The Annals of Mathematical Statistics
1970, Vol. 41, No. 2, 609-620

ESTIMATION FOR MONOTONE PARAMETER SEQUENCES:
THE DISCRETE CASE'!

By HAROLD SACKROWITZ

Rutgers, The State University

1. Introduction and summary. Let x,, x,, - be a sequence of independent,
observable, discrete, real random variables with respective density functions
f(x, 8)), f(x,0,), -+, where 0,€Q (a real interval), i=1,2,---. At any stage s,
having observed x;, -, x;, we wish to estimate 0,, relative to the loss function
L(d, 0) = 0, under the restraint that 6, < -+ < 0.

Most of the literature concerned with estimating ordered parameters deals with
maximum likelihood estimators (for example, Robertson and Waltman [3] and
references contained therein). Recently, Blumenthal and Cohen [1] considered
questions of minimaxity and admissibility of certain estimators of ordered trans-
lation parameters of continuous distributions.

In Section 3 we obtain results concerning admissible and minimax estimators of
0, for a large class of discrete distributions. Theorem 3.2 states that the minimax
value M, of the problem of estimating 6, at stage k is the same forallk =1, 2, ---.
Furthermore, the Corollary to Theorem 3.1 states that if #(x,, - - -, x,) is admissible
for estimating 0, at stage s, then #(x;,, ***, X4+, is admissible for estimating
0., at stage k+s. This is not true, for example, when x; is normally distributed
with mean 6, and unit variance [4]. Hence in situations satisfying the conditions of
Theorems 3.1 and 3.2, if there exists an admissible estimator 7(x,) of 6; having
constant risk, then #(x,) will be the unique admissible minimax estimator of 0, at
stage s. It is this undesirable property (i.e. being based only on the last observation)
which prompts us to look for other estimators which may be “better’” in some
sense.

In Section 4 we use the early observations (x;, - -+, x,_, at stage §) to construct
a sequence of estimators which is asymptotically subminimax (s — o0) as well as
having desirable properties for finite s. The results in Section 4 are obtained for
general cumulative distribution functions as the methods are not peculiar to the
discrete situation. However, it should be noted that the main results of Section 4
(Theorem 4.2 and Theorem 4.3) do not yield a worthwhile sequence of estimators
unless we are in a situation similar to that of Section 3. That is, unless the existing
admissible minimax estimators are undesirable as they are in the discrete case of

Section 3.

2. Notation. We observe the discrete, real random variables x;, ** -, x,, having
respective density functions f(x, 6,), -, f(x, 6,), where 6; <--- <0, 0,€Q (a
real interval), k =1, -+, s. We wish to estimate 6, relative to the loss function
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610 HAROLD SACKROWITZ

0 < L(d, 0) < oo, where L(d, 0,) represents the loss in taking action d when, in fact,
the true parameter value is 0;.

We define the following sets of estimators. Let &7,° = {t(-, -, ) :t(x;, " *, X,)
is admissible at stage s}, k = 1, - -, 5. Furthermore, we denote by R((x;, -, x);
6,, -, 0,) the risk in estimating 0, (at stage s) with #(x,, ", x;) when 0,, -, 0;
are the true parameter values (i.e., x; has density f(x, 0;)).

3. Admissibility and minimax. Throughout this section we will be working under
the following assumptions.

Al. Qs a real interval with lower limit y > — oo (possibly y ¢ Q).

A2. 4 = {a,: f(a, 0) > 0 for some 0 Q}, thatis, a,, a,, - *, a, are the atoms of
{f(x, 0):0€Q}, where v = card (4) £ N, (the cardinality of the set of integers).

A3. There exists an ordering, a;,, of the atoms such that

,"— 1(ai,.’ 0)2;=n+1 f(aij’ 6)_>Oﬂy0’ n= 1, 2, Tt V'—'l.
Ad. Given any §€Q, either

(1) f(a, 6) > 0 for all ae 4, or
(ii) f(a*, 8) = 1 for some a* € 4.

AS. If f(a*, 0%) = 1 for some a*e A, 0*e(), then 0* is a boundary point of Q
and the model is such that the risk functions of all admissible estimators are
continuous at 0*.

We note that
N ay, Y )=2 f(as, 0) = f~Nay, O[1—f(ai,, )] = (ai,, )= 1,
and
0=/ Yai,, Of(a,, .0 < f (@, ) Yj=ns 1f(a;, 0).

Therefore A3 implies that f(a;, 0) —4.,1, and fYa;, Ofa,,, ., 0) —4-,0
n=12--,v—1.

We now give two examples of estimation problems satisfying assumptions Al
through AS.

EXAMPLE 3.1. (The Binomial distribution). Suppose L(d, 0) = (d—6)* and
f(x,0) = (MO*1—-0)""* x=0,---,m. Then Q=1[0,1], y=0, A= {0, -, m},
a;,=j—1,v=m+1,and so Al and A2 hold. A3 holds since

=10 etk f(k—1,0) =[(,mpo" ' (1—6)""*']7*
VI ()0 (L =6y
= (2" ! Z?:n1+ 1 (kz‘l)ok-”(l —G)n—k =900
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as k—n2=1 for k=n+1, -+, m. Furthermore, A4 and A5 are satisfied for
L(d, 0) = (d—0)* as

R(l(x19 e ’ xs); 01’ e B Gs) = Z;cnl‘—:() o 'Z;:ns=0(t(x19 e B xs)_es)2
' Hf= 1 (;"i)eixi(l =)
is continuous at any (6, - - -, 6,) since ¢ admissible implies (¢(x;, ***, x)—0,)* < 1.

ExAMPLE 3.2. (The Poisson distribution). Suppose f(x, 0) = e~ °0%/x!, 0> 0,
x=0,1,--+. Then Q= (0, ©), y=0, a;, =j—1, A= {0, 1, }, v= =, and Al
and A2 hold. To show A3 holds it suffices to show f(n, 0)™' Y 2,4+ 1 f(k, 0) >0
as 0 — 0 through values less than 1. This is so, as

[e™0"n!] ™! Yins 1 €70 k! = 33,4 0 UK S 1 2,4 6577 = n10j(1-0)

for 0<0 <1, and 6/(1—60) —>4.,0. A4 and A5 hold for all loss functions as

flk,0)>0forallfeQandk=0,1,---.
Before stating Theorem 3.1 we mention the following.

Ry, oy %505, 0+, 0) = RU(xpsps 5 Xg)5 015 00, O,4))

if 6, = 0,.,. The essence of this remark is that any estimator used at stage s (to
estimate ;) can also be used at any succeeding stage s+ r (to estimate 6,,,) and the
risk functions at these stages will be essentially the same. We are now ready to state

THEOREM 3.1. Under assumptions Al1-A5, 5= 30 for k=1, s,
s=1,2,,r=0,1,---.

Proor. Without loss of generality we may assume that y =90 and q;, =j-1,
j=1,2,--+,v(ie., the set 4 is composed of consecutive integers starting with 0).

Let te o510, If t¢ of,%, then there exists a function #*e o/,* which dominates
t(x;,**, x,) as an estimator of 6. Since #*(x;.,, ", X,4+,) can be used as an
estimator of 6,,,, it dominates #(x,,,, ", X,4,) as an estimator of 6,,,. This is
a contradiction as re.oZ5%". Hence &1 < o7,°.

To complete the proof it suffices to show that «,° = «Z§1}. We shall exhibit the
proof for k =1, s =1 only, as it can be readily extended to the case of arbitrary
k and s.

Let ¢()e o, . If ¢(- )¢ 7,2, then there exists an estimator 8-, ) e o/, which
dominates ¢(x,) as an estimator of 6, . If § is a non-randomized rule, then d(x;, x,)
is simply a real number for each pair (x;, x,). If § is a randomized rule, then for
every fixed pair (x,, x,), 6(x;, x,) defines a probability distribution A(a; x,, x,),
ae(— oo, o0), on the real line. Define

Ly(xy, %53 6,) = L(d(xy, x,), 0,) if & is non-randomized

= (L(a, 0)dA(a: x,, x,) if & is randomized.
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Since 6 dominates ¢, it follows that
R((x,): 0y, 0,) = R(3(xy, x3); 04, 05)
D = Eg,0,{Ls(X1, X35 0,)} = Eg {Eg,[ Ls(x1, X33 05) | x,]}
= £,{Ls(0, X235 0)}(0, 01) + 1% 1 Eg,{Ls(i, X235 0,)}£(i, 0,),

forall0,,0,eQ,0,<96,.
Fix 0, = 0*eint Q (interior of Q). Then (1) implies

R(¢(x,); 01, 0%)f 710, 01) = Eo*{Ly(0, x,; 6%)}

+ 2% 1 Ege{ Lo(iy x25 0%)}1 /(i 0,)/71(0, 0)),
for all 0, < 0%, 0, eintQ. Since lim,,.0/(0, 8,) =1, for 0, sufficiently close to
0, (2) implies
3) R($(x,); 0,, 6%)(1+e) = Zf; 1 Eg{ Lo(i, 55 0%)} f(i, 0,)f~1(0, 6)).

Suppose R(¢p(x,); 6, 0*) < oo, then there exists an N such that
4) ZfiNﬂ Eg{ Ly(i, X3 0*)}f(i’ 0)f7(0,6,) <.

Since f(i, 8,)f ~(0, ;) = 0 as 8, — 0 (for i > 0), it follows from (2), (3), and (4)
that

) R(¢(x,); 0y, 0%) = Eg{Ly(0, x,; 0%)}.

If R(¢(x,); 60, 0*) = oo, then (5) is obviously true. Hence we have shown that,
for any 6, eintQ,

(2)

(6) R($(x2); 0y, 05) = Eq,{L50, x5; 0,)} = R(3(0, x,); 0, 6,).
By assumptions A4 and AS, (6) also holds for boundary points of Q. Equivalently,
(7) R(¢(x1); 6;) = R(5'(xy); 0), all 0,eQ,

where 6'(+) = 4(0, -).
Since ¢()e &%, it follows that §'(+)e &/, and R(¢(x,); 0,) = R(6'(x,); 0,).
That is,

)] R(¢(x3); 05, 0,) = Eq,{Ls(0, x;; 0,)}, forall 6,eQ.
Using (8) in (1), we obtain
9 R(P(x2); 01, 0[S, 0,)+ 372, [0, 01)] = R(P(x,); 01, 0,)[1—£(0, 6,)]
2 Eg {Ls(1, X35 0)}(1, 0)+ 372 5 Eg,{Ly(i, x5 0,)}/(i, 0,).
Fix 0, = 0*eintQ and divide all terms in (9) by f(1, 8,), where 6, < 0*, 6, eintQ.
Then we have
R($(x,); 04, 9*)[1 +/71Q1, 01)2?; 1 (G, 0] = Eg{Ly(1, x,; 9*)}

(10)
+Zl?0=1 EB*{Lé(i9 x2; 0*)}f(l, Ol)f_l(ls 61)'
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Comparing (10) to (2) we see that we can use the arguments used to show (8) to
show R(¢(x,); 0y, 0,) = Eg,{Ls(1, x5 5 6,)}, for all 6,eQ. Continuing in this
manner we find that, for i =0, 1, -+ R(¢(x,); 0y, 0,) = Ey,{L;(i, x, ; 6,) }, for all
0, eQ. Therefore R(¢(x,); 0;, 0,) = R(6(x,, x,); 6, 6,), for all 6,,0,eQ,0, <0,.
Hence ¢(-)e &/, and the proof is complete.

COROLLARY. Under the assumptions Al-AS, o)< o5, r<s, j=k,--,r,
s=1,2,---.

PRrOOF. It is clear from the definition of «,° that &/ = &, i=k, -, s. The
result now follows from Theorem 3.1 as & ;" = &/, ,_, S ,°.

THEOREM 3.2. Define M., k = 1,2, - to be the minimax value for the problem of
estimating 0, at stage k. Then under assumptions A1-AS5, M =M, =---.

Proor. Since any estimator used at stage k can also be used at stage k+1, it
follows that M, = M, = ---. We will show M, = M, only as the proof can easily
be extended to show M, = M, ;.

Suppose M, > M, . Then there exists an ¢ > 0 and a function #(x,, x,) such that
M, —e = R(t(xy, x,); 04, 0,), 0, = 60,. This implies, by the same argument used
in Theorem 1 to obtain (7), that M, —e = R(t'(x,); 0,), all 6,€Q, where t'(+) =
t(0, ). Since M, is the minimax value at stage 1, we have a contradiction and the
proof is complete.

ExampPLE 3.3. (Bernoulli trials). Let L(d, 0) = (d—0)?, f(x, 0) = 65(1—-0)' "%,
x =0, 1. At stage s we wish to estimate ,. Even if x; = --+ = x, = 1, the (unique)
admissible minimax estimator says to estimate 6, with } +1x,.

ExamPLE 3.4. (Uniform distribution). Let f(x, 0) =[0]"!, x=1,2,---,[0],
where [0] is the greatest integer in 0 and 6 Q = [1, oo). This distribution does not
satisfy A3. Furthermore, the results of Theorems 3.1 and 3.2 will not hold for any
reasonable loss function. To see this we note that observing x;, = x,* is positive
proof that 8, = x,*. Hence the estimator ¢'(x;, ** -, x;) = max (x, ***, X;—1, 1(¥X;))
would dominate the estimator #(x,) for estimating 6, .

4. Asymptotic solutions. The results of Section 3 indicate that, for the situation
under consideration, use of admissible minimax estimators will often lead to
somewhat undesirable procedures. We have seen that, in the case of Bernoulli trials
with squared error loss, the unique admissible minimax estimator of 6 is based on
x, only.

In this section we will construct a sequence of estimators which are asymptotically
subminimax, have reasonable and determinable (see discussion of Section 5) small
sample properties, and are intuitively more appealing than the admissible minimax
estimators tend to be.

We are motivated by the realization that knowing the values x,, **-, x,_; at
stage s cannot be more advantageous than knowing 6,_; (i.e. xy, ", Xs—4
probably cannot do more than determine some sort of lower bound for 6;) and if
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we knew 60,_, and then observed x;, it would be reasonable to use an admissible
minimax estimator for 8, QnN[0,_,, c0).

For simplicity we construct these sequences for squared error loss. However,
similar results can be obtained for other loss functions L(d, 8) which are increasing
functions of |d—6|. The idea is to use the fact that (s— 1) '} iZ{ x; becomes a fairly
reliable lower bound for 0, as s increases.

THEOREM 4.1. Let x have distribution function F(x, 0), 0€Q (a real interval). Let
t(x;y) be an admissible minimax estimator of 0e€Qnly, o) relative to the loss
Sfunction L(d, 0). If x, has distribution F(x, 0,), k = 1,2, -+ and the x, are indepen-
dent, then there does not exist, for any s = 1,2, - -+, an estimator 6(xy, -, X,) such
that

R(é(x19 “‘a Xs); 61*’ ”‘9 05*—1’ Hs) é R(t(xs; 68_1)3 01*9 .“, 3*—19 03):

forany fixed0,* < -+ <0 ;andall 0,2 0F_ |, 0,,0,¥cQ, k =1,---, s, with strict
inequality for at least one point (0%, -+, 6,%).

Proor. If 0, , -+, 0,_,, x, are known, then #(x, ; 6,_,) is an admissible minimax
estimator for ,eQ and 0, < - -+ < 0,. (Easily seen from the definition of #(x; y).)

Define Ly(x,, -+, x,; 0) as in the proof of Theorem 3.1. Then the risk function
of any estimator & is E{L;(x, ***, x;; 0,)}.

For every estimator 8(x,, -, x,;) and every fixed set 0, -, 6,_, define the
estimator W4(0,, ' -, 0,_, ; x,) as follows: generate values x,, * -, x,_,; and use the
estimator 8(x,, - -+, x;) where x, has distribution F(x, 6;), k =1,---,5—1 (i.e. ¥;
is a randomized rule). Hence

ROy v, x5 04,00, 0))
=Egq, ... 00 {Ls(x1: "5 X5 09}
= Ep {Eq,, 0, {Lo(X1, "+ 75 X3 09}
=R(Ws(0y, "+, 0515 %) 01, -, 0.

Since #(x; ; 6,_,) is admissible minimax among estimators based on 6y, -+, 0,_,
X, , the theorem is proved.

Theorem 4.1 reinforces our intuitive suspicion that, even using x,,***, X, at
stage s, we could not do better than if we knew 60,_, and used #(x,; 6,_,).

NoTE. In the remainder of this paper we will assume loss to be squared error,
that is L(d, 0) = (d—0)>.

DEFINITION 1. Let x, have distribution function F(x, ,), where 0,€Q (a real
interval), k =1,2,-- and 6, £ 0, <---. If there exists a sequence of functions
{my(x, "+, x,)} such that for every ¢ > 0, there exists a constant s(¢) such that
for s = s(g),

Eml 0?)[(ms(xl9 T xs)~98)+]2 Se,
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foral 0, <---<0,, 0,e€Q, k=1,---,s, then F(x, 0) is said to have the lower
bound property and {m,} will be called a lower bound sequence.
Clearly lower bound sequences for a particular F(x, 0) are not unique.

DEFINITION 2. A family of distribution functions {F(x, 6,): 0eQ} will be said to
have Property 1 if there exist sequences of functions {u,(x,, ‘-, x,)} and
{u 0y, 6,)}, where 6, <--- <6, implies u, <6, and p,0, -, 0) =0, such
that given & > 0, there exists a constant N(¢) such that n = N(g) implies

E(On, "',9n)[un(x1’ Tt xn)_ﬂn(ela T, en)]Z é &,

where xi, x,, -+ are independent and x, has distribution F(x,0,), 0,€Q,
k=1,2,--.

The family of Normal distributions with mean 6 and variance 1 is an example of
a family having Property 1. This can be seen by setting

=1\ "n " — 32— 1\ n
u,=n"'Y7x; and p,=n"1Y"_,0,.

Clearly, the u, and p, sequences need not be unique for any family having
Property 1.

LEMMA 4.1. If {F(x, 0): 0€Q} has Property 1, then F(x, 0) has the lower bound
property. Furthermore, the sequence {u,(x,, "+, x,)} whose existence is guaranteed
by Property 1 is a lower bound sequence.

Proor. Let {y1,(6,, ‘-, 0,)} be a sequence corresponding to the u, sequence (by
Property 1). Thenas y, < 6,,

E(o,, ~'-,0s)[(“s—6s)+]2 = E(Ox,~'-,05)[(us_l‘ts)+]2 = E(o,,u-,os)[“s—#s]z'

By Property 1, there exists a constant s(e) (given an ¢ > 0) such that for s = s(e),
Eg,. ... 0.lts—p]* < e This completes the proof.

DEFINITION 3. Let x be a random variable with distribution function belonging
to the family {F(x, ): 0 Q} and let {h(x;y):y€Q} be a collection of measurable
functions of x. Then A(x; y) will be said to have Property 2 relative to {F(x, 0):0eQ}
if

(A) h(x; y) < max (p(x), y)+ o, for all yeQ, where w = w(Q) is a constant inde-
pendent of x and y, and p(x) = po(x) is a measurable function of x (independent of
y) such that Ey(p(x)—0)? £ B = B(Q) < o, for all 0eQ, and

(B) h(x; y) is equicontinuous in x as a function of y.

EXAMPLE 4.1. Let {F(x,0):0eQ} be any family of distributions for which
Ea(x—e)2 <B< o for all Q. Then the function #(x;y)= max(x,y) has
Property 2 relative to {F(x, 0):0eQ} (let p(x) = x, w = 0).

DEerFINITION. The family of distributions {F(x, 6):0€Q} will be said to have
Property 3 if for any real y there exists an admissible minimax estimator, #(x; ),
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for 0eQn[y, o), relative to squared error loss, such that #(x; y) has Property 2
relative to {F(x, 0):0€Q}.

REMARK. If #(x; y) is an admissible estimator of 0 Qn[y, c0), relative to squared
error loss, then #(x; y) = y with probability one relative to Qn[y, o). If not, the
estimator max (#(x, y), y) dominates #(x; 7).

LEMMA 4.2. Let the family {F(x, 0):0eQ} have Property 3 and the lower bound
property with lower bound sequence {m(x,,**, x,)}. If there exists an estimator,
o(x,), of 0,€Q which has a risk function bounded by vy, then for any ¢ > 0, there
exists a constant s(e) such that for s = s(e)

R(t(xg; mg_ (X1, "+, Xg=1)); 01,07, 0) Svote,
forall 0, < -+ < 0, and t defined by Property 3.

Proor. The estimator 6(x,) of 0,eQ may, of course, also be used as an estimator
of 0,eQnly, oo) for any y. Since #(x,; ) is defined to be admissible minimax for
0,eQnly, ),

(1D Eo [1(x5 )~ 0,1 < 05,7 = 0.
R(t(xg; mg_1); 01,0, 0) = Eq,. ... o[ 1(xs; Mg—1)—0,]?
=Eq,,...,0,- 1 Eo {[1(xs; me_ )= 0,17 | my_}}
=Eg,, .., 0, i Eo,[1(xs; me— 1) = 0]}

This allows us to consider E, [#(x,; m,_,)—0,]* for fixed values of m,_; and then
treat the risk of #(x,; m,_,) as the expected value of a function of m,_,.

Given any a > 0, there exists (by (B) of Property 2) a f(«) such that if
Os < M-y = 0s+ﬁ(a)’ then [t(xs; ms— 1)— t(xs; es) ]2 é a.

Fix o = min (g/4, £2/64v,).
Case 1. If m;_; < 0,, then by (11)
Ep [1(xs; e )= 0,2 < v
Case 2. If 0, < m,_,; < 0,+ (), then
Eq [t(x; my_ 1) —0,)* = Ep [1(xy; mg_ ;) — (x5 00) + 1(x; 05)—6,]°
< B [1(xs; mo— 1) = 1(x,; 01
+ 20 Eg [ (x5 mg_ 1) — 1(xg; 0)]* +va.
by the Schwarz inequality. But by our choice of «,
Eq [1(xg; my_1)—0,]* < de+4e+vo = vy +14e.

Case 3. If 0,4+ B(x) <m,_,, then t(x;;m,_;)=0,. By (A) of Property 2.
t(xg; my_ ;) < max (p(x,), ms_ )+ . Therefore if 6+ f(a) < m,_, then

[t(xs; ’ns—1)~95:|2 = [p(xs)+w_0s]2 +[n1s—1 +CO—9.‘]2.
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Thus (for B = B(Q) defined by (A) of Property 2)

Eo [t(xs; mg_y)—6,])* < B+2wB*+w*+[m,_, +w—0,]%
Therefore, by the results of Cases 1, 2, and 3.

Eg, ... 0, y{Eo[t(xs; my_1)—6,]%}
(12) SvgP(m_y < 0,+P(0))+¢/2

+(B+2wB* + w?)P(my_y > 0,+ () + E[(my_; —0)* ]?
+20E [(my_; —0) 2+ w?P(m,_, > 0,4 f(a)).

However, once « is chosen (and fixed) we can find, by the lower bound property, a
constant s(a, ¢) such that for s = s(«, ¢), each of the last four terms of (12) is less
than ¢/8. Since « is a function of ¢, the lemma is proved.

We recall that by Lemma 4.1, a sequence {u,(x;, ‘-, x,)} defined by Property 1
is a lower bound sequence. Hence, in particular, Lemma 4.2 assures us that, if an
admissible minimax estimator ¢(x,) with constant risk exists; after some finite
stage s(g), the risk of #(x; u,— ;) will not exceed the risk of ¢(x,) by more than &
anywhere in the parameter space. For #(x,; u,_ ) to be considered an improvement
on ¢(x,), it remains to show that the risk of ¢(x,) exceeds that of #(x,;u,_,) over a
large portion of the parameter space.

LEmMMA 4.3. Let the family {F(x, 6):0eQ} have Properties | and 3. If there exists
an estimator &(x,) of 0,€Q which has a risk function bounded by some v, < o, then
Jor every & > 0, there exists a constant s(g) such that, for s = s(g),

SUPg, <. <6, R(#(xg5us_1); 01, -+, 0)—R(#(xs; ps—1); 04, -, 0s)| Se,
where u,_ | and yi,_ | are defined by Property 1 and t by Property 3.

Proor. Since the argument used to obtain Equation (11) applies here as well, we
have for 0eQ,

(13) Eo[1(xs;9)=0]* S vo,7 £ 0.
R(H(xg5 us_1); 01,7+, 0) = Eqq,. ... g [1(xs; us_1)—0,]?
=Eq, 0, )1 o, {[10xs3 ts—1)—0,1% |us_, }}
=Egq,, .., 0, n{Eo,[1(xs; ug_1)—6,1%}.
AlSo, (k33 fty-1)i Oy, 00 = Eegy .0, A Ea [1055 1ty 1)— 0,12},
Case 1. If u,_ | < u,_,— B, then by (13)
Eo,[t(x; us-1)=0,1* Swo,  Ep[txs; ts—1)— 0,1 < 0o Thus
(14) |Eo,[1(xs5 tg— 1) — 0,17 — Eq [ 1(x; pt5— 1) —0,]%] < 20,.
Case2. Mf y_y—p < ug_, < u,_, +p, then
Eo,[t(xs5 us—1) = 0,1% = Eq [10x; tg— 1) — 1(Xs5 ptg— 1) +1(x;5 ts—1) — 0,17,
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and using the Schwarz inequality we get
(15) IEG,[t(xs; Us—1)— Os]z - EOS[t(xs; Hs— - es]ZI
é Eﬂg[t(xs; us— l) - t(xs; :us— 1)]2 + 2U0%E3;[t(xs; us~ 1)_ t(xs; us— 1)]2‘

By (B) of Property 2, there exists a fi(«) such that, if |u,_, —pu,_,| < B(«), then
[£(xs; ug— ) — (x5 ps— 1) 1* < o. Hence, if we choose a = min(g/4, £/64v,), then
the difference in equation (15) is less than ¢/2.

Case 3. If o+ p < u,_, <0, then as in Case 1, the relationship (14) holds.
(This region need not exist.)

Case 4. If O, < ug_,, then as in Case 3 of Lemma 4.2,
Eq [t(xs; ug—1)— 0,1 < B+20B + w? + [uy ; + 0 —6,]°.
Using the results of Cases 1, 2, 3, and 4, we find that
|R(8(xg5 ts—1); 01, -7+, 0 —R(t(xg; pg-1); 0y, 65)]
< Eg,, a0 {|Eo[10x3 g ) = 0,1 = Eo [1(x; py- ) — 0,12}
(16) = 200 P(ug—y < ptg—1 = B(@0) ) +8/2+ 200 P(ps—y + () £ us—y = 6))
+(B+2wB* + 0?)P(uy_ 1 + B(e) < ug_ 1)+ E[(us_; —6,)" ]
+ 204 (uy—  — 0" 1+ 0? Pty + (@) < uy_ ).

By Lemma 4.1, {u,} is a lower bound sequence. Therefore, for any fixed vy, B, w,
and « (note « is a function of &), we have that for s sufficiently large the sum of all
terms in (16) is less than e. Since vy, B, and @ do not depend upon the particular
parameter sequence, the proof is complete.

THEOREM 4.2. Let the family {F(x, 6):0€Q} have Properties 1 and 3. There does
not exist a sequence of estimators {5,(xy, -+, x) }, where 6,(x,) has bounded risk,
such that for any given ¢ > 0, a constant c(g) can be found such that s = c(e) implies

(17) R(t(xs5 us—l); 019 Y 03)_R(5s(x17 Tt xs); 01, T, 03) ; &,
for all 0, £--- £ 6,. (u,_, and t are defined by Property 1 and Property 3 respec-
tively.)
Proor. For any stage s =1, 2, - - - consider the sequences for which 0; =+ =

0,1 =6, . Then u,_, = 6,_,. By Lemma 4.3, s = s(g/2) implies

[R(#(xs5 tg—1); 0y, -+, 0) = R(1(x5 0,-1); 0, -+, 0,)] < ¢/2.
If there exists a sequence {J,} such that (17) holds, then it will hold, in particular.
for any fixed s sufficiently large (greater than s(¢/2) ), when p,_, = 0,_,. Therefore.
(17) implies that for s sufficiently large

R([(Xs; Os_ 1); 015 T Os)"R((s(xl’ T Xs); 015 Tt Hs) g 8/29
forall 6,_; <6, (6,_, fixed). This is a contradiction by Theorem 4.1.
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Theorem 4.2 expresses a form of e-admissibility which the sequence {#(x,; u,_ 1)}
possesses. The following theorem combined with Theorem 4.2 indicates that the
sequence of estimators {¢(x,; u;,_)} is an improvement over any sequence of
admissible minimax estimators each based on only one observation.

THEOREM 4.3. Let the family {F(x, 6):0€Q} have Properties 1 and 3. Let O(x,) be
an estimator of 0,€Q with constant risk function v. For every o > 0, define the set
A, =Q xQby

Aa = {(y’ 0):D—E0[t(x;’)))_0]2 g a, Y é 09)”069}5

where 1(- ; *) is defined by Property 3. Then, for every ¢ > 0, there exists a constant
s(e), such that, for s = s(g),

(A) R(t(xy5 us—1); 01, -+, 0) Sv+e for all 0, <-"20,, 0,€Q, k=1, s,
and

(B) R(t(xs; us—y); 0y, -+, 0,) Sv—(a—e), Jor all 0, <---<0,, 0,eQ, k=1,
S, (Ms—15 0)€A,, where po_y and u,_ | = u,_,(x,, tt, Xg_y) are defined by
Property 1.

Proor. By Lemma 4.1, {s} is a lower bound sequence. Since R(¢(x,);
0, ,0)=vforall 6, <---<0,, 0,eQ, k=1, -+, s; inequality (A) follows
from Lemma 4.2. Inequality (B) follows immediately from Lemma 4.3.

EXAMPLE 4.2. (Bernoulli trials). Let L(d, 6) = (d—6)? and f(x, 0) = 6%(1—0)'~*,
x=0,1, 0eQ = [0, 1]. The unique admissible minimax estimator of 0, at stage
sis 3 +3x,.

The Bernoulli family is easily seen to have Property 1 by setting u, and u, of the
definition equal to ™' }7_; x;and n™* Y'7_ | 0, respectively.

Consider the functions {r(x; y):yeQ} where

1(x;y) =%+4x if 0<y=<%;
=y+x(1—y¥) if t<y<1.

Then the family {#(x; y):y€Q} is easily seen to have Property 2.
To show that #(x; y) is admissible minimax for § €[y, 1] we note the following.

(D) If 0 =y =4, 1(x; y) is unque Bayes for the prior distribution which puts
probability 8/15 on 6 = 1 and probability 7/15 on 6 = 1. Also, the risk function of
1(x; y) attains its maximum at the points § = 4 and 0 = 1.

(I If <y =1, #(x; y) is unique Bayes for the prior distribution which puts
probability (1+)7'(2—y*)~" on 6 =y and probability 1—(1+y)"*(2—y%)"! on
0 = 1. Also, the risk function of #(x; y) attains its maximum at the points =y and
0=1.

Hence (by lemma, page 4-19 of [2]) #(x;y) is unique admissible minimax for
0,€y, 1] relative to squared error loss. Therefore, the Bernoulli family has
Property 3.
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1t follows from Theorem 4.3 that the sequence of estimators {f(x; X,_;)},
where X,_; = (s—1)7 'Y {21 x;, is asymptotically subminimax. Furthermore,

Eg,, ..., o[t Xo— 1) — 0,1

5w T6 if 0=50,-,=4,
—sm O =01+, —0)(20}_ 1) if }<0,;=1
where 0,_; = (s—1)7'Y 21 0,, whereas
Eg, ..., 003 +1x,—0,]* = all 6, <---£0,.

We note that 82_, —0,(1+0,_,—0)(20_, —1) <is forall £ <8, £6,<1 and
sometimes significantly less.

5. Discussion. In Theorem 4.3 we see that the portian of the parameter space
on which the risk of #(x,; u,_,) is lower than that of ¢(x,) and the magnitude of
this difference, depend on the nature of the sets A,. In most estimation problems
(for example, the case of Bernoulli trials which was mentioned in Section 3), the
sets A, (for reasonable choices of «) are sizable compared to Q x Q.

Another favorable property of the sequence {f(x,; u,_,)}, is that the s(¢) of
Theorem 4.3 does not depend on the parameter sequence. Therefore s(e) can be
calculated for any particular family {F(x, 6): 8€Q}. This allows us to set some sort
of “tolerance level” ¢, by using ¢(x,) for s < s(¢) and then #(x,; u,_,) for s = s(e).
This is also important in the following situation: If Q is bounded above, then the
sequence of parameters will approach a finite limit (as they are increasing). This
implies that E[uy(s;, ‘**, x,)—0,]* =0, and that u, is asymptotically, an exact
estimator of 6,. Unfortunately, unless something is known about the convergence
of the parameter sequence, it is not possible to know much about the risk of u at
any finite stage s.
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