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OPTIMALLY TIMING THE SALE OF STOCK WHEN THE
TAX MAN IS BREATHING DOWN YOUR NECK!

By ARTHUR ALBERT

Arcon Corporation

1. Introduction. It is January 2. You have just finished filling out your income
tax return on last year’s earnings. With a shudder, you find that the year was a
good one; so good in fact that your withholdings are not adequate to pay your
tax bill. During the course of the year, you prudently invested a portion of your
wealth in common stock, at the time intending a long-term investment. Now,
your stock takes on a speculative character: Some time between now and April 15
the stock will have to be sold in order to pay your.debt to the Government.
Naturally, you want to sell when the stock is at its high point. Lacking a crystal
ball, you seek some rationale for picking the propitious moment.

Intuitively, it seems clear that the stock should be held if it exhibits an upward
trend and there is a long time to go before the April 15 deadline. Conversely, as
the deadline approaches, a downward trend should motivate immediate sale. The
other cases are not so clear-cut and we hope to cast light on them in what follows.

2. A Brownian motion model for stock prices. Assume that the decision whether
to sell or not is made at certain discrete instants which are multiples of a constant o.
(0 might be one trading day on the NYSE or a fraction thereof.) Denote the price
of the stock at the nth instant by p, and assume that

2.1 Put 1= Pn= X1 +0%0, 7,14 n=-,1,01,2,-"
where

(2.2) Xp41—X, = 0%0, ¢, and
(2.3) {€;; —0o<n<oo} and {n,; —o0 <n< w0}

are independent sequences of i.i.d., N(0, 1) rv’s.

If the x,’s were all zero, the model would have the prices behave as samples
from a driftless Wiener process with variance ¢,? per unit time.

The model which we have presented here, would have prices behave like
samples from a “Wiener process” with a time varying drift (x,) which is itself a
zero mean Wiener process. If o, is small compared to ¢,, the drift will change
slowly compared to the gross price changes. It is assumed that ¢, and o, are known.
The decision problem can be thus stated:

At times né (n=1, 2, ) you must decide whether or not to sell enough of
your stock to pay your taxes (selling in dribs and drabs is not allowed). When
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you sell, you receive an immediate payoff, p,, the then current price of the stock.
If you don’t sell, you will be faced with the same decision at time (n+1)d. In any
event, you must sell by time Md (April 15) or else mandatory liquidation takes
place at that time. You wish to sell at such a time as to maximize the (expected)
value of py (N is the selling instant).

There is some precedence for such a model for stock price fluctuations (c.f. [6])
‘although many of the contributors to [6] take the option of postulating that the
logarithms of prices, instead of the prices themselves, behave like a driftless Wiener
process. We feel that the addition of the drift equation is a reasonable generaliza-
tion to either model. If there is no drift, large sample estimates for ¢, will tend to
be close to zero and our model will reduce to the “classical ones”. If you are
more inclined toward the second model mentioned above (in which the logarithm
of prices behaves like a sample from a Wiener process with slowly varying drift),
the methods and results of the sequel all remain valid, provided (2.1)~(2.3) is
assumed and that p, is interpreted as the logarithm of the stock price at time #é.
In this case, maximizing &py amounts to maximizing utility, if utility is assumed
to be logarithmic in money. However, it is much more convenient, from the
discursive point of view, to stick to the original interpretation (p, = stock price
at time nd). With this understood, we proceed with the analysis:

At each instant, Jn, the decision to sell or not is made on the basis of the stock
price history {p;; —oo <j <n}. The posterior distribution of (p,, x,), given these
prices, is a sufficient statistic for the present problem, and this distribution depends
on the data only through p, and x,,,, the conditional expectation of x,, given
these data up through time »d. In [2], Bather proved the following relevant facts
about x, |,

LemMmA 2.1. (a) Xn+1|n+1 = qxn|n+(1 _q)(.pn+1_pn)

0,2 20,2 40, 2\*
where =2 d1+F (142 .
a ZGPZ{ 0.’ ( o’
(b) The conditional distribution of X, | n+1—Xn | » given the data up till time nd,
is N(0, éa.2).

Part (a) shows how to compute the drift estimate in a convenient recursive
fashion (see also Kalman [7]). The estimate is an exponentially weighted sum of
price differences, as one might expect. Part (b) will be used in the dynamic pro-
gramming recursion which will be developed in the next section. For the sake
of notational simplicity, we will assume that our unit of money has been chosen
so that 0> = 1.

3. The relevant functional equation. A policy pursued from time né onward is
optimal if it maximizes the conditional expectation (given the data up through
time nd) of the difference between the price of the stock at the time of sale and the
then current price (call it p). At first, it would appear that the decision to sell or
not should depend upon the current price, p, the drift estimate, x, and the length of
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time to go before mandatory liquidation, ¢. Using the familiar optimality principle
of dynamic programming, it is straightforward to show by induction on ¢, that
the optimal policy can be chosen independent of p. This is so because the probabi-
listic behavior of future increases in price, given the data at hand, will depend
only on the current drift estimate, not the price. Thus, we are led to define

3.1 gs(x, t) = The expected difference between the current price and
the price at the time of sale under an optimal policy,
if the current drift estimate is x, if forced liquidation
will occur ¢ units of time hence (¢ a multiple of §) and
selling is allowed at times which are multiples of .

The optimality principle leads us to the following functional equation for g,:
(3.2 g5(x, 1) = max (0, X0+ Egy(x+ ¢, t—0))
(3.3) 95(x,0) =0.

The expectation in (3.2) is taken with respect to the N(0, 1) rv, £. Equation (3.2)
says that the optimal policy chooses the better of two alternatives. Sell now or
wait one period and proceed optimally thereafter. The former action results in an
increase of zero. The latter has an immediate expected increase of x5 when the
drift estimate is x. Thereafter, there will be —§ units of time to go and the drift
estimate will change by an amount §*¢ where & is N(0, 1) by virtue of Lemma 2.1(b).
If we proceed optimally thereafter, the additional expected increase will be

Ega(x+5%E, 1—8) = (2m) ¥ [2 ga(x+%C, 1—8) e 3 dE.

(3.3) follows from the fact that liquidation is mandatory when ¢ = 0. A routine
induction argument can be used to establish each part of

THEOREM 3.1. If t is a multiple of 6, then

(a) g5(, t) is a nonnegative, nondecreasing convex function.

(b) gs(x, 1) £ gs(x, t+06) with strict inequality holding whenever the right side is
positive.

(c) There is a unique scalar, ast) such that gs(-, t) vanishes at ay(t), is zero to the
left and is strictly increasing to the right of as(t).

(d) a(t+6) < ax(r) < ay(6) = 0.

(e) gs(x, t) = xt+ Hy(x, t) where Hy(x, t) is convex in x, strictly decreasing and
approaches zero as x — + oo.

() gs(x, 1) = 6%g(x6%, 1/6) and a,(t) = 6*a,(1/5).

The only part of the theorem which needs any kind of hint is part (b). This says
that one is better off as the time to liquidation increases, provided the drift estimate
stays the same. For, if one considers the optimal policy within the restricted class
of those which sell on or before the next to last allowable moment when there are
t+6 units of time to go, the expected price increase for this policy is exactly
gs(x, t). The optimal policy does at least as well and has an expected price increase
of g,(x, t+9).
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Part (c) tells us that the optimal policy compares the current drift estimate to
the threshold a;(¢), which depends on how much time remains till mandatory
liquidation. If x is less than or equal to a;(¢), the expected return under the optimal
policy is zero. This is achieved by selling immediately. If x exceeds a,(t), the ex-
pected price increase is positive. Therefore, it pays to wait a period and then review
our position. Part (d) tells us that the threshold grows more stringent as the time
to mandatory liquidation approaches. Part (e) asserts that the expected price
increase under the optimal policy (conditional on x, the current drift estimate) is
approximately bilinear in x and ¢ if x is large and positive. Part (f) is proved by
induction on (¢/6) and shows that the computatlons for g; and a; need only be
carried out for the case 6 = 1.

The recursion (3.2) can be used in a straightforward way to generate the optimal
selling rule (i.e., thresholds a,(¢) t=1,2, --) and associated expected price
increases, g,(x, t). The computation becomes difficult and lengthy as #/6 grows
large, however. Numerical results are feasible for moderate values of #/5 only.

Computations have been carried out for values of #/§ between 1 and 14. The
corresponding values of a,(¢)/6* are given in Table 1, and plotted in Figure 1.

TABLE 1

t/o 1 2 3 4 5 6 7
as(t)/o* 0 -.30 —.52 -.70 -.86 -1.0 -1.12
t/o 8 9 10 11 12 13 14
as(t)/o* —1.25 —1.35 —1.47 —1.56 ~1.65 —-1.75 —1.83

Because of the computational difficulties which arise when ¢/0 is large, it is of
interest to explore asymptotic approximations to a; and g; for such cases. This
will be done in the next four sections. The main results are that if ¢ is a multiple
of J, then

3.4) Btt < ay(t) < BtE+(5/H)P+0(5/t) as d/t—0,
where
(3.5) f = —.6388332--
ou)—ud(—u)| _ -
(3.6) G(x, t)+5ﬁt*|: )= po(= B)] < gs(x, 1) £ G(x, 1)

where

(3.7) u = x/t*,
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-8+ +
-1.0 1 +

-1.2 +
-l1.4 T
-1.6 1 4+

-1.8 + +

-2.0 L

as(t)]8*
FiG. 1.

(3.8) G(x, 1) = H{u+c[(u* +2)o)— @’ +3u)0(—w)]} if u>p,
=0 otherwise,

(3.9) c=.267147---.

(3.10) o(u) = (2n) fexp—u?/2 and ®(u) = [, @(s)ds.

Thus, for large values of #/5, we see that a,(r) is approximately Bt* and g4(x, t)
is approximately equal to G(x, t). In Figure 2, we plot G(x,?) as a function of x
for various (integral) values of 7. A plot of

Y(u) = [o(w) —u®(—uw)]/[o(B)— P(—H)]

for u < B is given in Figure 3.

We now turn to the business of establishing (3.4) ff. This is accomplished by
viewing the stock sale problem as a discrete time approximation to a certain
continuous time stopping problem whose solution can be obtained in closed
form as the result of solving the heat equation with a free boundary on which
boundary conditions are specified. This technique has been employed in the past
by Chernoff [3], [5], Bather [1], and McKean [8]. (The paper of McKean is actually
a mathematical appendix to a paper by Samuelson [9].)

4. A related continuous time stopping problem. Let {X(s), —t<s< 0} be a
Wiener process with unit variance per unit time (no drift) and consider the stopping
problem with payoff

T X(s)ds



0-Bt+

0-61

TIMING SALE OF STOCK 631

GIX»T) AS A FUNCTION OF X
FOR VARIOUS VALUES OF T

ORIFT ESTIMATE, X
FiG. 2.

Y+ (W) PLOTTED AS A FUNCTION OF U FOR U >@-




632 ARTHUR ALBERT

if stopping occurs at time — 7 < 0. If stopping has not occurred by time s = 0,
the “game” is stopped and a payoff in the amount

{2, X(s)ds

is received. We study this stopping problem because the discrete version of the
present problem is intimately related to the stock sale problem. Specifically,
suppose the problem is modified so that stopping is only allowed at times which
are multiples of § > 0. If the starting time, —¢, is a multiple of §, we can define

G;(x, t) = the expected payoff under the optimal stopping rule, given that
X(—t)y=x.

The usual dynamic programming argument is then applied and we find
(4.1)  Gy(x,) =max(0,&{ [Z1*° X(s) ds+G¢,(X(—t+55, t—9) ] X(-n=x})
with
4.2) Gs(x,0)=0.
Since X(s) is a Wiener process with unit variance per unit time,
E{J2I° X(s)ds| X(—1) = x} = x5 and
E{Gy(X(—140), t—0)| X(—1) = x} = EGy(x+6*¢, t—0)
where & ~ N(0, 1).
Thus (4.1), (4.2) take the form
(4.3) Gy(x, t) = max(0, x6 + G4(x +6*¢, t—5))
4.4 Gs(x,0)=0
which is identical to the recursion (3.2), (3.3) which uniquely determines g; and aj.
Therefore gs(x, t) = G4(x, t) if ¢ is a multiple of 6 and the optimal policies coincide:
“Stop at the first value of ¢ for which X(—1) £ a4(¢)”.
It is reasonable to expect G and the corresponding optimal discrete policy to be
close to the expected payoff and optimal policy in the unrestricted (continuous
time) stopping problem provided an optimal policy exists for the latter problem.

Accordingly, we temporarily assume the existence of such an optimal policy and
define

4.5) G(x, t) = the conditional expected payoff under the optimal
continuous time stopping rule, given that X(—1¢) = x.

(Lest the reader be troubled by an apparent lapse in constructive rigor, we
hasten to point out that the above-mentioned assumption, along with others
which will be stated as needed, will be used to guide us to a plausible candidate
for the title of “Optimal Stopping Rule”. Later on we will properly prove that
said candidate is indeed worthy of the title. So take heart and read on.)
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At any instant s(—¢ < s £ 0), the decision whether or not to continue should
depend only on X(s) and not on any previous values of X, since they exert no
effect on the value of

17T X(u)du.

Therefore, any stopping rule worthy of consideration can be viewed as a partition
of the (x, t) plane into an open continuation region, %, and its complement, Z.
If the process starts with X(—17) = x, we stop as soon as (X(—s), 5) €%. Owing to
the mandatory stopping proviso at s =0,

{(x,5):s=0} =% a priori.

Associated with the continuation region, %, is a stopping time — T(x, t), where
T(x, t) is the first value of 7 <, such that (X(—1), 7)€% if (X(—1),1) = (x, 1).
(Notice that T is bounded below by zero since € = {(x,s):s =0}, and that G
necessarily vanishes on €.)

Following the familiar techniques of Chernoff and Bather ([3], [5], [1]), it is
straightforward to show that the optimal solution (G, %) to the continuous time
stopping problem satisfies the partial differential equation

(4.6) —;g;—f+x = 66_? inside €

with the boundary conditions

4.7 G(x,1)=0,

(4.8) g—xg(x, =0 on the boundary of ¥,

provided that an optimal procedure is assumed to exist and provided the associated
payoff function, G, is assumed to be appropriately smooth.

Our attack will now proceed as follows: In Section 5 we will show that there is
only one possible solution to (4.6)-(4.8) which qualifies as a potential solution
to the continuous time stopping problem. We will exhibit it. In Section 6, we will
prove that this procedure is indeed the optimal stopping rule, using an argument
which is basically due to Chernoff [5]. In Section 7, we will establish the results
described in (3.4)-(3.10), which link th: solution of the original stock market
problem to the solution of the continuous time problem described above.

5. Solution to the free boundary value problem. The continuous time stopping
problem, which we posed in Section 4, can be phrased in the following form:

{X(s), —t £s <0} is a driftless Wiener process with unit variance per unit
time. Choose the stopping time, — T, (or equivalently, the continuation region %)
so that

E{[-T X(s)ds| X(—1) = x}

is maximized, and denote the associated optimal value by G(x, t).
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If X is measured in dollars and ¢ is measured in days, the units of G are
dollars x days. If the units were changed to francs and weeks, the stopping rule
should be exactly the same (once the units are adjusted) and the ratio of expected
payoffs should be in the ratio of dollars x days/francs x weeks.

More generally, let

t*=at, X*&s*) =bX(s*/a) and x* = bx,

and consider the problem of choosing the stopping time, — T'*, so that
E{JZW X (u)du| X*(—1*) = x*}

is maximized. If the maximal value is denoted by G*(x*, t*), it is clear that

(5.1 G*(x*, t*) = abG(x, 1).

For the special choice b = a*, {X*(s*); —t* < s* <0} is a Wiener process with
unit drift per unit time, so for this choice of a and b

(5.2) G*(x, ) = G(x, 1).
Combining (5.1) and (5.2) when a* = b,
(5.3) G(a*x, at) = a*G(x, t)

foralla=0, =0 and all x.
Taking a = 1/t yields

(5.4) G(x, 1) = t3G(x/t?, 1).

(Note the similarity to Theorem 3.1f.)

We now make the (plausible) assumption that the intersection of € with the
line [s'= 1] is a semi-infinite interval, originating at some point (8, 1) and extending
to the “point” (+ oo, 1). By virtue of (5.4), there is a function of a real variable,
f(+), such that

(5.5) G(x, t) = t¥f(x/t?).
Since G vanishes at ¢ = 0, f must be such that
(5.6) lim, ., t3f(x/1¥) = 0.
Since (8, 1) is a boundary point of €, (4.7) and (4.8) dictate that
6.7 fB®=0 and
(5.8 f®=o.
Since G satisfies (4.6) in €, f satisfies the ordinary differential equation
(5.9) Ffw)+uf(w)-3f(w)+2u=0 if u>p.

(Again, we stress that we are making guesses and assumptions at this point,
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which allow us to generate an attractive procedure. Optimality is proven in

Section 6.)
The general solution to (5.9) is of the form
(5.10) f(u) = u+c[(u?+2)pu)— >+ 3u)0(—u)] +d(u> + 3u)

where ¢ and d are arbitrary constants.

Condition (5.6) dictates that d = 0 while (5.7) and (5.8) serve to specify ¢ and f
as the (unique) solution to
(5.11) f(B) = c[(B>+2)p(B)— (B> +3B)2(~P]+p =0

f(B) = 3c[(Bo(B)— (B> +DO(—P)]+1 = 0.
These equations are easily de-coupled and solved numerically; f is given by (3.5)
and c is given by (3.9). )

It is easy to show that f(-) is monotone increasing for u > f; hence, G(-, t) is
monotone nondecreasing. If u > B, f(u) > 0 so that G(x, t) is positive if >0
and x > Bt

Since G vanishes on € (c.f. Section 4),

{(x,0):1>0 and x/t}>p}c¥.

On the other hand, if # > 0 and x/t* < B, G must vanish since G(-, ¢) is mono-
tone and G(Bt?,t) = 0. Therefore, G and its derivatives are identically zero in
this region, thereby making it impossible for (4.6) to be satisfied anywhere in this
region. Since (4.6) holds for all (x, )%, the implication is that

(5.12) {(x,0):t>0 and x/i*<B}c@F.
The boundary of € is therefore
(5.13) {(x,):t>0 and x/t*=B}u[t=0],

and the prime candidate for the optimal stopping rule is to “Continue if and
only if # > 0 and X(—¢) > pt*.”
The expected return from this policy, given that X(—1¢) = x is

(5.14) G(x, t) = tif(x/t}) if x/tE>B
=0 otherwise
where £ -) satisfies (5.10) with d = 0 and ¢ given by (3.9).

6. Optimality. We will now prove that the policy described above is indeed
optimal. Toward this end, let ¥ be the continuation region {(x,?):¢>0 and
x > Bt*}, with associated stopping time —T(x,?), and let —T" be the generic
stopping time associated with some other policy. For any 6 > 0, define
6.1) Ty =T' if T'; is divisible by 6

= 0[T’/6] otherwise.
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— Ty is a stopping time which agrees with — 7" if 7" is a multiple of §. Otherwise,
— T, waits till the first instant thereafter which is divisible by &, then stops. We
prove optimality via two lemmas which we state now and prove later.

LeEMMA 6.1. Let G'(x, t) be the conditional expected payoff given that X(—t) = x,
associated with the stopping time —T'. Let G4'(x,t) be the conditional expected
payoff associated with the stopping time Ts'. Then for each x and each t > 0

G'(x,)—Gs'(x, ) =0@) as 6—-0.

LemMMA 6.2. Let G(x, t) be as defined in (3.8) and suppose & ~ N(O, 1). Then for
any 6 > 0,

(6.2) SUP,ss,,6G(y +6*,1—8)+y3—G(y, 1) S 0.

(In particular, (6.2) asserts that the policy described in Section 5 cannot be im-
proved upon by the policy which samples for an additional time § when X(—1)/t*
is a boundary point of €, and then proceeds according to the stopping rule induced
by & thereafter. As Chernoff puts it, “the procedure cannot be trivially improved
upon.”)

THEOREM 6.3. The policy which continues sampling so long as t >0 and
X(—1t) > Bt* is optimal.

PrOOF OF THEOREM 6.3. Let G'(x, t) be the conditional expected return for any
other policy (given that X(—1¢) = x). We will show that G'(x, ¢) £ G(x, ¢):

Let x, > 0 and o« > 0 be given. Choose 6 > 0 in accordance with Lemma 6.1
so that ¢ divides ¢ and

(6.3) G'(x, )= Gy (x, )] < .
By Lemma 6.2
6.4 Sup,, »56G(y+6%¢, 1—8)+y6—G(y,1) £ 0.

The optimal procedure among those which allow stopping only at times which
are multiples of 6 has conditional payoff function Gy(x, t) satisfying (4.3), (4.4).
In particular, G4(y, ) = yé and by (6.4), G(y, 6) = yd so that for k =1,

(6.5) Gy, k8) < G(y, ké) for all y.

(6.4) and (4.3) can be combined easily, to prove by induction that (6.5) holds for
all k and all y. In particular, since ¢ is a multiple of §:

(6.6) Gs(y, ) = Gy, 1)

Since G; is the maximal-discrete-time-policy-payoff and since G, is the payoff
for such a policy,

6.7) Gs(y, ) = G5/(y,t) forall y.
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(6.3), (6.6), and (6.7) combine to yield
(6.8) G(x,t) = G'(x,t)—a where « is arbitrarily small,
which proves the theorem.
PrOOF OF LEMMA 6.1. The conditional expected risk under — T is
G'(x,)=&[[=F X(s)ds| X(—1) = x]
whereas
Gy/(x, 1) =&[ [ X(s)ds| X(—1) = x]
so that
|G,/ (x, 0= G'(x, ] < E{[T' = T/ TsUp 2020 |XT9)| | X(= 1) = 5},
Since T'— T < 6 with certainty, and since
E{5Up 15050 | XO)|| X(=1) = x} < o0,
the conclusion follows.
PROOF OF LEMMA 6.2. Let
Hyy, 1) = G(y, 1) = EG(y +0*¢, 1—0) — yo
and let
¢s* ={(y,1):y>pr* and 1>6}.

It suffices to show that Hj is nonnegative on the boundary of #,*. For then, since
Hj satisfies the heat equation inside #;* (by virtue of (4.6) and the fact that
€s* = ), the maximal principle guarantees that values of H; inside %;* are
weighted averages of values on the boundary, so that Hj is nonnegative inside as
well (c.f. Chernoff [5], for more details). On the other hand, if y <ft* and © > 4,
then since G vanishes at (8%, 1) and is nondecreasing in its first argument,

Hy(y, 1) Z G(y, 1) = G(Br* +6*¢, 1—08)— fr* 0 = Hy(fe?, 7).
We will therefore show that
6.9) Hyy,7)>0 if 7=6 and y=pt* or t>06 and y=prt
If T = 6 and y = Br?, then
Hy(y, 1) = G(y, &) —yd = 6*[(G(, 9)/6%)—(y/6%)],
and from (5.14)
Hy(y, 8) = c6*[(u*+2)p(u) — (1> + 3u)D(—u)]

where v = p/6* and ¢ > 0. The expression in square brackets is a decreasing
positive function of u for u = B, so that Hy(y, 6) > 0 if y = p6*.



638 ARTHUR ALBERT
Next, consider the case where y = ft* and © > §: By (5.5),
(6.10) Gx,7)=0 if u= x/‘t% <pB
=1if(u) if u>p

where
(6.11) fw) = 6c[o(u)—ud(-u)],
| (B =0
(6.12) f@=0
fB)y=—28.

Since f'is a decreasing positive function, a second order Taylor series expansion
shows that f(1) < f(B)i(u—PB)? if u = B, so that

(6.13) G(x,7)=0 if ugp
S Bl(u—p>* if u>p.
Therefore
EG(+8*, 1=8) = (1 =)} [y ausyie-ars = (V830 =8} (&) de

and if y = pr?,
(6.14) G(y+0%¢, 1—0) < (1—0)*|Bld [* (E—v)*0(&) dE
where v = |B|[(#/5)* —(1/6— 1)*]. Since

[0 E-vPe@de<y if v20
(6.14) implies
(6.15) G(y+0%,1—8)+0y £ Bo[rt—(x—0)¥] if y=prt.
Since f is negative, and G(y, 1) is zero in the present case, the second part of (6.9)
is proved.

7. Asymptotic approximations to the optimal stock sale policy. The conditional
expected return function, g, for the optimal stock sale problem of Sections I-III
can be computed via equations (3.2)—(3.3), the optimal policy being to sell as soon
as the conditional expectation of the drift, given the data at hand, falls below the
threshold as(¢) when ¢ (a multiple of J) is the time left until mandatory liquidation
and ay(?) is the largest zero of g4, t). The computations for as(¢) and gu(x, t)
become complex and lengthy as /6 grows large and this motivated the continuous
time stopping problem of Section 4, since, for this problem, the optimal stopping
rule amongst those with stopping times restricted to multiples of § coincides
exactly with a; (stop and accept payment if £ =0 or if X(—1t) < as(t)) and the
resulting conditional payoff function (given X(—t) = x) coincides exactly with
g,;(X, t)'
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Whereas g;(x, t) and a4(t) cannot be expressed in closed form, the conditional
payoff and optimal stopping rule for the unrestricted continuous time stopping
problem can be: “Stop if X(—¢) < ft* or t =0 and the associated conditional
payoff function is given by (3.8). It is reasonable to expect as(¢) to be close to
Bt* and G; (i.e., g5) to be close to G when ¢ is small. This assertion is made precise in

THEOREM 7.1. If t is a positive multiple of J, then

GCx, 0= gu(x, 1) _ (1)~ uD(—u)
@ 0 i < >|ﬁ | [¢(ﬂ)—ﬂ®(~ﬂ)]

where u = x/t*, and

(b) 0< <“‘;§’) > < ($>%(1 +0(?)%> as 8/t—0,

where f3 is given by (3.5).
PrOOF. Let 6 > 0 be given and suppose ¢ is a multiple of 6. Let —T(x, ¢) be
the stopping time associated with the optimal stopping procedure, let

Ty(x,t) = T if Tis a multiple of §
= [T/6]6 otherwise

and let G4(x, t) be the conditional expected payoff (given X(—t) = x) associated
with the modified stopping time — T;. Clearly,

0= G(x, )—Gy(x, 1) = 6{[2F,X(s)ds| X(—1) = x}
= &{6[[L, X(s)ds| X(—T)] | X(— 1) = x}
= [(Ty=T)X(~T)| X(~1) = x].

IIA

If —T = —t, then since ¢ is a multiple of 6, Ts =1t =T.
In any event, 0 £ T—T; <6 and X(—T) = BT* £ 0, so if we define
(7.1) d(y,s) = —yd ifs>0
=0 ifs=0
it is clear that &[(T;— T)X(—T)| X(—t) = x] < &[d(X(—T), T) | X(—1) = x]. Thus
(7.2 0 = G(x, )= Gy(x, 1) £ q(x, 1) = 4t S[AX(=T), —1) = x].

If (x, 1) is a boundary point of € = {(y,s):5 >0 and y > fs*}, then T =1 and
q(x,t) = d(x,t). On the other hand, ¢(x,t) satisfies the heat equation inside

% ([5D:

(7.3) 39 = 4
The boundary value problem 1q,, = g, inside 4, ¢ = d on the boundary of ¥
(where d is given by (7.1)) has the unique solution

@(u) —ud(— u)] X

7.4 =5l 2~
a9 a0 1) = ol Lp(ﬁ)—ﬂcb(—ﬁ) ’
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Gs(x, 1), being the conditional expected payoff for a particular discrete procedure,
cannot exceed Gy(x, t), the conditional expected payoff from the optimal discrete
procedure. Since G5 = g, there follows

(7.5) G(x, t) = gs(x, 1) = Gg(x, 1), so from (7.2)
(76) 0 é G(X, t)—gé(x9 t) é q(x’ t)

which proves part (a).
To prove part (b), we note that

) q(x, 1) S 6|p|er if x/t*>B.
By virtue of (5.5), (5.9), (5.10), and (5.11),
G(x, t) = tif(u) if u=x/t!>p where
fB=fB=0
(7.8) fB = =28,  fu)=6c[o(u)—ud(—u)] >0 and

f(B) = —6c0(—p).

Since f is an increasing function, f(x) = 1 f(B)(u—B)>+if(B)(u—B)* when u = B,
so

(7.92) G(x, 1) 2 Gy(x, 1) = G(x, 1)~ q(x, 1)
(790)  z B u—p* +fBYu—P+pO/0] if u=x/t*>p.

From (7.9a), the largest root of Gy( -, r) lies to the right of G(-, t)’s largest root.
Therefore

(7.10) Btt < ay1).

From (7.9b), we see that G4( -, t) is nonnegative (positive) whenever the expression
in square brackets is nonnegative (positive), provided ¢t > 0. The cubic

3 (B)2* + 37 (B)2* + p(o/1)
has three real roots when §/t is small. Two roots are positive, the smallest positive
root occurring at
(7.11) Z=(3/)*+0(5/t) as d/t—0.

(We will prove this later.) Furthermore, said cubic is positive in a small right-hand
neighborhood of Z. Therefore, G4(x, t) is positive if (x/t¥)—B >2. We use the
monotonicity of Gy(-, t) which is established in part (a) of Theorem 3.1.) From
this we conclude that

(7.12) (as(D[tH)—B < Z = (8/)*+0(5/t) as §/t—0.
Equations (7.10) and (7.12) prove part (b).
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To prove (7.11), we will show that the smallest root of the equation
(7.13) E+bEE=C  (b<0) is
(7.14) E=C+0(C% as C-0.

(7.11) follows if we let £ = (z)? and C = §/t.
As for (7.14), denote the smallest root of (7.13) by

(7.15) E(C)=C+¢C).
Inserting (7.15) into (7.13), we find that &(C)+5(C+¢(C))* = 0, or equivalently,
[e(C)/CI/[(1+(C)/C)*] = —bC*.
The smallest root of the equation y/(1+y)* =t is O(t) as t = 0, so that
(7.16) &(C)/C = 0(CY) as C—0.
(7.14) follows from (7.15) and (7.16).
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