A WEAK CONVERGENCE THEOREM FOR RANDOM SUMS OF INDEPENDENT RANDOM VARIABLES¹

By Pedro J. Fernandez

University of California at Berkeley

- **0.** Summary. A limit theorem for random sums of independent random elements of D[0, 1] is proved. The theorem extends and simplifies the proof of a result obtained by R. Pyke in [3]. In a personal communication Professor Pyke remarked to me that the method employed is also the right approach to the problem studied in [4], by adequately defining sequences of random elements of D[0, 1].
- 1. Introduction. Let D denote the set of all real functions on [0, 1] which are right continuous on [0, 1) and have left limits on (0, 1]. It is well known that there exists a metric δ on D under which this set becomes a complete separable metric space. For details of the definition of D and δ , and basic properties of the Skorohod topology, the reader is referred to Chapter 3 of [1]. Let $\mathscr D$ denote the sigma field generated by the Skorohod topology. For $x \in D$ define $\|x\| = \sup_{0 \le t \le 1} |x(t)|$. Let $\mathscr D$ be the Borel sets of the real line R, and let $\mathscr R^{[0,1]}$ denote the product sigma field of $R^{[0,1]}$. In what follows all the random variables under consideration are defined on a fixed probability space $(\Omega, \mathscr A, P)$. If X is a random element of D, $\mathscr L(X)$ will denote its distribution. The symbol \to_{ω} indicates weak-star convergence. Let $\{\tau_n\}_{n=1,2}$... be a sequence of positive integer valued random variables, satisfying the following condition:

CONDITION 1. There exist sequences $\{b_n\}_{n=1,2}\dots$ $\{c_n\}_{n=1,2}\dots$ of positive integers such that $1 \leq b_n < c_n$, $b_n \to \infty$, $c_n/b_n \to 1$ as $n \to \infty$, and $P[\tau_n \notin (b_n, c_n)] \to 0$ as $n \to \infty$.

It is not difficult to show that this condition is satisfied, if and only if, there exist a sequence $\{a_n\}_{n=1,2,\ldots}$, $a_n > 0$, $a_n \to \infty$, such that $\tau_n/a_n \to_P 1$. The main result of the paper is the following.

Theorem. Let $\{X_n\}_{n=1,2}...$ be a sequence of random elements of D which are independent and identically distributed. Let $\{\tau_n\}_{n=1,2}...$ be a sequence of positive random variables satisfying Condition 1. Then $\mathcal{L}(S_n/n^{\frac{1}{2}}) \to_{\omega} \mu$ implies $\mathcal{L}(S_{\tau_n}/\tau_n^{\frac{1}{2}}) \to_{\omega} \mu$ where $S_n = \sum_{i=1}^n X_i$ and $S_{\tau_n} = \sum_{i=1}^{\tau_n} X_i$.

Note. The theorem is stated for a sequence of positive integer random variables. If we have a positive integer valued stochastic process $\{\tau_t: t \ge 0\}$, and $\tau_t/a_t \to 1$, $0 < a_t$, $a_t \to \infty$ as $t \to \infty$, the proof remains the same, with the obvious modifications in the notation.

Received April 21, 1969.

¹ This research was supported by the U.S. Army Research Office (Durham), Grant DA-ARO-D-31-124-G816.

2. Proof of the theorem. We first state and indicate the proofs of several propositions.

PROPOSITION 2.1.
$$\mathcal{R}^{[0,1]} \cap D = \mathcal{D}$$
 where $\mathcal{R}^{[0,1]} \cap D = \{A \cap D : A \in \mathcal{R}^{[0,1]}\}.$

PROOF. The result follows from Theorem 14.5 of [1] and comments preceding that theorem.

COROLLARY 2.1. The application $(x, y) \to x + y$ from $(D \times D, \mathcal{D} \times \mathcal{D})$ into (D, \mathcal{D}) is measurable.

PROOF. The corollary follows from Proposition 2.1 and the fact that for all t, $0 \le t \le 1$, the application $(x, y) \to x(t) + y(t)$ is measurable. The following inequality is well known for real random variables; ([2] Section 17, page 246). The proof for random elements of D is the same provided it is checked that addition is a measurable operation. This is given to us by Corollary 2.1.

PROPOSITION 2.2 Let $\{X_i\}_{i=1,2...n}$ be independent random elements of D, $S_k = \sum_{i=1}^k X_i k = 1, 2...n$. Then for all t > 0

$$P[\max_{1 \le k \le n} ||S_k|| \ge 2t] \le \frac{P[||S_n|| \ge t]}{1 - \max_{1 \le i < n} P[||S_n - S_i|| > t]}.$$

PROPOSITION 2.3. For all $r \ge 0$, the sets $\{x: ||x|| \le r\}$ and $\{x: ||x|| \ge r\}$ are closed in the Skorohod topology. That is, the application $x \to ||x||$ is continuous in the Skorohod topology.

PROOF. The result follows easily using the fact that $||x|| = ||x \circ \lambda||$, where λ is an increasing homeomorphism of [0, 1] onto [0, 1] and \circ indicates composition.

COROLLARY 2.2. Let \mathscr{P} be a family of probabilities on (D, \mathscr{D}) which is tight. Then $\lim_{r\to\infty}\sup_{\mu\in\mathscr{P}}\mu\{x:\|x\|\geq r\}=0$.

Now to the proof of the theorem. First we compare $S_{\tau_n}/\tau_n^{\frac{1}{2}}$ and $S_{\tau_n}/b_n^{\frac{1}{2}}$. For all $\varepsilon > 0$ we have

$$\begin{split} P \big[\big\| S_{\tau_n} / \tau_n^{\frac{1}{2}} - S_{\tau_n} / b_n^{\frac{1}{2}} \big\| &\ge \varepsilon \big] \\ &= P \big[\big\| S_{\tau_n} / b_n^{\frac{1}{2}} \big\| \left| (b_n / \tau_n)^{\frac{1}{2}} - 1 \right| \ge \varepsilon \big] \\ &\le P \big[\big\| S_{\tau_n} / b_n^{\frac{1}{2}} \big\| \left| (b_n / \tau_n)^{\frac{1}{2}} - 1 \right| \ge \varepsilon, \ \tau_n \in (b_n, c_n) \big] + P \big[\tau_n \notin (b_n, c_n) \big] \\ &\le P \big[\big\| S_{\tau_n} / b_n^{\frac{1}{2}} \big\| \ge \varepsilon / \big| (b_n / c_n)^{\frac{1}{2}} - 1 \big| \big] + P \big[\tau_n \notin (b_n, c_n) \big]. \end{split}$$

Since for all x and $y \in D$ $\delta(x, y) \leq ||x-y||$, this inequality together with Condition 1 and Corollary 2.2 shows that it is enough to prove that $\mathcal{L}(S_{\tau_n}/b_n^{\frac{1}{2}}) \to_{\omega} \mu$. Now for all $\varepsilon > 0$, we have

$$\begin{split} &P\big[\big\|S_{\tau_n}/b_n^{\frac{1}{2}} - S_{b_n}/b_n^{\frac{1}{2}}\big\| \geq \varepsilon\big] \\ &\leq P\big[\max_{b_n < k < c_n} \big\|S_k - S_{b_n}\big\| \geq \varepsilon b_n^{\frac{1}{2}}\big] + P\big[\tau_n \notin (b_n, c_n)\big] \\ &\leq \frac{P\big[\big\|S_{c_n} - S_{b_n}\big\| \geq \frac{1}{2}\varepsilon b_n^{\frac{1}{2}}\big]}{1 - \max_{b_n \leq k < c_n} P\big[\big\|S_{c_n} - S_k\big\| \geq \frac{1}{2}\varepsilon b_n^{\frac{1}{2}}\big]} + P\big[\tau_n \notin (b_n, c_n)\big]. \end{split}$$

This last inequality follows from Proposition 2.2. Take d_n such that

$$P[\|S_{c_n} - S_{d_n}\| \ge \frac{1}{2} \varepsilon b_n^{\frac{1}{2}}] = \max_{b_n \le k < c_n} P[\|S_{c_n} - S_k\| \ge \frac{1}{2} \varepsilon b_n^{\frac{1}{2}}].$$

Now for all $n, b_n \le d_n < c_n$, and therefore $d_n \to \infty$ and $d_n/b_n \to 1$. If $\{a_n\}_{n=1,2}\dots$ stands for any of the sequences $\{b_n\}_{n=1,2}\dots$ or $\{d_n\}_{n=1,2}\dots$ the result will follow if we show that

$$P[\|S_{c_n} - S_{a_n}\| \ge \frac{1}{2}\varepsilon b_n^{\frac{1}{2}}] \to 0.$$

This is equivalent to (since the random elements are identically distributed)

$$P[\|S_{c_n-a_n}/(c_n-a_n)^{\frac{1}{2}}\| \ge \frac{1}{2}\varepsilon[b_n/(c_n-a_n)]^{\frac{1}{2}}].$$

Since $\{\mathscr{L}(S_{c_n-a_n}/(c_n-a_n)^{\frac{1}{2}})\}_{n=1,2,\ldots}$ is tight and $b_n/(c_n-a_n)\to\infty$ the result follows from Corollary 2.2.

Acknowledgment. I would like to thank Professor L. LeCam for several exceedingly useful conversations.

REFERENCES

- [1] BILLINGSLEY, PATRICK (1968). Convergence of Probability Measures. Wiley, New York.
- [2] Loève, M. (1963). Probability Theory. 3rd ed. Van Nostrand, Princeton.
- [3] PYKE, R. (1968). The weak convergence of the empirical process with random sample size. *Proc. Cambridge Philos. Soc.* **64** 155.
- [4] PYKE, R. and SHORACK, G. (1968). Weak convergence of a two-sample empirical process and a generalized Chernoff-Savage theorem. *Ann. Math. Statist.* **39** 755-777.