## A NOTE ON RANDOM POLYNOMIALS

By RICHARD G. WOOD

1. Introduction. We consider the real polynomial

(1) 
$$P_0(z) = z^n - a_{0,n-1} z^{n-1} + \dots + (-1)^n a_{0,0},$$

(2) 
$$a_{0,n-k} = \sum_{i_1 < \cdots i_k} z_{i_1} z_{i_2} \cdots z_{i_k}, \qquad 1 \le k \le n,$$

the  $z_i$  being the zeros of  $P_0$ . Subsequently we will have coefficients  $a_{i,j}$  and we will write

(3) 
$$A_i = (a_{i,0}, a_{i,1}, \cdots, a_{i,r}).$$

The dimension r+1 of the vector  $A_i$  will be known in each case from the context. The case where  $A_0$  is a real random vector is of some interest in statistical communication theory. (1) is called minimum phase if all its zeros are in |z| < 1. One would like to know the probability that (1) is minimum phase. We will indicate a constructive way of writing down this probability when the joint density  $f(A_0)$  of the coefficients is known. It will be obvious that we are not restricted to the unit disc but could in the same manner compute the probability that all the zeros lie in any given set of reasonable configuration. It will be equally clear that the complications severely limit practical applications.

**2. Probability of minimum phase.** We proceed now with the computation of the probability that (1) is minimum phase. We consider only the case n = 2m + 1, the other case being similar. First, we prove a lemma of some independent interest. Throughout the lemma and its proof only we use the notation

$$P_r(z) = z^r - a_{r,r-1} z^{r-1} + \cdots + (-1)^r a_{r,0}$$

LEMMA. Suppose

$$(i) P_{m+n}(z) = P_m(z)P_n(z).$$

Equating coefficients of like powers of z in (i) we may regard the equations expressing the  $a_{m+n,j}$ 's in terms of the  $a_{m,j}$ 's and the  $a_{n,j}$ 's as a transformation of variables from the former to the latter. The Jacobian of this transformation is

(ii) 
$$J = J(A_m, A_n) = |P_n(z_1)P_n(z_2)\cdots P_n(z_m)|$$
$$= |P_m(z_1')P_m(z_2')\cdots P_m(z_n')|,$$

where  $z_1, \dots, z_m$  are the zeros of  $P_m$  and  $z_1', \dots, z_n'$  are the zeros of  $P_n$ .

Proof. The last equality in (ii) is trivial.

The expansion of the determinant of the Jacobian is too hard. We make a

Received December 16, 1968.

sequence of transformations equal to the desired transformation and multiply their Jacobians together. Define polynomials by the formulae

(L.1) 
$$P_{m+n}(z) = (z - z_m)P_{m+n-1}(z),$$

(L.2) 
$$P_{m+n-1}(z) = (z - z_{m-1})P_{m+n-2}(z),$$

(L.m) 
$$P_{n+1}(z) = (z-z_1)P_n(z).$$

In (L.1) we equate like powers of z and get a transformation from  $A_{m+n}$  to  $z_m$  and  $A_{m+n-1}$ . The Jacobian of this transformation is easily computed directly and is  $|P_{m+n-1}(z_m)|$ . In (L.2) in a similar way we get a transformation from  $A_{m+n-1}$ ,  $z_m$  to  $A_{m+n-2}$ ,  $z_{m-1}$ ,  $z_m$  with  $z_m$  going into  $z_m$ . The Jacobian is  $|P_{m+n-2}(z_{m-1})|$ . In (L.3)  $A_{m+n-2}$ ,  $z_{m-1}$ ,  $z_m$  go into  $A_{m+n-3}$ ,  $z_{m-2}$ ,  $z_{m-1}$ ,  $z_m$ , with  $z_{m-1}$  going into  $z_{m-1}$  and  $z_m$  going into  $z_m$ . The Jacobian is  $|P_{m+n-3}(z_{m-2})|$ . Finally, in (L.m)  $A_{n+1}$ ,  $z_m$ ,  $\cdots$ ,  $z_2$  go into  $A_n$ ,  $z_m$ ,  $\cdots$ ,  $z_1$  with  $z_j$  going into  $z_j$ ,  $2 \le j \le m$ . The Jacobian is  $|P_n(z_1)|$ .

Finally, we must transform from  $A_n$ ,  $z_m$ ,  $\cdots$ ,  $z_1$  to  $A_n$ ,  $A_m$  with  $A_n$  going under the identity transformation and  $A_m$  going under the elementary symmetric functions in the  $z_i$ . This Jacobian is well known and is

$$\left(\prod_{i< j} \left| z_i - z_j \right| \right)^{-1} = F.$$

So the Jacobian of the transformation of the lemma is

$$F \prod_{i=1}^{m} |P_{m+n-i}(z_{m+1-i})| = J.$$

But by definition, using (L.1) through (L.m),

$$P_{m+n-i}(z_{m+1-i}) = P_n(z_{m+1-i}) \prod_{r=i}^{m-1} (z_{m+1-i} - z_{m-r}).$$

Putting this back into J and canceling whatever we can prove the lemma. In (1) n = 2m + 1 so we can write

(4) 
$$P_0(z) = z^{2m+1} - a_{0,2m} z^{2m} + \dots - a_{0,0} = (z-x) P_1(z),$$

$$P_1(z) = z^{2m} - a_{1,2m-1} z^{2m-1} + \dots + a_{1,0},$$

x and the  $a_{1,j}$ 's being real.  $P_0$  is minimum phase if and only if |x| < 1 and  $P_1$  is minimum phase. From (4)

(5) 
$$a_{0,0} = xa_{1,0}, a_{0,j} = a_{1,j-1} + xa_{1,j}, 1 \le j \le 2m-1,$$
  
 $a_{0,2m} = a_{1,2m-1} + x.$ 

According to the lemma the transformation (5) has the Jacobian

(6) 
$$J_1(A_1, x) = \left| x^{2m} - a_{1, 2m-1} x^{2m-1} + \dots + a_{1, 0} \right|.$$

This being so, the probability we are calculating may be written

(7) 
$$\int_{K(0)} f(A_0) da_{0,0} da_{0,1} \cdots da_{0,n-1}$$

$$= \int_{-1}^{+1} dx \int_{K(1)} f(A_0) J_1(A_1, x) da_{1,0} \cdots da_{1,2m-1}.$$

 $A_0$  in the right-hand side of (7) must be replaced by  $A_1$  and x through (5). K(0) is the set in  $A_0$ -space wherein  $P_0$  is minimum phase and K(1) is the set in  $A_1$ -space wherein  $P_1$  is minimum phase.

 $P_1$  has the real factorization

(8) 
$$P_1(z) = q_2(z)P_2(z), \qquad q_2(z) = z^2 - b_{2,1}z + b_{2,0},$$
$$P_2(z) = z^{2m-2} - a_{2,2m-3}z^{2m-3} + \dots + a_{2,0}.$$

From (8)

$$a_{1,0} = b_{2,0} a_{2,0}, a_{1,1} = b_{2,0} a_{2,1} + b_{2,1} a_{2,0},$$

$$a_{1,j} = a_{2,j-2} + b_{2,1} a_{2,j-1} + b_{2,0} a_{2,j}, 2 \le j \le 2m-3$$

$$a_{1,2m-2} = b_{2,0} + b_{2,1} a_{2,2m-3} + a_{2,2m-4},$$

$$a_{1,2m-1} = b_{2,1} + a_{2,2m-3}.$$

The transformation has the Jacobian (the lemma)

(10) 
$$J_2(A_2, B_2) = |P_2(u)P_2(v)|$$

wherein  $B_2 = (b_{2,0}, b_{2,1})$  and u and v are the zeros of  $q_2$ .

 $P_1$  is minimum phase if and only if  $q_2$  and  $P_2$  are. It is easy to see that  $q_2$  is minimum phase if and only if  $B_2$  is in the triangle with vertices  $B_2 = (-1, 0)$ , (1, 2), (1, -2). Consequently, (7) may be written

$$(11) \quad \int_{-1}^{1} dx \int_{-1}^{1} db_{2,0} \int_{-b_{2,0}-1}^{b_{2,0}+1} db_{2,1} \int_{K(2)} f(A_0) J_1(A_1, x) J_2(A_2, B_2) da_{2,0} \cdots da_{2,2m-3}.$$

K(2) is the set in  $A_2$ -space on which  $P_2$  is minimum phase.

It is clear that we may deal with  $P_2$  just as we dealt with  $P_1$  in order to reduce the integral over K(2) to an integral over  $B_3$  and K(3). Because  $P_1$  is of even degree this process will soon terminate and we will be left with an iterated integral to be evaluated by conventional means.

We have not tried to evaluate this integral in any useful cases and do not know whether this procedure has any advantages over a sampling scheme for determining the desired probability.