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CONVERGENCE PROPERTIES OF MARTINGALE TRANSFORMS

By HARRO WALK

University of Stuttgart

1. Introduction. This note relates to papers of D. L. Burkholder [2], Y. S.
Chow [4], B. Davis [5] and concerns the convergence behavior of martingales and,
more generally, of martingale transforms. At first a generalization of Chow’s
convergence theorem ( [4], Theorem 10) for sums of means of independent random
variables is obtained by a modification of his proof. To three equivalent conver-
gence assertions on martingale transforms (see Burkholder [2], Theorem 4;
compare J. L. Doob [6] page 320, (iv)) this result yields two other equivalent
assertions, one of them concerning the notion of essential convergence (compare
[9] 5). This notion is also treated in the last theorem, the second part of which
may be regarded as a statement on random power series (compare [1] (L. Arnold)
page 229; [10] 4, 5; [9]1 5; [11] 3).

Throughout the note we use the following definitions and notations in which
all numbers and functions are real or complex. Let {D -1 ¥, n = 1} be a martingale
on a probability space (Q, o, P). According to Burkholder [2] we say that
{Yr_y s} is a transform of {Y k- yi} if Sy = VY, Where v, is an o, -measur-
able function, m =1, and &/, < &/, < -+ are o-fields such that Ork=1Vk> L
n=1} is a martingale. Let {b,} be a sequence of numbers and X, = y,+b,,
Fp=S,+b,=0,y,+b,;if E |v,, y,,| is finite, then Er, = b, (n = 2). A series Y g, of
o/-measurable functions is said to be essentially convergent (essentially divergent)
on Q'€ o, if there exists a number sequence {c,} with convergence of Y (gu—cn)
a.e. on Q' (if Y(g,—c,) is divergent a.e. on Q' for every choice of the number
sequence {c,}) (compare [8] page 250). For any sequence {h,} of functions on Q
let h* be defined by A*(w) = sup, |h,,(w)|, weQ. The a-quantile (0 < a < 1) of an
s/-measurable function % is denoted by u,h (= p,h'+iu,h"" for a complex
h="H+ih").

2. Theorems. The following theorems obviously yield convergence assertions on
martingales themselves (v, = 1 for all # and thus s, = y,, r, = X,, Er, = Ex, = b,).

THEOREM 1. Suppose Ey* < 0. P[Zr,, convergent; v* < o] > 0 implies con-
vergence of Yb,. Plsup,|Yr-qr| < 00; v* < 0] > 0 implies sup, [Yro 18y < 05
furthermore Y s, converges a.e. on the set where sup, |Zﬁ= 1 rk| < 00, v* < 0.

THEOREM 2. Let Q' € o, o a real number with 0 < a < P(Q'), v* < 00 a.e. on O,
and Ey* < . With the essential convergence of Y, (or Yr,) on Q' there are
equivalent the convergence of ) s, a.e. on Q'—therefore (according to [2]) the
validity of sup,|Ys-15] < © a.. on Q' and Ylsa> < 00 a.e. on Q, too—and the
convergence of Y |s,— o a|* (0 Y|ru— Ha r?) ae.on Q.
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REMARK 1. (a) Into the list of equivalent assertions in Theorem 2 the ‘“‘essential
boundedness” of the partial sums of )s, in ', i.e. the existence of a number
sequence {c,} with sup, |Z§:= I(S,,—ck)| < oo a.e. on ', can be taken up.

(b) Theorem 2 remains valid, if everywhere ‘“‘convergence,” “<o0,” and
““essential convergence” are replaced by “(for every ae (0, 1) existing) divergence”
resp. ““=o00" resp. “‘essential divergence.”

THEOREM 3. () Let Q'€ o/, v* < o0 a.e. on Q', and Ey* < o0. If Y r, is essentially
convergent on Q', then also for every bounded number sequence {d,} the series
Yd,r, is essentially convergent on Q.

(b) Let v* < 0 a.e., Ey* < o0. There exists a set Q'e o, determined up to a set
of P-measure zero, such that ) r, e™ is essentially convergent on Q' for all ¢ € [0, 2r)
and essentially divergent on Q-Q' for all ¢e(0,2r). At this Y s,(®) e™ and
Y (r(@)—p,r,) €™ converge for P-almost all weQ', L-almost all ¢€[0,2n) (if
0 <a < P(Q")) and diverge for P-almost all weQ-Q', L-almost all p€|0, 2r) (if
0<a<PQ-Q)).

REMARK 2. In Theorem 1—Theorem 3 and Remark 1 the supposition Ey* < oo
may be replaced by the weaker supposition that there exists an L' bounded
martingale {f,, &,,n=1} on (Q, &, P) with f* > y* (compare Davis [5],
Theorem 2).

3. Proofs. For the proof of Theorem 1 the following lemmas will be needed.
By an indirect proof—Ilike that of [9], Theorem 3b with footnote—we obtain

LemMMA 1. Let t,,t,, - be real nonnegative random variables on (Q, o/, P)
and0 < a < q =< 1. Then Plsup, t, < ] = q implies sup, i, t, < .

LEMMA 2. Let t,,t,, - be random variables € L*(Q, o/, P) and 0 <a < 1.
Then the two assertions Esup,|t,—Et,| < oo and Esup,|t,—p,t,| <o are
equivalent.

PROOF OF LEMMA 2. From Esup, |t,— Et,| < oo the relation P[sup, |t,—Et,| <
o] =1 follows, from this by Lemma 1 the relation sup, ,ua|t,,—Et,, < oo and
thus sup, |u, t,— Et,| < oo ; we get

Esup, |t,— p, t,| £ Esup, |t,— Et,|+sup, |u, t,— Et,| < 0.

As to the converse, from Esup, |t,—g,t,| < oo the relation sup, E|t,—p, 1,| < 0
follows and thus sup, |Ef,—p,1,| < o0 ; we get

E sup,|t,— Et,| < E sup,|t,— p,t,| +sup,|Et,— p,t,| < .

PrOOF OF THEOREM 1. The proof can be reduced—compare Burkholder [2] page
1498-1499—to the case v,=1, r,=x,, Ey* < oo with b,=Ex, (n=1). For
P} (v,y,+b,) convergent; v* < oo] >0 implies the existence of a ¢ >0 with
P} (9, y,+b,) convergent] >0 where 9,(w) = v, (w) if |v,,(a))] < ¢, =0 otherwise
(weQ) and thus {};_,0,y,} is a martingale with Esup, ]ﬁ,, Va| < 00 because of
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Ey* < 005 in a similar way we can treat the second part and—by letting ¢ - co—the
third part of the theorem.

Now we turn to the case v, =1, r, = x, (1 = 1), Ey* < oo. Under the stronger
assumption Ey*? < oo the assertions could be proved by symmetrizing {x,} and
using [6] page 320, (v). In the following we modify a proof which has been given
by Y. S. Chow [4] page 1492, as a conclusion of the convergence of ) Ex, from
P[Y x, convergent] = 1 (!) for a stochastically independent sequence {x,} with
Ex* < oo and which also holds without altering for the case that {3 z_,(x,— Ex,) }
is a martingale.

Suppose P[sup, Y -1 x| < 0] > 0. With 0 < « < P[sup, |x,| < o] and Ey* <
o0 we obtain

Ex* < E sup,|x,— p,%,| + sup,|p,x,|*< oo

using Lemma 1 and Lemma 2. There exists a > 0 with P[sup, |ZZ= 1 xkl <d]>0.
If we put x,’ = g, x, with g,(w) = 1 (weQ) and g,(w) = 1 if sup,,<,—; [Yr= 1 X(®)|
<d, = 0 otherwise (n = 2; weQ), then, because {) i (x,—Ex,) } is a martingale
and P[|Yh_; x| <d+x*]=1, we get

k-1 Ex, Egy| = |EYs-y x| < d+Ex* (n=1).

Thus the sequence {);_, Ex, Eg,} is bounded. From this and the monotoneity
and boundedness of the sequence {1/Eg,} we obtain the boundedness of {D 1 Ex,}
by using a variant of Abel’s criterion which can be proved analogically to [7]
184, °1. Furthermore a.e. on the set where sup,|> %, x,| < oo we thus have
sup,|Y k= 1(x,— Ex,)| < o and therefore by [6] page 320, (iv), convergence of the
series ) (x,— Ex,).

By this result the supposition P[) x, convergent] > 0 implies P[Y x, convergent,
Y (x,— Ex,) convergent] > 0 and therefore the convergence of Y Ex,. []

PrOOF OF THEOREM 2. The last part of Theorem 1 immediately yields that ) s,
converges a.e. on Q' if Y s, is essentially convergent on Q. The converse is trivial.
Now it will be shown that convergence of Z|s,,— HqySi|* a.e. on Q' is a further
equivalent assertion. We start with le,,|2 < o0 a.e. on €', obtain by [9], Theo-
rem 3(a) with footnote, Y p,|s,|*> < oo and thus Y |u,s,|*> < oo and conclude
Z|s,, — y‘,,s,,|2 < o0 a.e. on Q. In order to prove the converse we use the Rademacher
functions ¢, on [0, 1) and successively obtain convergence of Y ¢,(1)(s,— 1y S,)
a.e. on Q' and—by Theorem l1—convergence of Y ¢,(¢)u,s, for L-almost all
te[0, 1), then Y. |u,s,|> < oo, and finally ) |s,|> < o0 a.e. on Q. []

Remark 1(a) is proved analogously to the first part of the proof of Theorem 2.
Remark 1 (b) is proved by using Theorem 2 (and—as to the a€(0, 1)—its proof).

ProOOF OF THEOREM 3. We only remark that—according to a theorem of Carleson
[3}—foran weQ from Y |r,(w)— p, r,|* < oo the convergence of Y (r,(w)— p, 1,) €™
for L-almost all ¢ €[0, 2x) follows, and that all the other conclusions can be made
by Theorem 2, Remark 1 (b), and the Fubini theorem. []

As to Remark 2 it suffices to prove the statements which relate to Theorem 1 and
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the parenthesis of Theorem 2 because the other proofs do not alter. As in the proof
of Theorem 1 resp. as in [2] page 1498-1499, we make a reduction to the case
v,=1, r,=x, n=1), f¥*=y* Without loss of generality we may assume
{f,, «,} as a nonnegative martingale (compare [5] page 2143) and all the present
numbers and functions as real ones. Thus we have come to an assertion reducible
to Theorem 1 (withv, =1, r, = x, (n = 1), Ey* < o0) by a stopping time argument
like that in Davis’ [5] proof of his Theorem 2 resp. we have come to this theorem
itself.
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