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1. Introduction. Let
(1.1) L=Z;"=0aJDJ m>0,am5é0

be a linear differential operator with real constant coefficients and denote the
adjoint operator by

(1.2) L* =Y a,(~DY.
Let {z;:i=1,2,---, n} be a set of distinct real constants.

DEFINITION. An L-spline with knots {¢,} is a function xe C>*™~ 2 for which
(1.3) L*Lx =0

on each open interval (— o, t), (¢;, t;+,), (£,, 00). Hence an L-spline consists of
piecewise solutions of a 2mth order linear homogeneous differential equation
joined at the knots in such a manner as to maintain continuity of all derivatives
up to and including the (2m—2)th. If we were to require that xe C*"~!, then x
would satisfy (1.3) everywhere. Thus, an L-spline can be looked upon as the “most
differentiable” function which satisfies (1.3) on the appropriate open intervals
without satisfying it everywhere. Although operators of the form (1.1) are
sufficiently general for our present purposes, it should be pointed out that L-splines
are often defined and studied for other linear differential operators, in which case
the domain of definition of x is taken to be a finite closed interval. References [1],
[3] and [6] contain extensive bibliographies on splines.

Two common problems for which L-splines are solutions are the following:

(i) Curve fitting. Given data {(t;,y;):j=1,2,---,n} to find a function %(¢)
which minimizes

1.4) 2, (Lx)*dt
among all functions x in a certain class for which
(1.5) x(t) = y; j=12,,n.

If (1.4) is interpreted as a measure of the roughness of x, then £, if it exists, is the
smoothest interpolator to the data.
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(i) Smoothing. Given data {(t;,y;):j=1,2,--,n} to find a function £(t)
which minimizes the sum of (1.4) and

(1.6) Y e [x() = 1M x(6) — yi]

where B~ ! = [p/*] is a given positive-definite matrix. If (1.6) is interpreted as a
measure of the disparity of x with the data, then £, if it exists, is a compromise
between smoothness and fidelity to the data.

Conditions under which £ exists, is unique, and is an L-spline are presented in
Theorem 3.1 and Theorem 3.2 below for the smoothing and curve-fitting problem
respectively.

The literature on spline functions is silent concerning criteria for selecting an
appropriate operator L for a particular smoothing or curve-fitting problem. In
practice the choice of L is based on computational convenience rather than
theoretical considerations. Although the question of what constitutes a “smooth”
function for a particular problem is necessarily subjective, it can be argued that a
choice of smoothness criterion should rely on prior knowledge of the underlying
system which generates the data. In this paper we present a stochastic model for
curve fitting and smoothing in which the selection of a smoothing criterion corres-
ponds to the specification of a prior probability measure over a function space. In
particular, we exhibit classes of prior distributions for which the Bayes’ estimate
of an unknown function, given certain (perhaps error-plagued) observations, solves
the curve-fitting or smoothing problem and is an L-spline.

2. The stochastic model. Consider a real random function {x(¢), —o0 <t < 0}
to be estimated based on prior information and a finite set of observations, perhaps
containing random error. The prior information is summarized by a prior distri-
bution on {x(#)} which is Gaussian with covariance K(s, t) and, without loss of
generality, with mean zero. At fixed points ¢, - -, t,, the random variables y; =
x(t;)+e; are observed, where the vector of measurement errors e; is independent
of {x(¢)} and distributed normally with mean zero and covariance matrix
B = [b};], which is assumed known. For fixed ¢, the estimate

(CR)) £(0) = E[x() | (1), -+, y(t)]

of x(¢) is taken to be the mean of the marginal conditional distribution of x(¢),
given the observations. (Formally, £(¢) is the solution to a standard filtering-
prediction problem.)

Let us now state two known results which are needed in the sequel:

LEMMA 2.1. Let {&;} be a set of n linearly independent elements of a real Hilbert
space A, let M be the matrix [{;, &,>] of inner products among the {;, and let
{y;} be a set of n scalars. Then the unique element tie # which minimizes {u, uy
subject to {u, &;> = y; for all j is

(2'2) ﬁ=(él"”’én)M-ﬁl(yl’“.’yn)/’
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LEMMA 2.2. Under the hypotheses of Lemma 2.1 if B = [b;,] = [b/*]™ " is a positive
definite real matrix, then the unique element i €  which minimizes

(2.3) Y3 [Cus €55 =y b [<u, & — yid +<u, ud is
2.4) f=[&, LM +B] [y, vl

As an application of Lemma 2.1, we derive the well-known formula for £(¢)
given by (2.1). Fix ¢ and let 5 be the (finite dimensional) space spanned by the set
of random variables {x(¢), x(¢;), e;} with inner product <z, z,» = E[z, z,]. Then,
if K is the covariance kernel, we have

iy = (1), X(8)) +<e;j, e
= K(t;, )+ by )

and, if £(¢) is to be the conditional expectation of x(¢) given y,, -*-, y,, we must
have the relations

(2.53) E[£()—x(t)]y; =0 j=1,2,n,
which are equivalent to the constraints
(2.5b) XD,y = K(t;, 1), j=1,2,,n.

Geometrically, (2.5a) states that £(¢) is on the line through x(#) perpendicular to
the hyperplane spanned by {y;}. But £(¢), the projection of x(¢) onto this hyper-
plane, must lie in the hyperplane, and hence is the element in 5# of minimal norm
subject to (2.5b). Therefore, by Lemma 2.1,

(2.6) 20 =[yi>y2 a2+ B]7 K@ 0,0, K, D) where
Z = [K(tj, tk)]'

For fixed observations y,, y,, """, ¥,, we can consider £(¢) defined by (2.1) as a
function of z. We then ask for what, if any, prior covariance function K (depending
on L) will £(¢) solve the smoothing problem (or, for B = 0, the curve-fitting prob-
lem). Reasoning heuristically we note that if functions x and z are related by
x(t) = z(t+1,), t, fixed, then [(Lx)*dt= [(Lz)*dr. Hence if K(s,t) is a prior
covariance function which corresponds to (1.4) as a roughness criterion, then K is
shift invariant. We therefore restrict our attention to stationary Gaussian processes.

3. The theorems. We use the following notation: We denote by F the Fourier—
Plancherel transform, which is an isometry (1-1 onto inner-product preserving
map) of £,’ onto .£,’ defined by

(Fg)(A) = @2m)~* |2, e g(t) t

where &," = {u+iviu,ve £,}. If # is any Hilbert space of functions then,
following Aronszajn [2], we call # a reproducing kernel Hilbert space (RKHS)
with kernel K(s, t) if K(s, , )€ for all fixed s,, and {f(¢), K(sq, 1)) = f(s,)for all
fe#.
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LemMA 3.1. Let  be any Hermitian bounded function in & ,’ which is non-zero
almost everywhere and define & = {fe % ,:(F~ ')y e¥£,'}. Define the mapping
M: A — L, by Mf = F[(F~f)/Y). Then A is an RKHS with inner product

(3.1 r@Dw =20 (Mf)(Mg) = (Mf, Mg,
and with kernel
3.2) K(s, 1) = (2n) "' [2,, &9 y(D)|* dA.

Proor. To show " is a Hilbert space with inner product (3.1) it is sufficient to
show that M:# — %, is 1-1 and onto. Since Mf=0=F[(F f)/y]=
0=(F )Yy =0=F " 'f=0=f=0,wehavethat Mis 1-1. Forany he %, , define
f=FY(F 'h)]e &, ; hence M is onto. To prove that K(s, t) is the reproducing
kernel we note that for fixed so, [F ™ K(so, t) /¥ = Qn) e~ "M)(1)e &£,’; hence
K(sy, t)ed . Also, for any fe#", we use Parseval’s theorem to derive

SO, Ko 000 = KFLFTNINT,  FICR) ™ e ™ (D)),
= Q) HKETY, TN (DDgy
=(Q2n) 2, (FTY)A)- e dA
= f(s0)

where the inner products on the right-hand side are in &,’.

LEMMA 3.2. Under the hypotheses of Lemma 3.1 let {x(t), —c0 <t < oo} be a
real stationary Gaussian stochastic process with mean zero and spectral density
f0)=Qn) Y|P If y;=x(t)+e; where e;~ N, B), B=[b;]=[b"]"!
known, and the e; are independent of {x(t), —co <t < o0}, then the function %(t)
defined by (2.1) is the unique function xeX" which minimizes the sum of (1.6) and

© . (Mx)*dt.

Proor. Use (2.6) and Lemma 3.1, and apply Lemma 2.2 with # =X,
é,l:K(t,l’ t) and M=2.

LEMMA 3.3. Under the hypotheses of Lemma 3.2 except that now e; =0 for all
j (i.e. B=0), we have that %(t) is the unique function xeX which minimizes
2 o(Mx)* dt subject to the constraints (1.5).

Proor. Use (2.6) with B=0 and Lemma 3.1, and apply Lemma 2.1 with
H =A,C;=K(;,t),and M = .

Following Parzen [5] and Hajek [4], we note that the space ¢ is isometric to
the space Z of random variables generated by {x(¢)} under the correspondence

UeX o feH <f(s) = E[u-x(s)].

To relate the foregoing theory to L-splines, we seek a function  for which M

is a differential operator L of the form (1.1). Let P be the complex polynomial

(33) P() = Yo a id)',
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where the real coefficients a; are as in (1.1), and let (1) = 1/P(4) so that {x(¢)} has
spectral density

(3.4) f) =Qm)~ W@)|]? =)~ PW)|?
and covariance
(3.5) K(s,t) = (2n) "' |2, &9} P(A)| "2 da.

In order that y satisfy the hypothesis of Lemma 3.1, we shall assume that P(1) # 0

for all real A.
That a spectral density of this form does in fact lead to L-splines which solve the

curve-fitting and smoothing problems of Section 1 is the content of the following
theorems.

THEOREM 3.1. Let L, as defined by (1.1), be a linear differential operator with real,
constant coefficients. Let the stationary Gaussian random function {x(t), —oo <
t < 00} have mean zero and spectral density f defined by (3.4) and (3.3) where P has
no real zeros. If y; = x(t;)+e; where e;~ N(0, B), B = [b;,] = [b’*]"" known, and
the e; are independent of {x(t), — o0 <t < o}, then the function %(t) defined by (2.1)
is

(a) an L-spline with knots {t;}, and

(b) the unique function xe ¥, having absolutely continuous (m— 1)th derivative
which minimizes

Yhi-o Y=o [x(tp)— yj]bjk[x(tk) -]+ jiooo (Lx)*dt,
and hence solves the smoothing problem.

If we consider the Bayesian estimation problem in which the measurements have
no error, we again get that £(¢) is an L-spline. In particular, we have the following
result:

THEOREM 3.2. Under the hypotheses of Theorem 3.1 except that now e; = 0 for all
Jj(i.e. B=0), we have that X(¢) is

(a) an L-spline with knots {t;}, and

b) the um'que unction xe & hauing absolutely continuous (m— 1)th derivative
2
which minimizes

(3.6) |20 (Lx)?dt
subject to the constraints
3.7 x(t) = y; j=12,-,n,

and hence solves the curve-fitting problem.

Let X' = {f:feZL,, f™ 1 is absolutely continuous, Lfe ¥,} with inner

product
fi@dw =20 (LFNLg) = <Lf, LgDg,.
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To prove part (b) of Theorems 3.1 and 3.2 we must show that (3.3) and (3.4) imply
A =" and M = L. This assertion requires the following lemma.

LemMA 3.4. For all feX"" we have
(3.8) F~YLf)=P-(F7'f)
where P is given by (3.3).

Proor. Define
o) =exp[—-(1-1»)7"] if <1,
=0 if |zt
so that for j=0,1,2, -+, ¢ is absolutely continuous and vanishes outside of
[—1, 1]; hence the same is true for the convolution ( f* @)’ since

(3.9 (fro) =fxp=fx0¢".
Therefore, we can integrate by parts to get

(3.10) FTUL(fx@)]=P-F'(f+9)
=P-F Y -Flo.

But by (3.9), we have '

(3.11) FTUL(f+ )] = FT'[(Lf) * ¢]
= F'(Lf) F'o.
Equating (3.10) and (3.11) proves the lemma since F ¢ # 0.

Lemma 3.4 implies #" < #" and Mf = Lf for all fex”'. To show A <" it
is sufficient to show that K(s, , 1) for every s, . By (3.5) we have K(sy,t)e &,,
K™~ 1(s,, 1) is absolutely continuous and LK(s,,t) = F[(2rn) *e”**P(}) e &Z,,
thus completing the proof of part (b) of Theorems 3.1 and 3.2.

To prove part (a) of Theorems 3.1 and 3.2, we denote K(s, t) by K(t—s). By (2.6),
it is sufficient to show

(3.12) K(t)eC*~2,
(3.13) L*LK(t)=0 on (0, ),
(3.14) L*LK()=0 on (—o00,0).
Formal differentiation of (3.5) 2j times yields
. O T (7) S A
3.15 @) = — i d
(3.15) K1) 27J_we P

and (3.15) is valid if (i1)’/P(A)e &,’, which is true if j £ m—1 since P is a poly-
nomial of degree m. Hence Ke C?™~2. To prove (3.13), we write

P@) = [}-1 (id—c))

and let 4 denote the set of ¢; with positive real part.
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Then defining

(3.16) 0N =Tlc,ealid—cple,ea(—id—c))
we have that Q(1)0(4) = P(1)P(A) so that by (3.5)

<) eit).
G147 =5 ) . emow

If N and N* are the operators defined by formally replacing i2 by D in Q and Q
respectively, then N*N = L*L. For fixed ¢t > 0, (3.17) yields

© itA
e £}

1
(3.18) N*K(0) = 5 oD di,

and for z in the upper half-plane, 1/Q(z) has no poles and |e"?| < 1; hence for > 0
integration by residues yields N*K(¢) = 0. A similar argument establishes (3.14).

4. Interpretation of the theorems. The relationship between Bayesian estimation
on a’stochastic process and (a) curve-fitting or (b) smoothing is expressed by
Theorems 3.2 or 3.1 respectively, whereby a choice of smoothing criterion L is
equivalent to a prior probability measure for a random function. The restriction
to Z, in parts (b) of the theorems has a natural interpretation. Loosely speaking,
for ¢ close to the points ¢; at which data are available, the conditional expectation
X(¢) is more closely influenced by the observed data. Conversely, for large |t|, (@)
is close to the mean, zero, of the prior distribution. The restriction to ., in parts
(b) of the theorems expresses the rate at which £(¢) approaches zero as |t[ — 00.

An alternative way of characterizing statistically a well-behaved (i.e. smooth)
function x is the extent to which x(s+¢) is predictable from knowledge of x(s) for
small ¢. This characterization is equivalent to the rate at which the conditional
variance, K(0)— K(z), of x(s+1¢) given x(s) approaches zero as ¢t — 0, i.e. the largest
r, say r,, for which K®(0) exists. From (3.15) we have r, = 2m—2, which is the
largest r for which £¢(¢) is continuous. Hence smoothness in this statistical sense
is related to continuity of higher-order derivatives of the smoothing function £(¢).

The class of L-splines for which L = D™, m > 0, called ordinary (or polynomial)
splines, is used almost exclusively (especially when m = 2) for applied smoothing
and curve-fitting problems. A D™-spline consists of piecewise polynomials of
degree 2m— 1. It is meaningful, therefore, to inquire about the prior information
structure implied by using D™-splines. Let 4 be any set of functions and let p(4),
if it exists, denote the prior probability of 4. For any constant ¢, let 4, = {f:f=
g+c, geA}. Since D™(f+c) = D™f, adoption of a smoothing criterion D™ would

imply
4.0 HA+c) = p(A)

for all measurable A4 and real c¢. Clearly (4.1) cannot hold in any non-trivial
probability space; hence using D™-splines for curve-fitting or smoothing implies an
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improper prior. Since P(A) = (i4)™ has the real root A = 0, D™-splines are excluded
from our treatment in Section 3.

Let us approximate the operator D™ by L, = (D+a)™ for a > 0. Then since
P (A) = (iA+a)" has no real roots, the theory of Sections 2 and 3 can be applied
to define the conditional expectation £,(t) which satisfies the conclusions of
Theorem 3.1 or 3.2 with L = (D +a)™. It can be shown that

ﬁo(t) = lima—>0 xa(t)

exists for all ¢ and that £,(¢) is a D™-spline. For ¢t < ¢, and ¢ > ¢,, £,(¢) reduces to a
polynomial of degree m—1. Moreover, among functions having absolutely con-
tinuous (m— 1)th derivative, £,(¢) solves the curve-fitting or smoothing problem
where L = D™. Although £,(t) € £ ,(— o0, 00), it is not true that £,(¢) € £ ,(— 00, )
(since %,(?) is a piecewise polynomial). Under a Bayesian statistical interpretation,
D™ corresponds to an improper prior in which, for fixed ¢, x(¢) has infinite prior
variance (hence one no longer requires that lim, £,(#) = 0) and the estimates £,(¢;)
are unbiased.

If in (1.4) we replace the infinite limits of integration by finite limits and L by
D™, the solutions to the corresponding minimization problems are well known to
be ordinary (polynomial) splines with 2m—2 continuous derivatives. In a forth-
coming paper the present authors consider a stochastic model leading to these and
more general spline functions.
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