Z C(s(n))[(t(n) —1). So (t(n)— s(m)— 1)/(t(n)— 1) < loga(n)/
Cy(s(n))? ~ loga(n)/ylogn,asn — oo. The Lemma is proved.

LEMMA 3.3. If the covariance sequence satisfies the conditions (3.16) and (3.17) and
is such that (s(n) — 1)e(n) is an integer for every n, and

(3.26) lim,, , e(n) =0,

then

(3.27) —log |r*(s(n) ~ D)/r*((s(m)— 1)(1 —e(n)))| ~ ye(n)lognn, and
(3.28) —log [r*((s(n)— 1)(1 +e(m)))/r*(s(m) = 1)| ~ ye(m)logn,  asn— co.

PROOF. By (3.17), (s(n) — 1)e(r) Cy min (s - 171 ~ ey sk<sem -1 K~ S | —logr? (s(n)
—1)—(—logr?((s(m)—1)(1 — e(n))))l < (5(n) — De(n)Cy max gy —1)(1~em) skssm -1
k'~'. By (3.26) |—log(r?(s(n)—1)/r*((s(m)—1)(1—e(m))))| ~(s(n)—1)e(n)Cy(s(n)
— 1) L=e(n)Cy(s(n) — 1) ~ e(n) Cy(s(n))’ ~ ye(n) log (n/a(n)) ~ ye(n) log n, as n —oo.
Thus (3.27) is proven. The result (3.28) follows by the same reasoning with
appropriate but obvious modifications. The lemma is proved.

LemMA 3.4. Under the conditions of Theorem 3.2 if e(n) is a sequence, which is such
that for every integer n, (s(n)— 1)e(n) is an ever integer, and
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(3.29) lim,, , e(n) =0, and
(3.30) liminf,, , (ye(n)logn+loge(n)) = oo, then
3.31) lim,, ,, P{8(n) < (s(n)—1)(1—e(n))} = 0.

Proor. Observe that by (3.19) and Lemmas 3.1 and 3.2, for all sufficiently large »,
(3.32) a(n) = s(n).

From here on it will be assumed that » is sufficiently large so that (3.32) holds. If
8(n) = (s(n)—1)(1 —e(n)), then, for all sufficiently large n, Y 2™, (#(k)—r(k))* =
2 lec(:)(s_(t:)— (1 —e(my) (F(K) = r(s(m) = 1))* 2 2 Zl(cs;n(?s(_n)ll(ll)zl-%f(:()n; y (r(k)—r(s(m)—1))* 2
(s()—De(m)r*(s(m)— Df(n), where f(n) = ((r((s(1)— 1)(1 —e(n))/r(s(m)— 1)) — 1),
But, by definition, r(s(m)—1) 2 n"'a(n). So Y., (k) —r(k))* = (s(n)—1)
e(n)n” 'a(n)f(n). By the Markovinequality, P{8(n) < (s(n)—1)(1 — e(m)} S EYi i)
(F(k) —r(k))*[(s(n) — 1)e(m)n™ *a(n)f(n). But, by Theorem 2.1, E(Y'2®)_,.,, (k) — r(k))?)
< n7'a(n)+ 1)(R* + B*(n—a(n))) ~ n™'(2a(n) + 1)R?, where R? is given by (2.4)
and B*(k) by (3.6). Then E(Y2)_, ., (A(k)—r(k))?) < n~'Qa(n)+ )R*(1 +o(1)), as
n—o0,and P{s(n) < (s(n)—1)(1 —e(n))} £ C,n~ '(2a(n) + 1) R?[s(n)e(n)n~ La(n)f(n) -
0, as n — oo, provided

(3.33) lim, o, e(n)f(n) = oo,

since, by definition, lim,_,, s(n) = c0. By Lemma 3.3, (3.33) holds provided that
(3.30) does. Thus, the result (3.31) is established. The lemma is proved.

LEMMA 3.5. Under the conditions of Theorem 3.2, for any & > 0,
(3.34) lim,_,,, P{8(n) = [(s(n)—1)(1+¢)] = 0.

PrROOF. The proof is similar to that for Lemma 2.4. Let ¢ > 0 be arbitrarily
chosen. If §(n) = [(s(n)—1)(1+¢)], then, for all sufficiently large n, Yo,
(k)= r(R))? 2 2X L0 D+ O (k) — r(R))? 2 25 He 4520 2y (PR (k)Y 2
([s(m)e]+1)n~'a(n)(1+o(1)), as n— oo, since by Lemma 2.1, for any 6 > 1,
lim,, , (r*([k0]+1)/r?(k)) = 0. By the Markov inequality, then, P{3(n) =
[(s(m)— 1A +e)]} < 2n™ 'a(m)R*(1 +0(1))/s(n)en™ 'a(n) = 2R*(1+o(1))/s(n)e — 0, as
n— oo. The lemma is proved.

ProOOF OF THEOREM 3.2. Let e(n) be a sequence satisfying the conditions of Lemma
3.4 for all 9,0 <y < oo, then 8(n)+2 = (s(n)+ 1)(1—e(n)), with probability ap-
proaching 1 as n — co. Then lim,., ,, P{#(n) = (s(n)+ 1)(1 —e(n))(1+d(n))} = 1. But
by Lemma 3.2, for any ¢>0 and for all sufficiently large n, s(n) = (t(n)—1)
(1—(1+¢)loga(n)/logn). But, by the condition (3.18) it follows that for sufficiently
large n, s(n)+1 2 t(n)(1—(1+¢)loga(n)/logn). Thus #(n) = t(n)(1—e(n))(1 + d(n))
(I—(1+¢)loga(n)/logn), with probability approaching 1, as n — co. So, in order
that the condition (3.1) be satisfied, it is sufficient that, for any 9,0 <y < oo,

‘ (3.35) lim,_, ,, d(n)/(e(n) + (1 +¢)loga(n)/ylogn) = oo,
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where e(n) is some sequence satisfying (3.30). Let e(n) = (loglog n)*! *#/log n, for
some > 1. But, by the conditions (3.20) and (3.21), (3.35) holds for any
7,0 < y < 0. So, the condition (3.1) of Theorem 3.1 is satisfied.

By Lemma 3.5, in order that the condition (3.2) hold, (3.22) must hold. The
theorem is proved.

4. Continuous coordinate time series. Let {X(r), 0 <7 < oo} be a continuous
coordinate time series with finite moments to order four, and assume that the time
series is stationary to order four. The results of Sections 2 and 3 are still valid,
provided appropriate but obvious modifications are made. In general, the following
exceptions are involved. Sums are replaced by integrals, and integrals involving the
spectral density function, and its estimators are taken from — oo, to oo, rather than
from —nx to n. The inequalities involved in the definition of s(z) and t(n) become
equalities. In defining the class of covariance functions, the condition (2.19) is
replaced by the condition that

lim_, , t0logr’(t)/ot = — o0,

and (3.16) and (3.17) are replaced by the conditions that —logr?(zr) ~ Cr?, and
—0dlogr?(z)/ot ~ Cyt"~*, as © — co. The term §(n) is replaced by 3(T) which is de-
fined using Lebesgue measure instead of summation. The result (1.10) is replaced
by the conclusion that sup_ <= | /(@) =/ *(@)|/Imin(T) = 0, in probability as
T — oo, where, of course, observation is made over [0, 7.
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