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CHARACTERISTIC FUNCTIONS, MOMENTS, AND THE
CENTRAL LIMIT THEOREM

By B. M. BRowN
La Trobe University

0. Summary. In [2], Lindeberg conditions of order v = 2 are defined and shown
to be NSC for convergence of vth absolute moments in the Central Limit Theorem
when v = 2k, k = 2,3, -+ -. Section 4 contains the extension of that result to the case
of all v > 2, the proof depending on some of the theorems, given in Section 2,
relating the existence of moments to the integrability of the characteristic function
near the origin. The proofs of the results of Section 2 are deferred to Section 3 and
depend, in turn, on known results listed in Section 1.

Throughout, we use the notations Rlx, Imx for the real, imaginary (respectively)
parts of x, and [x] to mean the largest integer strictly less than x.

1. Introduction. There are various known forms of the limited expansion in
powers of ¢, of the ch.f. ¢(¢) of a rv X. One expression is (Pitman [4] Theorem 4)

EX’(zt)’ (zt)"

1 p(t) =1+ Z {EX+"¢ () +(=)"EX™"¢,(1)}

where E|X|" < oo for some positive integer n and ¢,, ¢, are ch.f’s of positive rv’s

related to X*, X~ ; while another is (Loéve [3] page 199)

EX’( )’

@ o) =1+ Z +a(1),

where v>0, E|X|" < 00, m=[v], and «,(r) = C,0()E|X|'|¢|*, C, being a real

constant depending only on v, and 6, a complex-valued function with |0,| < 1, all .
Integral-ordered moments of X are displayed in these expansions, but it seems

less well-known that absolute moments of non-integral orders are also available

from ¢(¢), via a lemma of von Bahr ([6] Lemma 4) which, in slightly more generality,

is

LEMMA 1.
3) E|X|" RIK, = [ Ro, ()~ C+Vdt;
if v is not an odd integer and E|X|* < oo, then
) ImK(E(X )Y —E(X™)) = [© Smo, ()i~ C*Ddr;
if X = 0a.e, then
%) » K,EX" = [§ o ()t~ Dd;
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where a,(t) = Ef,(tX),
(6) Tlu) = =37 o (iu)'fj!,
and where K, = n[2I°(v+1)]~*{ = (sin4vr) " ! +i(cos Jvm)~1}.

Proor. Von Bahr’s method ([6]) is first used to establish (5), noting that the real
and imaginary parts of f, (), and hence of «,(f), are of constant sign. Equations
(3) and (4) follow by addition and subtraction of versions of (5) for X *, X ~.

We note that

(i) if E|X|™ < o0, () is given by (2);

(ii) (3) and (5) hold even if a real or imaginary part is infinite, because the
integrands have constant signs; .

(iii) in particular (3) and the real part of (5) are infiite if v is an even integer,
while the imaginary part of (5) is infinite if v is an odd integer.

Information relating the existence of E |X ]” to the integrability of the end-terms
of the limited expansions is now available by using equations (1) to (6). The results
obtained are related to previous comparisons of asymptotic behavior of the
distribution function F(x) with the local behavior of ¢(¢), given by Pitman ([4],
[5], using functions of regular growth) and Boas ([1], using Lipschitz behavior).

2. Results on local integrability of characteristic functions.

THEOREM 1. (i) v is not an even integer and E|X|* < oo iff
6 Rla, (N C*Vdt < 0 forsome &> 0.

(ii) If X = 0 a.e., then in addition to (i), v is not an odd integer and EX" < oo iff
6 Ima, () “*Vdt <00 forsome &> 0.

THEOREM 2. Let E|X|* < co. Then, if v is not an even integer, Rla,(t) = o([t]") as
t—0. Ifalso X Z 0 a.e., then

(1) = o([t]") for non-integralv,
Rla, (1) = o(]tl“) for odd integers v, and
JImo,(t) = o(|t|") for even integersv;  ast—O.

THEOREM 3. Let X =0 a.e., EX" < 0 for some n=1,2,-+, and let X, be a rv
with ch.f. ¢,(t), the ch.f. associated with ¢(t), appearing as ¢, in (1). For all 6 > 0,
EX"*? < o0 iff EX,’ < o0, and

EX"*® = EX,?- EX"[nB(n,1+9).

REMARKS. If X is not >0 a.e., there is a more complicated but similar version
of the theorem. .

Strictly speaking, X, is not a new rv, but the same rv as X on a new probability
space, i.e., if X'is a rv on (Q, &#, P), then by X, we mean the same real function X,
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on (Q, #, P,), where the relationship between the distribution functions of P
and P, is constructed by Pitman [4].

THEOREM 4. Let {X,} be a sequence of rv’s with ch.f.’s

b)) =1+ i (it);anJM,,(t),

Jj=1

where E|X,|' < 00, n=1,2,+*+, and v is not an even integer. {|X,"’,n=1,2,-} is
uniformly integrable (u.i.) iff

(7 o Rla, ()t~ C*Vdt>,,,0 uniformlyinn.

If X,20ae,n=1,2,:, then in (T), Rla,(t) can be replaced by a,(t) for non-
integral v, or by Ima,(t) for even integers v.
3. Proofs.

PRrOOF of THEOREM 1. The theorem comes directly from Lemma 1 by noting that
the convergence of the integrals involved depends only on the integrals over a
neighborhood of zero, since a,,(t) = E(f,,(tX)), and because of (6).

PrOOF of THEOREM 2. Let 4 = [v/2]and X = 0 a.e., with df F(x). ForA=1,2,""",
it is easily shown from (6) that

®) 0 < (=) RIS, (w) S u?rt2)(2A+2)!, and
© 0< (=) 1R, (u) < uPH(2D)), forallu = 0.
Let K2 =(24+1)(2A+2), x"dF(x)=dG(x), with [§dG(x)=EX"® < co. Then
(=) Rla, (1) = (=) ERI,(1X))
< o<y XD QA+ 2 fixez kg (XO?4(20)!

Al t2}.+2—v K/t 2142 22 Y
< — X227V AG(x)+ K™Y dG(x)} .
_(21)!{ X2 fo (%) L/t ( )}

Both terms within the brackets are o(1) as t — 0, the first by the version of
Kronecker’s lemma for integrals, when v is not an even integer. Therefore

(10) Ria, () =o|f]") as t-0 for A=1,2",

and v not an even integer. For A = 0, (8) holds but (9) is replaced by 0 = — RIf,(x)
< 2; the proof that (10) holds for 4 = 0 follows in identical fashion.

It can be shown similarly that Ima,(t) = o(]tl“) as t—0 if v is not an odd
integer. The remainder of the theorem follows by simple computations with
versions of the above X * and X ™.

ProOF OF THEOREM 3. With v =n+4, we use (5) (choosing Rl or Im parts
where appropriate) and apply (2) for the ch.f. ¢,(2).
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Proor oF THEOREM 4. Dropping the subscript #,
0 > (=) & Rla, (e~ D dt
an = (=" [§ E(RU,(1X) )1~ O+ D dt
= E|X|"A(c|X|) (using Fubini’s theorem)
where A(x) = (=)**' [§ RIS, (wu~ "D du.

Thus A(x) is continuous and increasing with 4(0) = 0, A(o0) = (=)**'K, (see
von Bahr [6] Lemma 4, or Pitman [5], page 427). Therefore

(12) E(|X["AGE[X])) 2 fyx 20 [ X" ACep).
For {X,}, let E(|X,|" A(¢|X,|)) —,- 0 0 uniformly in n.
From (12),

Stixatzn | Xal” S (Aey)) T 'E(|X,’A(¢|X,])), —0 as &—0, uniformlyin n,

by letting ey = constant.
Therefore {|X,|"} is u.i. Conversely, let {|X,|*} be u.i. and choose y large enough

for
j.[lx,.lgy]IXniv <9, alln
Then

EIXnIVA(8 IX,.[) = Jixa < Aey) anlv+(_)l+1va[IXnI%y] Ianv
é yvA(sy)+(_)A+ lKv'aa

which is small, for small ¢, uniformly in n.
The proofs of the case X= 0 a.e. are similar, with the usual modifications.

4. Convergence of moments in the Central Limit Theorem. Consider a sequence of
independent rv’s {X,} with EX, =0, S,=X,+ - +X,, s, =ES,>, n=1,2, "
L,, a Lindeberg condition of order v = 2 is said to hold if 5, <0, n=1,2,",
and

(13) Y fixzem [ X5 = 0(s,") as n—oco, forall &>0.

L, is the classical Lindeberg condition. It was shown in [2] that for v > 2, (13) is
equivalent to

(14) YryE|X|"=o0(s) as n—o0;

that L,=L, for 2<b £ a; and that for v=2k, k=2,3, -+, L, is NSC for the
Central Limit Theorem and the convergence of E [S,,/s,,]v to the vth absolute
moment of a N(0, 1) distribution. This result is now extended from even integral
values of vto all v > 2.

THEOREM 5. For all v > 2, L, is NSC for the Central Limit Theorem and
E|Sy/su]” 2o 1y = [ 20 @) H{|x|" e+ dx}.

To prove the theorem we first need an equivalence for L, given by
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LEMMA 2. Let U(x) be any continuous positive bounded increasing function on
0 < x < oo with U(x0) = K, and v > 2. Then L, holds iff L, holds and

(15) V(n,e) =s,"" Y= E(X,|'U(e|X;|/5.)) = c00
uniformlyinn=1,2, .
PrOOF. If L, holds, then L, holds and
V(n,e) S Ks, "Y' E|X;|"<é for nzn(d), from (14).

For each n, V(n, )]0 as ¢ »0. Choose & < &(d) so that V(n, gy<dforn=1,2,
-++n(8)— 1. Therefore V(n,¢) <d fore < ed)andalln=1,2,-, proving uniform
convergence. Conversely, if (15) and L, hold, then

Ks, "Y1 E|X I = 8,7 X< [ X[ {UG|X 5,) + (K= UG |X,/s0))}
< 65,7 Vit K Juix <o X5+ K Jrbsn it <asnyaa [ Xl
+ fi1x,1 zasnrer | X[}
where ¢ < &(8) and U(a) = K—a, with a, « fixed;
< 6+ K 5,7 (bs,) "2 Y= EX 2+ Ks, 7 (@]e) 725, 72 Xl fuixrznen XS
+as, "Y1 E X
Therefore
(K—a)s, " Y- E| X" S 0+ Kb* "2+ K(afe) ™%, % =1 Juix,1zbe1 X7
which is made arbitrarily small‘by taking &, then b small, and by L,.

PROOF of THEOREM 5. The case v =2k, k = 2, 3, -+ is covered by Theorem 1.1
of [2], so we assume that v is not an even integer. Let A = [v/2]. We can assume that
L,, holds, since either L, holds, implying L,,, or in the converse, the CLT holds
and E|S,/s,|* — m,, whence E(S,/s,)** — m,,,implying L,, by Theorem 1.1 of [2]. We
assume further that L, holds (m = [v]); there is no extra assumption if m = 24,
but if m = 2A+1, we must first follow the whole proof through for the case
v =2A+1, m = 24, establishing the theorem for odd integers, then return to the
present position, able to assume, as reasoned above, that L, holds. Recalling that
L, is NSC for the Central Limit Theorem, L,, and E|S,,/s,,|” —ps 0 My<> Ly, and
|S,/s,|" is uniformly integrable (well known) <>L,, and W(n, ¢) —,.00 uniformly
in n, by Theorem 4 (see (11)) where

- W(n,e) = E(|S,/s,"A(e[S,|/5.))-

But L, <> L,, and ¥(n, &) =, 0 uniformly in », by Lemma 2. Therefore, to prove
the theorem it is sufficient to show the equivalence of the uniform convergence to 0,
as ¢ 0, of V(n, &) and W(n, ¢), since we already assume L,, which implies L,.
Recall, from the proof of Theorem 4, that

(16) W(n,e) = (=)' JeRIA (D F D dt,
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where the ch.f. of S, /s, is

@i t)'E(Sn/Sn)'

(7 fl®) =1+ Z + A0 (cf. (2))

= n7=1 d)j(t/sn)

n m—1 -n\r m
a9 = [y CEL e, s+ (X, )|
(cf. (1))
a9 = [1{i+ § O o] ‘ (ef. @)

and where ¢; is the ch.f. of X;. By inspecting (17), (18) and (19) we can write
(20) RIAL) = Y-y RUO,(1/s,) + B,(0),

where B,(¢) is the sum of those terms in the product (18) which are (244 2)th or
higher even powers of (it). A bound for B,(¢) is obtainable by noting that

(i) #2**2*%2J can be replaced by t2**2 since 0 <r<e< 1,
(ii) such terms are products of at least two non-unity terms in (18); we get

s 25 5501

=1 r=2 n j=1r= 2s
2At2/nom
21 <
=R
= 1242 1 o(1))?, as n -0

since Ly, - - L,, are assumed to hold. Applying (21) in (20), then in turn in (16),
we obtain

W(n,e) = (=)**1s,™" Z;=lﬁ>/sn 91191-(}))‘y_("+1)dy+0(82“2"’)
= Sn_"Z?:l E(IXJ|VA(8 Ile/sn))+0(821+2—v),

using (11) (in the proof of Theorem 4), = V(n, £)+ O(¢**27"). This demonstrates
the required equivalence of uniform convergences of W and V as ¢—0; and
completes the proof.
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