CONVERGENCE PROPERTIES OF MARTINGALE TRANSFORMS

By Harro Walk

University of Stuttgart

1. Introduction. This note relates to papers of D. L. Burkholder [2], Y. S. Chow [4], B. Davis [5] and concerns the convergence behavior of martingales and, more generally, of martingale transforms. At first a generalization of Chow's convergence theorem ([4], Theorem 10) for sums of means of independent random variables is obtained by a modification of his proof. To three equivalent convergence assertions on martingale transforms (see Burkholder [2], Theorem 4; compare J. L. Doob [6] page 320, (iv)) this result yields two other equivalent assertions, one of them concerning the notion of essential convergence (compare [9] 5). This notion is also treated in the last theorem, the second part of which may be regarded as a statement on random power series (compare [1] (L. Arnold) page 229; [10] 4, 5; [9] 5; [11] 3).

Throughout the note we use the following definitions and notations in which all numbers and functions are real or complex. Let $\{\sum_{k=1}^n y_k, n \ge 1\}$ be a martingale on a probability space (Ω, \mathcal{A}, P) . According to Burkholder [2] we say that $\{\sum_{k=1}^n s_k\}$ is a transform of $\{\sum_{k=1}^n y_k\}$ if $s_m = v_m y_m$, where v_m is an \mathcal{A}_{m-1} -measurable function, $m \ge 1$, and $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \mathcal{A}$ are σ -fields such that $\{\sum_{k=1}^n y_k, \mathcal{A}_n, n \ge 1\}$ is a martingale. Let $\{b_n\}$ be a sequence of numbers and $x_n = y_n + b_n$, $r_n = s_n + b_n = v_n y_n + b_n$; if $E|v_n y_n|$ is finite, then $Er_n = b_n$ $(n \ge 2)$. A series $\sum g_n$ of \mathscr{A} -measurable functions is said to be essentially convergent (essentially divergent) on $\Omega' \in \mathscr{A}$, if there exists a number sequence $\{c_n\}$ with convergence of $\sum (g_n - c_n)$ a.e. on Ω' (if $\sum (g_n - c_n)$ is divergent a.e. on Ω' for every choice of the number sequence $\{c_n\}$) (compare [8] page 250). For any sequence $\{h_n\}$ of functions on Ω let h^* be defined by $h^*(\omega) = \sup_n |h_n(\omega)|$, $\omega \in \Omega$. The α -quantile $(0 < \alpha < 1)$ of an \mathscr{A} -measurable function h is denoted by $\mu_{\alpha} h$ ($= \mu_{\alpha} h' + i\mu_{\alpha} h''$ for a complex h = h' + ih'').

2. Theorems. The following theorems obviously yield convergence assertions on martingales themselves $(v_n = 1 \text{ for all } n \text{ and thus } s_n = y_n, r_n = x_n, Er_n = Ex_n = b_n)$.

THEOREM 1. Suppose $Ey^* < \infty$. $P[\sum r_n convergent; v^* < \infty] > 0$ implies convergence of $\sum b_n$. $P[\sup_n \left| \sum_{k=1}^n r_k \right| < \infty; v^* < \infty] > 0$ implies $\sup_n \left| \sum_{k=1}^n b_k \right| < \infty;$ furthermore $\sum s_n$ converges a.e. on the set where $\sup_n \left| \sum_{k=1}^n r_k \right| < \infty, v^* < \infty$.

Theorem 2. Let $\Omega' \in \mathcal{A}$, α a real number with $0 < \alpha < P(\Omega')$, $v^* < \infty$ a.e. on Ω' , and $Ey^* < \infty$. With the essential convergence of $\sum s_n$ (or $\sum r_n$) on Ω' there are equivalent the convergence of $\sum s_n$ a.e. on Ω' —therefore (according to [2]) the validity of $\sup_n \left|\sum_{k=1}^n s_k\right| < \infty$ a.e. on Ω' and $\sum |s_n|^2 < \infty$ a.e. on Ω' , too—and the convergence of $\sum |s_n - \mu_\alpha s_n|^2$ (or $\sum |r_n - \mu_\alpha r_n|^2$) a.e. on Ω' .

Received April 16, 1969.

706

- REMARK 1. (a) Into the list of equivalent assertions in Theorem 2 the "essential boundedness" of the partial sums of $\sum s_n$ in Ω' , i.e. the existence of a number sequence $\{c_n\}$ with $\sup_n \left|\sum_{k=1}^n (s_k c_k)\right| < \infty$ a.e. on Ω' , can be taken up.

 (b) Theorem 2 remains valid, if everywhere "convergence," " $<\infty$," and
- (b) Theorem 2 remains valid, if everywhere "convergence," " $<\infty$," and "essential convergence" are replaced by "(for every $\alpha \in (0, 1)$ existing) divergence" resp. " $=\infty$ " resp. "essential divergence."
- THEOREM 3. (a) Let $\Omega' \in \mathcal{A}$, $v^* < \infty$ a.e. on Ω' , and $Ey^* < \infty$. If $\sum r_n$ is essentially convergent on Ω' , then also for every bounded number sequence $\{d_n\}$ the series $\sum d_n r_n$ is essentially convergent on Ω' .
- (b) Let $v^* < \infty$ a.e., $Ey^* < \infty$. There exists a set $\Omega' \in \mathcal{A}$, determined up to a set of P-measure zero, such that $\sum r_n e^{in\varphi}$ is essentially convergent on Ω' for all $\varphi \in [0, 2\pi)$ and essentially divergent on $\Omega \Omega'$ for all $\varphi \in [0, 2\pi)$. At this $\sum s_n(\omega) e^{in\varphi}$ and $\sum (r_n(\omega) \mu_\alpha r_n) e^{in\varphi}$ converge for P-almost all $\omega \in \Omega'$, L-almost all $\varphi \in [0, 2\pi)$ (if $0 < \alpha < P(\Omega')$) and diverge for P-almost all $\omega \in \Omega \Omega'$, L-almost all $\varphi \in [0, 2\pi)$ (if $0 < \alpha < P(\Omega \Omega')$).
- REMARK 2. In Theorem 1—Theorem 3 and Remark 1 the supposition $Ey^* < \infty$ may be replaced by the weaker supposition that there exists an L^1 bounded martingale $\{f_n, \mathcal{A}_n, n \ge 1\}$ on (Ω, \mathcal{A}, P) with $f^* \ge y^*$ (compare Davis [5], Theorem 2).
 - **3. Proofs.** For the proof of Theorem 1 the following lemmas will be needed. By an indirect proof—like that of [9], Theorem 3b with footnote—we obtain
- LEMMA 1. Let t_1, t_2, \cdots be real nonnegative random variables on (Ω, \mathcal{A}, P) and $0 < \alpha < q \le 1$. Then $P[\sup_n t_n < \infty] = q$ implies $\sup_n \mu_\alpha t_n < \infty$.
- LEMMA 2. Let t_1 , t_2 , \cdots be random variables $\in L^1(\Omega, \mathcal{A}, P)$ and $0 < \alpha < 1$. Then the two assertions $E \sup_n |t_n Et_n| < \infty$ and $E \sup_n |t_n \mu_\alpha t_n| < \infty$ are equivalent.

PROOF OF LEMMA 2. From $E \sup_n |t_n - Et_n| < \infty$ the relation $P[\sup_n |t_n - Et_n| < \infty] = 1$ follows, from this by Lemma 1 the relation $\sup_n \mu_\alpha |t_n - Et_n| < \infty$ and thus $\sup_n |\mu_\alpha t_n - Et_n| < \infty$; we get

$$E \sup_{n} |t_n - \mu_\alpha t_n| \le E \sup_{n} |t_n - E t_n| + \sup_{n} |\mu_\alpha t_n - E t_n| < \infty.$$

As to the converse, from $E \sup_n |t_n - \mu_\alpha t_n| < \infty$ the relation $\sup_n E |t_n - \mu_\alpha t_n| < \infty$ follows and thus $\sup_n |Et_n - \mu_\alpha t_n| < \infty$; we get

$$E \sup_{n} |t_n - Et_n| \le E \sup_{n} |t_n - \mu_\alpha t_n| + \sup_{n} |Et_n - \mu_\alpha t_n| < \infty.$$

PROOF OF THEOREM 1. The proof can be reduced—compare Burkholder [2] page 1498–1499—to the case $v_n=1$, $r_n=x_n$, $Ey^*<\infty$ with $b_n=Ex_n$ ($n\geq 1$). For $P[\sum (v_ny_n+b_n)$ convergent; $v^*<\infty]>0$ implies the existence of a c>0 with $P[\sum (\hat{v}_ny_n+b_n)$ convergent]>0 where $\hat{v}_n(\omega)=v_n(\omega)$ if $|v_n(\omega)|< c$, =0 otherwise $(\omega\in\Omega)$ and thus $\{\sum_{k=1}^n \hat{v}_ky_k\}$ is a martingale with $E\sup_n |\hat{v}_ny_n|<\infty$ because of

 $Ey^* < \infty$; in a similar way we can treat the second part and—by letting $c \to \infty$ —the third part of the theorem.

Now we turn to the case $v_n = 1$, $r_n = x_n$ $(n \ge 1)$, $Ey^* < \infty$. Under the stronger assumption $Ey^{*2} < \infty$ the assertions could be proved by symmetrizing $\{x_n\}$ and using [6] page 320, (v). In the following we modify a proof which has been given by Y. S. Chow [4] page 1492, as a conclusion of the convergence of $\sum Ex_n$ from $P[\sum x_n \text{ convergent}] = 1$ (!) for a stochastically independent sequence $\{x_n\}$ with $Ex^* < \infty$ and which also holds without altering for the case that $\{\sum_{k=1}^n (x_k - Ex_k)\}$ is a martingale.

Suppose $P[\sup_{k=1}^n x_k | < \infty] > 0$. With $0 < \alpha < P[\sup_n |x_n| < \infty]$ and $Ey^* < \infty$ we obtain

$$Ex^* \leq E \sup_n |x_n - \mu_\alpha x_n| + \sup_n |\mu_\alpha x_n| < \infty$$

using Lemma 1 and Lemma 2. There exists a d>0 with $P[\sup_k \left|\sum_{k=1}^n x_k\right| < d] > 0$. If we put $x_n' = g_n x_n$ with $g_1(\omega) = 1$ ($\omega \in \Omega$) and $g_n(\omega) = 1$ if $\sup_{m \le n-1} \left|\sum_{k=1}^m x_k(\omega)\right| < d$, = 0 otherwise ($n \ge 2$; $\omega \in \Omega$), then, because $\left\{\sum_{k=1}^n (x_k - Ex_k)\right\}$ is a martingale and $P[\left|\sum_{k=1}^n x_k'\right| < d + x^*] = 1$, we get

$$\left| \sum_{k=1}^{n} E x_k E g_k \right| = \left| E \sum_{k=1}^{n} x_k' \right| < d + E x^*$$
 $(n \ge 1).$

Thus the sequence $\{\sum_{k=1}^n Ex_k Eg_k\}$ is bounded. From this and the monotoneity and boundedness of the sequence $\{1/Eg_n\}$ we obtain the boundedness of $\{\sum_{k=1}^n Ex_k\}$ by using a variant of Abel's criterion which can be proved analogically to [7] 184, °1. Furthermore a.e. on the set where $\sup_n \left|\sum_{k=1}^n x_k\right| < \infty$ we thus have $\sup_n \left|\sum_{k=1}^n (x_k - Ex_k)\right| < \infty$ and therefore by [6] page 320, (iv), convergence of the series $\sum_{k=1}^n (x_k - Ex_k)$.

By this result the supposition $P[\sum x_n \text{ convergent}] > 0$ implies $P[\sum x_n \text{ convergent}]$, $\sum (x_n - Ex_n) \text{ convergent}] > 0$ and therefore the convergence of $\sum Ex_n$. \square

PROOF OF THEOREM 2. The last part of Theorem 1 immediately yields that $\sum s_n$ converges a.e. on Ω' if $\sum s_n$ is essentially convergent on Ω' . The converse is trivial. Now it will be shown that convergence of $\sum |s_n - \mu_\alpha s_n|^2$ a.e. on Ω' is a further equivalent assertion. We start with $\sum |s_n|^2 < \infty$ a.e. on Ω' , obtain by [9], Theorem 3(a) with footnote, $\sum \mu_\alpha |s_n|^2 < \infty$ and thus $\sum |\mu_\alpha s_n|^2 < \infty$ and conclude $\sum |s_n - \mu_\alpha s_n|^2 < \infty$ a.e. on Ω' . In order to prove the converse we use the Rademacher functions ϕ_n on [0, 1) and successively obtain convergence of $\sum \phi_n(t)(s_n - \mu_\alpha s_n)$ a.e. on Ω' and—by Theorem 1—convergence of $\sum \phi_n(t)\mu_\alpha s_n$ for L-almost all $t \in [0, 1)$, then $\sum |\mu_\alpha s_n|^2 < \infty$, and finally $\sum |s_n|^2 < \infty$ a.e. on Ω' . \square

Remark 1 (a) is proved analogously to the first part of the proof of Theorem 2. Remark 1 (b) is proved by using Theorem 2 (and—as to the $\alpha \in (0, 1)$ —its proof).

PROOF OF THEOREM 3. We only remark that—according to a theorem of Carleson [3]—for an $\omega \in \Omega$ from $\sum |r_n(\omega) - \mu_\alpha r_n|^2 < \infty$ the convergence of $\sum (r_n(\omega) - \mu_\alpha r_n) e^{in\varphi}$ for L-almost all $\varphi \in [0, 2\pi)$ follows, and that all the other conclusions can be made by Theorem 2, Remark 1 (b), and the Fubini theorem.

As to Remark 2 it suffices to prove the statements which relate to Theorem 1 and

the parenthesis of Theorem 2 because the other proofs do not alter. As in the proof of Theorem 1 resp. as in [2] page 1498-1499, we make a reduction to the case $v_n = 1$, $r_n = x_n$ $(n \ge 1)$, $f^* \ge y^*$. Without loss of generality we may assume $\{f_n, \mathcal{A}_n\}$ as a nonnegative martingale (compare [5] page 2143) and all the present numbers and functions as real ones. Thus we have come to an assertion reducible to Theorem 1 (with $v_n = 1$, $r_n = x_n$ $(n \ge 1)$, $Ey^* < \infty$) by a stopping time argument like that in Davis' [5] proof of his Theorem 2 resp. we have come to this theorem itself.

REFERENCES

- [1] ARNOLD, LUDWIG (1967). Zur Konvergenz und Nichtfortsetzbarkeit zufälliger Potenzreihen. Trans. Fourth Prague Conf. Information Theory, Statist. Decision Functions, Random Processes 1965. Czechoslovak Academy, Prague. 223–234.
- [2] BURKHOLDER, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
- [3] CARLESON, LENNART (1966). On convergence and growth of partial sums of Fourier series. *Acta Math.* 116 135–157.
- [4] CHOW, Y. S. (1966). Some convergence theorems for independent random variables. Ann. Math. Statist. 37 1482–1493.
- [5] DAVIS, BURGESS (1968). Comparison tests for the convergence of martingales. Ann. Math. Statist. 39 2141–2144.
- [6] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [7] KNOPP, KONRAD (1947). Theorie und Anwendung der unendlichen Reihen (4.Aufl.). Springer, Berlin and Heidelberg.
- [8] Loève, Michel (1963). Probability Theory (3rd ed.). Van Nostrand, Princeton.
- [9] WALK, HARRO (1967). Symmetrisierte und zentrierte Folgen von Zufallsvariablen. Math. Z. 102 44–45.
- [10] Walk, Harro (1968). Über das Randverhalten zufälliger Potenzreihen. J. Reine Angew. Math. 230 66–103.
- [11] WALK, HARRO (1969). Wachtumsverhalten zufälliger Potenzreihen. Z. Wahrscheinlichkeitstheorie verw. Geb. 12 293–306.