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FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES—III

By MARTIN Fox! AND HERMAN RUBIN?

Michigan State University and Purdue University

1. Introduction. Let {Y,} be a stochastic process where either k=1, 2, -
or k=0, +1, +£2, ---. Suppose there exist a time #» and a state & such that
P(Y,=¢) > 0. In this case, the rank at time » of the state ¢ is defined in [3],
although the notion was first considered by Gilbert in [5]. The definition is such that
a state of rank 1 is Markovian.

Let {X,} be a second stochastic process indexed as {Y,}. Gilbert [5] proved (but
stated in far less generality) that if v,(¢) and u,(6) are the ranks at time » of the
states ¢ of {Y,} and d of {X,} respectively, and if ¥, = f(X,), then

(L.1) vu(e) £ Zf,,(ﬁ)=el1n(5)a

Dharmadhikari [1] considered the case of stationary {Y,} with all states of finite
rank and found an additional condition in order to guarantee Y, = f(X,) for {X,}

stationary and Markovian. The present authors [3] provided an example showing

Dharmadhikari’s result cannot be obtained without some condition beyond
finiteness of rank.

In the present paper we extend the definition of rank by eliminating the con-
dition P(Y,=¢)> 0 and generalize Gilbert’s, Dharmadhikari’s, and our own
results.

Section 2 contains the extension of the definition of rank. Sections 3 and 4
contain, respectively, the extensions of Gilbert’s and Dharmadhikari’s results.
The extension of the Dharmadhikari-type result to the nonstationary case is
discussed in Section 5. Section 6 contains an outline of the extension of the work
of the present authors [4].

2. The extended definition of rank. Let U, be the state space of {Y,} at time k
and set V,=xU,_, xU,_;and W,=U,, X U,;, X --. Let &,, &, and
T, be, respectively, the g-algebras of measurable subsets of U,, V, and W,.
Assume all &/; (and hence &, and J,) are separable. For 4e«,, Se &, and
TeT, let

Pn(S5A5 T) = P(( T Yn——Z’ Yn—l)esa YnEA’ (Yn+1, Yn+2, o )ET)

Let 0,(4) = P,(V,, A, W,) and
dP,S,-,T)

pa(S,e, T) = 40,
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We assume p, be a bona fide conditional probability on &, x & ,. This is guaran-
teed if we assume conditional expectations are regular.

We say that C,, is the set of states of rank v at time n if there exist linearly
independent functions g; on &, x C,, and linearly independent functions #; on
T, xC,, (i=1,--,v) such that

@1 pi(S,e,T) =YL, g8, e)h(T, 2)

forall Se¥,, Te 7 ,and ¢e C,, and C,, is maximal (except for a set of measure 0).
Note that the C,, are only defined up to sets of measure 0.

Let ee C,,. It is easy to see that there exist S,;e ¥, and T ,€7,(i=1,--,v)
such that the matrix (p,(S,;, &, T;;)), is nonsingular and any larger matrix of this
form is singular. Conversely the condition of this paragraph implies (2.1). This
condition is the obvious parallel to the condition given in the earlier papers.
Furthermore, we obtain a more explicit version of (2.1), namely,

(22) pn(sa &, T) = Z:: 1 ai(sa 8)pn(Sei’ &, T)

which will be useful in Section 4. Note that the a,(-, ¢) are signed measures on &,,.

The following lemma shows that the S,; can be chosen so the functions
Dp.(S.;, +, T) are measurable. This implies that the a/(S, -) can also be taken to be
measurable.

LeMMA 2.1. There exist measurable sets D,,; such that C,,= U= D,,; and a
choice of the S,; independent of € D,,,;.

ProoF. Let &5, and 5, be countable bases for &, and J,, respectively,
which are closed under finite unions and intersections and complements. Now (2.1)
holds for Se ¥y, and Te J 5, and no fewer terms will suffice since, in general,
.S, &, T) can be obtained by limits from its values on ¥z, X I 5,. Let D,
be given for k <j. Let Dy,,; = Uk<j Dy - If C,, ~ D,,; has measure 0, the decom-
position has already been achieved. If not, for R a v-element subset of ¥, let

Ep={e:p,(S,e,T) isofrankvwhen SeR,TeJ g,}nC,, ~ D,,;.

Let D,,; = Eg for some R such that Q,(D,,;) > % supgr Q(Eg) and let S;; be the
elements of a corresponding R in some order. The functions a;(S, &) are now
uniquely determined and are readily seen to have bounded Radon-Nikodym
derivatives with respect to p,(-, &, W,) and hence can be extended to all of &,.
A similar limit argument shows that (2.2) holds for all Se ¥, and Te 7 .

3. Generalization of Gilbert’s result. Let {X,} be another process with Y, = fi(X})
for measurable £, and let P,*, C, and Q,* be defined in terms of {X,} analogously
to P,, C,, and Q,, respectively. For fixed u = (u;, **, i) let B,,, = U, be such
that, for all ¢€B,,, and j =1, -+, m, there exists §,;€ Cy, , for which ¢ = f,(5,)).
The desired generalization of Gilbert’s result is:

THEOREM 3.1. If {X,} satisfies the assumptions of Section 2, then B,,,, = U*-, C,,
where A=Y "7_1 ;.
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ProOF. First note that, by Lemma 2.1, the C), are measurable. Let 4 = By
A* =f7Y(4) and 4,* = A* (N C),. Assume 4 and, hence, 4* and 4,* are measur-
able. For Cy, let the functions analogous to the g; and 4;, respectively, be g and
h};. Finally, let i = max ;. Then, since 4* =J5., 4,* we have

(31) P,,(S,A, T) = '3:1 Pn*(S*a Av*a T*)
=01 fa 2t=19u(S*, O)h(T™, ) dQ,*(5)

where (-, X,_,, X,-)eS* if, and only if, (---, Y,_,, Y,_)eS and T* is
defined similarly. Let g;(S, &) = g,,(S*,9,)) and h;(T, &) = b(T*, 8,;) for
Jj=1,""",m. Since 0, (4) = >Y’5-1 0,*(4,*) it follows that (3.1) becomes

P(S,A,T) = IA Zf= 1 Ev,:vzzyi 1 gji(sa 8)hji(Ta £)dQ,(e)
= _fA ZT: 1 Zri 1 gji(S> g)hji(Ta €) dQn(s)'
This completes the proof.

4. Generalization of Dharmadhikari’s result. With the exception of proofs of
measurability, the methods of this section are straightforward generalizations of
those developed in [1]. To facilitate comparisons of steps, and whenever it is
appropriate, formulae will be numbered in the form (x, y) where x will be our
sequential number and y will be the sequential number in [1]. In referring to
previously derived formulae only x will be used. A similar notation will be used
for lemmas, etc.

We now assume {Y,} is a stationary process so we can drop the subscripts n
and k in all notation introduced in Sections 2 and 3. We also refer to the rank of
a state without reference to time. The assumptions (i) that o/ is separable and (ii)
that p is a bona fide conditional probability are retained. Note that (2.2) is the
parallel of (1.1) in [1].

Take a fixed determination of the C, and let vw(g) be such that e€C,y,.
Let o(S) = (a,(S, €), ", av(e)(S> ¢)) and w(T) = (p(Se1,8 T), """, p(Sev(e) .6 T).
Assume the S,; are chosen so « (S) and = (T') are measurable. Recall that Lemma 2.1
guarantees that this is possible. Now (2.2) can be rewritten as

(4.1,12) P(S, e T) = (a(S), n(T)).

Let a, = {0,(S): Se &} and n, = {n(T): Te T }. Let ¥(rn,) and %(a,) be the closed,
convex cones generated by 7, and «,, respectively.

LemMma 4.1, 1.1. For every ¢, both €(a,) and €(n,) have dimension v(g).
PrOOF. Asin [1].

For any cone € we let ¢ " be its dual cone.

LEMMA 4.2, 1.2. Let be[%(n,)]*, b # 0. Then, (b, n(W)) > 0.

Proor. Now (b, w(:)) is a measure on Z . Hence, (b, n(W)) =0 implies
(b, n(T)) =0 for all Te J so that b_| €(rn,). But then b = 0 by Lemma 4.1.
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We require notation for the analogy to what occurs in [1] when sequences
containing two specified states are used as arguments. The functions used so far
have been Radon-Nikodym derivations with respect to Q evaluated at the state
at one time and are signed measures with respect to their other arguments. Hence
it is natural to take another Radon-Nikodym derivative. We assume that two-
dimensional derivatives exist with respect to Q x Q. Let

al(S,e) = (iij%'—’ﬁ)(s) for j=1,,vu);
. _dp(S,e,-x T)
p (S»E’#’ T) - dQ (ﬂ)’

¥ T) = (P (S t, T), 5 p*(Serieyp 81, T));
au*(S9 8) = (a:‘i(sﬁ 8), Tt a:v(”)(s, 8))5

and let A4,, be the matrix with component a;(S,;, €) in its ith row and jth column.
We have the alternative expression

dP(S,-,- x T)
i@ x Q)

so that p*(S, -, - T) is measurable. Furthermore, the choice of the S,; in Lemma 2.1
guarantees measurability of p*(S.;, -, -, T). From stationarity

dp(S x -, u, T)
dQ

the right side of which, by (2.2), is equal to Y %) ai (S, e)p(S,,, u, T). Setting
S = S,; this reduces to

(4.2,1.4) 7 *(u, T) = A, m,/(T).

p*(S,e,u,T) = ()

p*(S,e,u, T) = (e)

Hence there exists a measurable determination of 4, .
Taking inner product with respect to b on both sides of (4.2) we obtain

4.3, 1.5) (b, 7, (1, T)) = (bA,,, 1, (T))
for all be E™® and Te J.
LEMMA 4.3, 1.3. For every ¢, pe U and Se & we have a(S)A4,, = a,*(S, €).
Proor. From (2.2) and (4.3) we see that for every 7€ J we have
(@(S) A gy 1u(T)) = (2(S), 7. *(11, T))
=p*(S,e,n, T)
= (0, *(S, €), m,(T)).

This and the fact that ¥(n,) has full dimension complete the proof.
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LEMMA 4.4. For each e€ U let [4(n,)]* be polyhedral and generated by N(g) non-
zero vectors fgy, **, Bengey - For j > N(e) set f,; = 0. Then, the B,; can be selected
so that for each j = 1,2, -+ the functions f3.; on €, to E* are measurable.

Proor. By the separability of 7 there exist T, T,, ---€J independent of &
such that the n(T') are limits of linear combinations of the (7). For the remainder
of this proof S with or without super- or subscripts will denote a cone generated by
a rational sphere (rational center and radius). Note that a face of %(n,) can be
identified by finding S such that (i) there exists i for which n(T;)eS, (ii) there
exists $* = § such that all n(7T;)¢ S* and (iii) if S;, S, = S contain no n(T),),
then the convex hull of S; U S, contains no (7). In this case we will say that .S
establishes a face of €(n,). Fix q¢ R"® for all &. Here R'® is v(e)-dimensional
Euclidean space. If S establishes a face of %(rn,) let (S, ¢) be the corner of
[€(n,)]* orthogonal to that face. Let (S, €) = g otherwise. With the obvious
o-field for R*® U {q}, we see that ¢(S, ¢) is a measurable function for fixed S
as ¢ varies over %, for each v. This completes the proof since there are only count-
ably many rational spheres.

LEMMA 4.5, 2.1. For each ¢€ U let [€(rn,)]* be polyhedral and generated by N(g)
non-zero vectors f,;. Let r,(T) = (B,;, n(T)) for all Te 7. Then,

(i) the B,; can be chosen such that P.; is measurable and for all ce U and
j=1,-+-, N(e) we have

(4.4,2.1) (W) = 1;

(ii) there exists r)y(u, T) = @/dQ)r (- x T)u) and mg; 20 (j=1,---, N(g);
k=1,-+, N(u)) such that the m. ; ., are measurable and

(4.5,2.2) ri, T) =Y Y8 my; e ru(T).
Furthermore if the r,; satisfy (4.4), then
(4.6,2.3) fud ¥ m,; 4 dQ(u) = 1.

PROOF. (i) For fixed ee U the ,; are defined only to multiplicative constants and
(Bej, m(W)) >0 by Lemma 4.2. The functions of ¢ which normalize so that
(Bej, m(W)) =1 are continuous in 7,(W) and, hence, are measurable. Thus,
measurable B.; remain measurable after normalization.

(i) Now r,;(-) and, hence, r,;(- x T) are measures. Furthermore, (- x T) < Q
so r;(+ x T) < Q and rJi(u, T) exists.

From (4.3) we obtain

(47’ 24) (ﬂej Asu’ nu(T) = (ﬂej’ ns*(:ua T))
= rip, T) 2 0.
Hence, B,; A,,€[%(n,)]" so there exist mg; . = 0 such that

(48, 25) ﬂejAeu = lecvgtl) mej,ukﬁuk'
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We have seen that B ; and 4 are measurable so that also 8 ; A4  is measurable.
There is a unique representation (4.8) of B,;4,, in terms of f,,, -, ; for the
minimal / < N(w). The m,; ,, for this representation are continuous in f,; 4., and
Bk so that the m.; ., so chosen are measurable.

Taking the inner product of the expressions in (4.8) with n,(T) and applying
(4.7) yields (4.5). If (4.4) holds, setting T'= W in (4.5) we obtain

(4.9,2.6) o W) = Y0 mj -
Hence,
Jod e m,; e dQu) = [ riu, W)dQ(u) = r (W) =1

which proves (4.6).

Assume the conditions of Lemma 4.5 hold. Since a(V)e[#(n,)]*, there exist
mP20(j=1,--, N()) such that
(4.10, 2.8) 0 (V) = YN m@p, .
The existence of a measurable choice of m'9 follows in the same way as for m.;, .,
and we assume this choice has been made. Applying (4.1), (4.10) and (4.4) we
obtain p(V, &, W) =YY m . Let
(4.11,2.9) m{FD = [,y N m ”) Vm; . AQ(1)
and m{)"=mQ)p(V, e, W) for I=0,1,---. Clearly the m% and, hence, the

m®”* are measurable. Furthermore, mﬁ’} 2 0 and )&} m‘”‘—l There exists
a weak —* cluster point m.; of the m{)" for which m¥ is measurable and

N(e)
ZJ lm

Fmally, m; =me*jp(V, g, W) is the density with respect to Q x A (A being
counting measure on the integers) of the stationary distribution for the Markov
process with transition function given by

g(e, ia A)\= Z;O— 1 j(u Jj)eA mg; S dQ(/")
LEMMA 4.6,2.2. For [ =0, 1,2, - and every e U we have Y 1<) m$) B, = a (V).

ProOF. By (4.10) the result is true for / = 0. Assume it is true for / =v. From
(4.11), (4.8) and Lemma 4.3 we obtain

(4.12) ZIIcV(ul) m;(zf D ke = ju 27(61) m(;) Pty Mg i B AQ(E)
= jU (XE(I/ )Aeu dQ(ﬁ) = IU au*(l/, 8) dQ(S) = au( V)
and the proof is complete by induction.

LEmMMA 4.7,2.3. Let g, m, and f be as defined above. Let { X, } be a stationary Markov
process with state space U *_ transition function g and initial distribution given by
the density m,; with respect to Q x A. Then, { f(X,)} has the same distribution as {Y}.

ProOF. From Lemma 4.5 we see that ) Y9 m,; B,; = (V) so that inner product
with 7,(T) yields

(4.13,2.11) NO m,ir (T) = p(V, e, T).
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For fixed n let T < X"_, U. It suffices to show that for every n we have
(4.14,2.12) PI(f(X3), -~ S (Xnr1))eE T|X1 = (&,))] = re (T % W)

for, then, (4.13) implies that {f(X,)} has the same distribution as {Y.}.
For n = 1, from (4.9) we obtain

rej(T X W) = IT r::kj(:u’ W) dQ(#)
= [ YN8 m,; u dOw)

so that (4.14) follows. Assume (4.14) holds forn =v. Let T = X!-;Uand 4 = U.
From (4.5) and stationarity we obtain

P[(f(X2), - .f(X,42))EA X T| X, =(s))]
S PLO(X ), o f (X)) € T | Xo = (1, K] Q)
= [ YN my e r (T x W)dO(u)
= [qriu, Tx W)dQ(u)
=r(Ax Tx W)

which, by induction, completes the proof.
Thus, we have proved the

THEOREM 4.1, 2.1. Let {Y,} (k=0,1,2---or k=0, & 1, +2, ) be a stationary
process in which the o-field on the state space is separable, conditional probability
is regular and transition probabilities are absolutely continuous with respect to
marginals. For each state ¢ assume the rank of ¢ is finite and that [€(n,)1" is polyhedral
and generated by N(g) nonzero vectors. Then, {Y,} is a function of a stationary
Markov process. The state ¢ is the image under this function of N(g) states of the
Markov process.

The analogue of Corollary 2.1 of [1] follows immediately. In fact, as in
Dharmadhikari’s case, we can apply the condition of rank 1 or rank 2 to some
states (in addition to the full conditions of the theorem) and conclude that these
states are images of 1 or 2 states, respectively, of {X.}.

5. The nonstationary case. In Section 4 stationarity of {¥,} was used in only
two ways: (i) to simplify notation and (ii) to obtain stationarity of {X,}. One would
expect that the result should extend to the nonstationary case through essentially
the same proof. This is indeed the case through Lemma 4.5 with the modification
of all notation by adding a subscript for the time parameter. In place of the
stationary density m,; with respect to Q x A we require densities »1,;,, with respect
to Q, satisfying

(51) ’nej; n+1 = 5U,. iv=(pi) ’nui; n '"ui,ej; n dQn(,u)

where m,; ,;,, is the transition density. In addition we must show these marginal
and transition densities yield a process {X,} and functions f; such that {fX)}
has the same distribution as {Y,}.



FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES—III 479

Define m,;, , by the extension of (4.10). For n > 0 use (5.1) for the definition of
mg;,,. If needed, use the backwards analogue fo (5.1) for n < 0. The extensions
of Lemmas 4.6 and 4.7 follow. Thus we may prove the extension of Theorem 4.1.

THEOREM 5.1. Let {Y,} (k=0,1,2,-- or k=0, £1, +2,--) be a process in
which the o-field on the state space at each time is separable, and conditional prob-
ability is bona fide. For each state ¢ and each time n assume the rank of ¢ at time n
is finite and that [¢(n, ,)]* is polyhedral and generated by N,(¢) nonzero vectors.
Then, there exists a Markov process {X,} and functions f such that Y, = f(X,) for
each n. The state ¢ is the image under f, of N,(¢) states of {X,} at time n.

6. Countable images. Dharmadhikari’s condition that [€(n,)]* be polyhedral
guarantees that each state is the image of a finite number of states. In [4] the
present authors showed that without this extra condition one could split the
finite rank states at a finite number of times into a countable number of states.
The proof in that paper is correct even in the case of the more general definition
of rank in this paper. Only measurability arguments need to be added. We will
use the notation of [4] in outlining the measurability arguments.

Although the notation does not indicate this, the functions ,Bj(i') depend also
on &, the functions y;"~" depend also on ¢_, and ¢ and the functions &,
depend also on ¢,. These functions must be shown measurable in these arguments.
But they are continuous functions of the functions (", 01-1: and ") respec-
tively and the latter functions clearly have the desired measurability properties.
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