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MAXIMUM LIKELIHOOD ESTIMATION OF A
UNIMODAL DENSITY FUNCTION!

By EDWARD J. WEGMAN

University of North Carolina

1. Introduction. Robertson [5] has described a maximum likelihood estimate of
a unimodal density when the mode is known. This estimate is represented as a
conditional expectation given a g-lattice. Discussions of such conditional expecta-
tions are given by Brunk [1] and [2].

A o-lattice, Z, of subsets of a measure space (Q, <, p) is a collection of subsets
of Q closed under countable unions and countable intersections and containing
both ¢ and Q. A function fis measurable with respect to a o-lattice, %, if the set,
[f> al, is in & for each real a. If Q is the real line, o is the collection of Borel
sets, and u = A is Lebesgue measure, let L, be the set of square-integrable functions
and L,(%#) be those members of L, which are measurable with respect to Z.
Brunk [1] shows the following definition of conditional expectation with respect
to & is suitable.

DErFINITION. If fe L,, then g € L,(%¥) is equal to E(f | £), the conditional expecta-
tion of f given %, if and only if

(1.1) if-0(9)di=[g-0(g)da

for every 0, a real-valued function such that 6(g)e L, and 6(0) = 0 and
(1.2) [(f—g)hdi<0

for each he L,(%).

The collection of intervals about a fixed point, m, together with ¢ is a o-lattice
which we denote as #(m). A function, f, is unimodal at M by definition if f is
measurable with respect to £(M). It is not difficult to see that this is equivalent to
/S nondecreasing at x < M and f nonincreasing at x > M. If fis unimodal at every
point of an interval, I, then we call I the modal interval of f and we shall write
Z(I) for the lattice of intervals containing /. Clearly, f has modal interval I if and
only if f'is measurable with respect to #(I). The center of I will be called the
center mode.

Robertson’s estimate of the unimodal density is maximum likelihood where
the mode is known. The present solution is a maximum likelihood estimate when
the mode is unknown. A peculiar characteristic of Robertson’s estimate (and also
a related estimate found in Wegman [6]) is a “peaking” near the mode. Figure 1 is
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FiG. 1. Triangular density (broken line) together with the maximum likelihood estimtae (solid
line) when the mode is known to be .5.
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FiG. 2. Triangular density (broken line) and the maximum likelihood estimate (solid line) with
modal interval of length .0234375.
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TABLE 1

Interval, 1 Value of Estimate on I
(—o0, .011) . .0
[.011, .135) .360
[.135, .248) .490
[.248, .264) 674
[.264, .345) 1.37
[.345, .414) 1.59
[.414, .432) 2.04
[.432, .448) 2.17
[.448, .493) 2.34
[.493, .500) 4.02 .
[.500, .505] 4.54
(.505, .510] 2.26
(.510, .553] 1.74
(.553, .583] 1.48
(.583, .834] 973
(.834, .890] .605
(.890, .915] 427
(915, .977] .357
(977, o) .0

TABLE 2

Interval, 1 Value of Estimate on I
(—o0, .011) .0
[.011, .135) .360
[.135, .248) .490
[.248, .264) 674
[.264, .345) 1.37
[.345, .414) 1.59
[.414, .432) 2.04
[.432, .448) 2.17
[.448, .493) 2.34
[.493, .518] 2.37
(.518, .553] 2.16
(.553, .583] 1.48
(.583, .834] 973
(.834, .890] .605
(.890, .915] 427
(915, .977] 357

(977, ©o0) .0
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based on a Monte Carlo sample of size 90 from a triangular density. This is
Robertson’s maximum likelihood estimate with mode known to be 1. To eliminate
the peaking, at least partially, we shall require our estimate to have a modal
interval of length ¢, where ¢ is some fixed positive number.

This also will have the effect of uniformly bounding the estimate for all sample
sizes by ¢ 1. Figure 2 is the estimate as described in this paper. The modal interval
extends from .493 to .518. In this estimate, .493 is an observation.

Table 1 is the tabulation of the density drawn in Fig. 1. Table 2 is the tabulation
for Fig. 2. The reader should be warned that these computations were carried out
on a computer and rounded. Thus, in the case of Fig. 2, ¢ is actually .0234375.
Both estimates are based on a sample of size 90.

2. The estimate. Let us assume y; <y, < *** <y, is the ordered sample selected
according to a unimodal density f. Of course, with probability one strict inequality
holds. Let L and R be points such that A[L, R] = R—L =¢. Let I(n) and r(n) be
the subscripts of the largest observation less than or equal to L and the smallest
observation greater than or equal to R respectively. If # is any estimate which
has [L, R] for its modal interval, define g(y) by

9(») =h(yim)  YimSy<L
= h(.Vr(n)) R < y é yr(n)
= h(y) otherwise.

It follows that f= [[gdA]™!-g has modal interval [L, R] and has a likelihood
product no smaller than that of A. Similarly, any estimate, which is to maximize
the likelihood product, must be constant on every open interval joining consecutive
observations in the complement of [L, R], [L, R]°. The problem then is to find
an estimate which is constant on each of

Ay =[y1,2), Ay =[y2,¥3), ", Aymy = [J’z(n),L),
Aymy+1 = [L,R], Aymy+2 = (R»yr(n)]a Tt A= Yn=1>Yul-

Recall m = {(R+ L) is the center mode and Z([L, R]) is the lattice of intervals
containing [L, R]. Let &/, denote the o-field whose atoms are 4,, 4,, -, 4, and
(U%-14,)". Finally, let Z,([L, R]) be the intersection of Z([L, R]) with o/,. An
application of a theorem of Robertson [5] shows that the maximum likelihood
estimate is given by

fnm = E(énm l gn([l" R])) where énm = Z:l= 1 ni : [n”{(At)]_ 1. IA,-'

Here n; is the number of observations in 4; and /, is the indicator of 4;. Hence
we know the form of the maximum likelihood estimate given the location of the
modal interval. We wish to determine the location of the modal interval. The
following lemma shows that we need only consider a finite number of locations for
the modal interval.
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LeMMA 2.1. In determining the maximum likelihood estimate with unknown center
mode, we may assume that one of the endpoints of the modal interval lies in the set
{yl’ “.syn}'

The reader may verify that if neither L nor R arein {y,, -*-, y,}, an appropriate
shift of the modal interval will not decrease the likelihood.

There are at most 2n intervals of the form [L, R] where one of L or R belongs
to {1, ", y,}. If the modal interval is unspecified, compute 2n estimates Fomis
i=1,2,:-+,2n, corresponding to these 2n intervals. Calculate the 2n likelihood
products, L,,,, = [[}=1/um(¥;)- Select the maximum of these 2# numbers and let
f, be the corresponding estimate. Let m, be the center mode. (Notice that if two or
more of the L,,, are equal, we could have some ambiguity of definition of f,.
Let us adopt the convention of choosing f, to be the estimate with the smallest
center mode.) Clearly the likelihood product of f, is as large as that of any other
estimate.

Before closing this section, we note the following lemma that %,([L, R]) may
be replaced by Z([L, R)).

LeEMMA 2.2. The maximum likelihood estimate f,,, which is measurable with respect
to Z([L, R]) is given by E(§,m |;’£([L, R))), where §,,, is as before.

PROOF. Let us abbreviate for purpose of this lemma E(é,,m|;’£,,([L, R]) by f
and g,, by 4. We want to show /= E(g,, | % ([L, R])). Clearly, f is measurable
with respect to #([L, R]). Property (1.1) follows from the definition of f as
E(g‘|$,,([L, R])). Robertson [3] remarks that (1.2) may be replaced by

Jalg=f)dA<0 for AeL(L,R])

in the case of a totally finite measure space. Since f =0 and § =0 on [y1, y.), we
restrict our attention to the finite measure space defined by [y, y,]. We may
assume 4 is a closed interval, [a, b] and suppose

Vi2a<Yir1 SV and Y, Sy, <b =y
Then
Ja@=D A2 = Jtay, 1@ =D Aot [0y n G =1 dA+ [y 7 (G—F) d.

The center term of the right-hand side must be nonpositive by (1.2), since
Wi+ 1> ¥1€ 2L, R)). Thus, if {(§—F)dA >0, either

Jtayien@=D)dA>0 or [, ,,(g—f)di>o0.

Say the latter is the case. Then since f and § are both constant on > Yi+1ls
d¥;+1) > f(;+1). From this, it follows that

0< j[y,-,b] (ﬁ_f) i = I[yj,yj+ 1](§—f) da.
Thus [, ,1(4—/)dA = 0. But
Stawse 1@~ dA = [tasy (@ =TV A+ fby,, 1 (§—F) dA.
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Since both terms on the right-hand side are nonnegative and one is positive, we
have f,., ,,1(§—/)di > 0. Rewriting

j[a’Yi+l](g—-f) d}'+j[.vi+1y,vj+1](gA—f) di>0.

The last term on the left-hand side is nonpositive by (1.2), since [yi4 > ¥j+1]
belongs to Z,([L, R]). From this, we have [,,,,,;(¢—f)dA > 0. Since f and ¢
are also constant on [y;, y;4+,), we have §(»;) > f(»;). Thus

0< f[a,}’i+1](g_f)dl = I[y:,y.-ﬂ](gA'_fA)d’L

Hence i, (¢ —f) dA = 0, so that Jiviyye 1@ —f)di > 0.But[y; y;+,1€Z(L, R]),
which means [, ,,1(§—f)dA 0. This is a contradiction. Our assumption that
ftasi(@— f)di >0 is false. A similar argument follows if either YimSa<Lor
R < b £ y,» or both. This concludes the proof.

3. Conditional expectations of the true density. In this section, we investigate the
conditional expectation, E(f | ZL([L, R))), of the true density f with respect to the
o-lattice of intervals containing the interval, [L, R]. Notice [f?dA < oo is a con-
dition necessary to the definition of the conditional expectations. We shall need to
require this condition in the remainder of this paper. We also will require con-
tinuity of f. It is not difficult to see that continuity together with unimodality of
the density f implies j f2dA < 0o. The main theorem of this section is an analogue
of Theorem 3.1 in [6].

THEOREM 3.1. If f is a continuous unimodal density with a unique mode M, and
[L, R] is an interval center m, let K = (R—L)™! - fiL.rifdA.

() If AL) < K> f(R) or f(L) < K 2 f(R), E(f|Z(IL, R])) = f on [L, RI* and
E(f| (L. R)) = (R—L)" "+ fyfdA on [L, R].

(i) If ALY Z K> f(R) or if f(L)=K=f(R) and L Z M there is an interval
la, R) such that E(f|%([L, R])) =f on [a, RI* and E(f|%(IL, R])) =(R—a)"!
* {ta.r1fdA on [a, R).

(i) If (L) < KZf(R) or if f(L)y= K =f(R) and R< M there is an interval
[L, b] such that E(f|%(IL, R))=f on [L,b])* and E(f|£([L,R])) = (b—L)"!
* (L) fdA on [L, b).

Proor. Notice that f(L)= K <f(R) and f(L)> K < f(R) are impossible.
Thus Cases (i), (ii), and (iii) exhaust all possibilities. Case (i) is easily verified and
Case (iii) follows in a manner similar to Case (ii). Let a =sup {y < L':(R—y)~!
Sk fdA 2 f(»)} with L' = min {L, M}. If y < L' and f(y) £ K, it is clear that
y belongs to the set defining a. Hence the set is not empty, and a, indeed, exists.
Let f*(y) be given by f(») for y in [a, R]* and by (R—a)™" - [iz gy fdA for y in
[a, R]. We wish to show f* =E(f|$([L, R))). Clearly f*eL,(Z([L, R])).
Hence it remains to show that [(f—/*)hdi < for every he Ly(#([L, R])) and
j(f—f*)O(f*) dA = 0 for every Borel Function 6 stch that 6(0) = 0.

Let o =sup{y<R:(R—a)™'" [ orifdA<f(»)}. Thus for a<x<d,
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f(x) = f*(x) and for @' < x <R, f(x) £ f*(x). Now let he L,(Z([L, R])). Since
h is Z([L, R])-measurable, we have

3.0 h(y) £ h(a') £ h(x) for xe(a’,R) and ye(a,d’). But
3.2 [(f=f*hdd = [jar(f—f *hdA, so that
(3.3) JU=rHhdi = fraar(f=f D dA= [ ry (f * =f)h dA.

But f—f* =0 on (a, @) and f*—f= 0 on (a’, R), so by (3.1)
34 JF=fHhdi £ [rgar(f=f (@) dA— [y 1 (f —f *)h(a’)di.  Rewriting

(3.5) JU=f®hdA £ (@) frapy (f—f*) dA.
But the integral on the right-hand side is zero, hence
(3.6) J(f=f®hdi <0 for heL,(Z(L,R)).

Now let 8 be any Borel function for which 6(0) = 0. Then
§U—L*) 00" dA = fram(f=f*)-0(f*) dA = 0(f *)* o (f—f *) dA.

But {i, zy(f/—/*)dA=0. Thus /* = E(f|Z([L, R])). This completes the proof
of Case (ii).

Notice that if f(L) = K > f(R) Case (i) and (ii) appear to overlap. In this case,
a = L so that there is no contradiction.

4. Convergence of f,, . We shall show the consistency of the density estimate
based on a certain consistency of the center mode. Let

Q' = [lim,, ,, sup, |[F,(y)— F(y)| = 0],

where F is the distribution corresponding to density f, and F, is the empirical
distribution based on a sample of size n from F. It is well known that this set has
probability one. In addition, for points in Q'

1. The largest observation less than and the smallest observation greater than a
number in the support of f; {x:f(x) > 0}, converge to that number.

2. Corresponding to every pair of numbers, r; < r,, in the support of f, there is
eventually a pair of observations y,,, and y,,,, satisfying r; <y, ;) < Vi, <72-

Recall that the maximum likelihood estimate with center mode m is given by
Fom = E(g‘,,,,,|£’,,([L, R))), where §,,., Z.([L, R]), L and R are as in Section 2.
Suppose y, is a point in the support of fand let ¢ = f,,.(y,). Let P, = [, >t] and
T,=[fm=tl If H(T)={LeZ(L,R):NT,—L)>0} and H,(P)=
{L'e#([L, R]): (L' —P,) > 0}, a result of Robertson [4] gives us

(41) fnm(yo) = infLeHl(Tg) [)'(Y;_L)]_I.IT,—LgAnmdl and
4.2) fnm(J’o) = SUPL e Hy(Py) [ML-P)]™ ' fL-P: Jum dA.

Robertson’s theorem is stated for finite measure spaces. We restrict our space to
[y1s y.] where y; < -+ < y, is the ordered sample.
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THEOREM 4.1. If f'is a continuous unimodal density with unique mode M and m,, is a
sequence converging to m not necessarily M, let

R,=m,+% and L,=m,—1s, e>0.

Let f,, be the maximum likelihood estimate with center mode m,. Let f,, =
E(f | ZL([L, R])), with R =m+3ieand L = m—1e. Then for pointsin€Y, fnm,. converges
pointwise to f,, except possibly at L or R or both.

ProOF. The proof varies depending upon which representation in Theorem
3.1 holds. If the first characterization holds, we have f,, =f on [L, R]° and
fm=(R=L)""- [ ryfdA on [L, R]. For yo <L or y,> R, we use methods
quite analogous to those found in Robertson [5] and Wegman [6]. Let us turn our
attentionto L < y, < R.

For sufficiently large n, yoe[L,, R,]. Thus if t =7, (o), P, = [fom, >t1=¢
eventually. In this case, any element of #([L,, R,]) belongs to H,(P,). Let  be
any positive number. For sufficiently large », [L—#, R+n]le £([L,, R,]), so that
for sufficiently large n,

Jomi(¥0) Z (R—L+2n)~" “StL=n.R 4 1 Gm, A2
If n* is the number of observations in [L—#, R+ 1], it is not difficult to see
(*+2)/n 2 iz pey Gy 44 Z (1= D).
Let us write F,(x—) for lim,;, F,(y). Then we may rewrite the above inequality as
FyRA1) =~ Fy(L=n=)+2/1 2 fi1p remd umyd4 Z Fu(R+1) = F,(L—n=)—1/n.
Hence we have
i, i1 Gy A = FQRA1) = F(L=—) = [(1.—p sy .
From this,
liminf f,,, (vo) = [R—L+2n]"" {11 _, g+ mSdi.
But this is true for all 4 > 0, so
liminf f,,(yo) Z (R—L) ™" Steraf dA = fu(yo).

On the other hand, if T, = [f,,,,," 2 t], then T, = [y, Vjm] is an interval.
Clearly y;» < L, and y;,) = R,, so thatlim sup y;,,) < L and lim inf y;,,, = R. We
wish to show lim,., ,, ¥y = L. To see this, it is necessary to show lim inf y;,) = L.
If this is not true, there is a subsequence which we shall again denote Viw
f;or simplicity, and a positive constant, 5 such that y;,, < L—#. For the moment,
Jum, Will mean the subsequence corresponding to y,, . Since f,,,,,n is constant on T,
eventually, =, (yo) = f,,,,,"(L—n) =f.m, eventually on [L—#n, R). Since
f,,,,,n(L—n) converges to f,(L—n) (see remark in first paragraph of this proof),
we have

lim Supfnmn =fm(L_ "]) on [L—?],R).
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Eventually [L—#, R+n]e £([L,, R,]) so that by (1.2)
St=nrsm Gum, A2 = Je-nrnfom, 2,
where §,,, is the subsequence corresponding to ;. By Fatou’s lemma,
im sup fi, -y g+ 91 Gomy 42 < Jip-pr+mlimsupf,, di.
But lim sup £, (x) < f,(L—n) for all x so that
lim sup j[L—q,R +11Gnm, A4 = I[L—,,,R +nfm(L—n) dA.
We have just seen lim, o i1 -y z+y19um, 44 = fi—p.r+mfd4, 5O
(4.3) §[L—)1,R+r1]fd’1 = j[L—t],R+;1]fm(L_ n)dA.

But [L, R] must contain M since otherwise the characterization of Case (i) in
Theorem 3.1 could not hold. Since f has unique mode,

J‘[L—r;,R+r1]fd/1 > ,[[L—,,,Rm]fm(L—ﬂ)d'l-

Hence (4.3) cannot hold. Thus lim,_,, y; = L. Similarly, y;., converges to R.
Since ¢ belongs to H,(T,), by (4.1)

.fnm,,()’o) = (yj(n)_yi(n))—l '_“[y,»(,,),yj(,,)] Gum,, A4
WIting [iy, . vs 01 Gnmn @A = F (¥ jim) = Fu(Vim) + (1/n) it is clear that
limsup f,,, (yo) £ (R—L)™ - (F(R)— F(L)) = fu(¥o)-

Thus lim,,, o, fym, (Vo) = fu(¥o) for yo such that L < y, < R.
This completes the proof in the case that (i) of Theorem 3.1 is the characterization

of E(f lz’([L, R])). The other cases may be proven in a similar manner.
We are easily able to upgrade the convergence in this case by applying methods
similar to those of the Glivenko-Cantelli Theorem.

COROLLARY 4.1. If the conditions of Theorem 4.1 hold, then f,,m" converges
uniformly except on an interval of arbitrarily small measure containing L or R or the
union of two such intervals. This convergence holds for all points in Q', hence with
probability one.

5. A convergence theorem for the center mode. Recall from Section 2, f,, the
maximum likelihood estimate is given by a conditional expectation with respect
to a lattice containing a modal interval, where m, is the center mode. Let
L, =m,—%¢ and R, = m,+3e. It is desired to show that the sequence, {m,}, has
a limit m.

Roughly speaking, we shall accomplish this by showing that there is an m for
which [ log f,,*fdA is maximized. If m, fails to converge to that m, then we can
pick another estimate which has a larger likelihood product eventually. This would
be a contradiction to the choice of f, .

LEMMA 5.1. Assume —([logf-fdi is finite. Let H(m)= [logf, fdA, where
S = E(f[,?([L, R))) and L = m—4%¢ and R = m+4e. Then H(m) is unimodal.
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ProOOF. The real line may be divided into three regions, corresponding to the
three different characterizations of f,,. Let

M = {m:f(L) £ (R=L)"" fipmf d2 > f(R) or
SW) < R=L)™" [ o di 2 S (R)}.

Clearly M —1¢ is a lower bound of .# and M +1¢ is an upper bound, where M is
the mode of f. Let m™ = inf 4 and m* = sup /. It is straightforward to show
that f,, is characterized by (i) of Theorem 3.1 for each m such that m~ < m < m™.
For m < m™, f,, is characterized as in (iii) of Theorem 3.1 and for m = m™, f,, is
characterized as in (ii) of Theorem 3.1. If we can show H(m) is nondecreasing for
m < m~ and nonincreasing for m = m* and unimodal for m~ < m < m™, this

will be sufficient. .
Let us consider m < m* < m™. H(m*)— H(m) = [ log (f,s/ /) fdA. Let L, L*,
b and b* have their obvious meanings. Since

(y—L)_l 'j[L.y]fd}’ < (,V"L*)_l 'j[L“,y]fdj'

it follows that if (y—L) ™" ;1 ,1fdA—f(») 2 0, so is (p—L*) " [ipu 1 fdA—f(¥) 2 0
From a consideration of the sets defining b and b*, we may conclude b = b*.
Hence both f,« and f,, are constant on [L*, b*]. From this, we have

fm* m* fm*(L*)
1 —|fdl = 1 ) fdA+1 SRS da.
f °g<fm)f * L] °g<fm)f ¥ °g<fm<L*>)L*,,,qf

But .‘[L*,b"‘].fd"{' = I[L*,b*]fm* dAA. and Sincef=fm* on [L*, b*]c,

J log<£"i>fd,1 = J log(sz—f>f,,,,,d,i.

The latter quantity is the Kullback-Leibler information number and is non-
negative. Hence H(m*) = H(m). A similar proof holds for m = m™*. Let us turn
our attention to m~ <m < m". Let n(t) =tlogt for t>0. We may expand
H(m) as follows

H(m)=loglih“ﬂf*d—l]-f fd).—'rj log(f)~fabl+Jv log(f)-fdA.
& [L,R] (=o0,L] [R,0)

Recalling L = m—%¢ and R = m+34¢ and differentiating with respect to m, we
obtain

H'(m) = n'[M} LS R)=f(L)]+n(f (L) —n(f(R)).

Rewriting this,

H'(m) :",[Ju,mfdl]_[n(f(R))—n(f(L))}
FR=f(L) E SR=-7@) |
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Noticing that f(R) < e~ ' i, r;fdA and that 5'(¢) is an increasing function, we
have

By D R) =)
FR—f @y =TI®) [ FR =D ]

Let us assume f(R)—f(L) > 0. In this case, the right-hand side represents the
slope of a chord subtracted from a tangent. It is clear in this case, that H'(m)/
[f(R)—f(L)] = 0. Hence, we have that if f(R)—f(L)=0, H'(m)=0. Corre-
spondingly, if f(R)—f(L) < 0, then H'(m) < 0. Hence, H(m) is unimodal. The mode
of H isthat m for which f(R) = f(L). Clearly there need not be a unique mode, but if
not H(m) will have a modal interval, namely {m:f(R) = f(L)}. If f is symmetric,
then it is clear that the mode of H is the mode of f, that is, the mode of H is M.
In any case, since M—%¢ and M+1e are lower and upper bounds respectively
on ./, it is clear that the difference between the modes of H and of f'is less than
le.

Let us assume, in general that m is the mode of H. In order to avoid cumbersome
details, let us assume fis strictly increasing at x in the support of f when x < M
and strictly decreasing at x in the support of f when x > M. Thus H has a unique
mode. An obvious modification exists if there are some ““plateaus” in f.

If {m,} is the sequence of center modes of {f,}, we wish to show {m,} converges
to m. The next lemma applies in the case that the support of fis (— o0, ).

LEMMA 5.2. If the entropy, — [ logf"fdA of f is finite, with probability one
— oo < liminfm, < limsupm, < o0.

Proor. If lim sup m, = oo, there is a subsequence (which we will also label
{m,}) which diverges to oo. Let y be chosen in (0, 1) and choose x, so that
1—F(x) £ 9. Suppose 7> 0 and f,(x,) > 5 infinitely often. Then f,(x) > 5 for
all xe(xq,m,) infinitely often. This is impossible as soon as m,—x, > (1/n).
Thus £,(x,) <  for sufficiently large n. Hence for x < x,, f, converges uniformly
to zero.

Let us write L,(f,) = n~"- )= log (,(y))-

We may write L,(f,) as follows

Ln(f;n) =n" ! [Zyz <Xxo0 lOg (fn(yz) ) + Zyi >x0 IOg (fﬂ(yl) )] *

If we let n, be the number of observations less than or equal to x, since f, is
bounded by ¢!, and since n~ }(n—n,) converges to 1 —F(x,) < y, we have

limsupn™tY, . log(J,(y)) < log(e™")-y.

On the other hand, since f,(x) converges uniformly to 0 for x < x, log (f,(x))
diverges uniformly to — oo for x < x,. Thuslimsupn™' - ¥, ., log (f,(y;)) = — .
Finally, we may write

limsup L,(f,) = — .
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Let us consider f,, = E(f‘i”([L, R])) where L = m—1%e and R = m+ 3¢ and let
L,(f,) be 1/n times the log likelihood product. Clearly by the Kolmogorov Strong
Law with probability one lim,_ ., L,(f.) =jlogf,,, -fdA. This quantity is finite
since the entropy of f'is finite and f,, agrees with f except on a finite interval where
f. is bounded. Hence lim inf [L,(f,)— L,(f,)] = + . This is equivalent to saying,
eventually f,, is more likely than f, which is a contradiction to the choice of f,.
Hence lim sup m, < co. A similar argument holds for the other inequality.

It may be that the support is bounded below, bounded above or both. Let
a = inf {x:/(x) > 0} and B = sup {x:f(x) > 0}. Lemma 5.2 relies on the following
device. If the maximum likelihood estimate converges to the “wrong density”,
then asymptotically the likelihood product is smaller than that of an estimate
which converges to the “right density””. Lemma 5.3 and Theorem 5.1 employ the
same type device. The proof of Lemma 5.3 is left to the reader.

LeMMA 5.3. If e <min {M—a, f— M} and the entropy of the continuous uni-
modal density f is finite, then with probability one

a+4e < liminfm, £ limsupm, < f—4e.

Let m’ be any cluster point of {m,}. Then m’ has the property a+4ie <m’' <
B —%e. (Here let us permit « = — oo and § = + 00.) Now let f,, = E(f|5,”([L, R]))
with L = m—1}¢ and R = m+1}¢ and let f,, = E(f| (L', F'])) with L' = m'—}¢
and R’ = m’ +4e. By Theorem 3.1, f,, and f,, each agree with f on the complement
of some interval. Let ¢ be the smallest endpoint of those two intervals and d be
the largest. Hence on [c, d)’, f,, = f,w = f. Let ¢ < min {M —a, f— M}, so that m
and m' are in («+3e, f—3¢), (recall the bounds on # are M—%e and M+ 1e),
both ¢ and d are in the support of /. We may pick 5 > 0 sufficiently small so that
c—n and d+n are in the support. In the next lemma, when we write f, we shall
mean that subsequence of the sequence of maximum likelihood estimates for
which the center modes converge to m’. By f,* we shall mean f,,,, the maximum
likelihood estimate whose mode is m.

LEMMA 5.4. With probability one, for sufficiently large n, f,* = f, on (c—n, d+n)°,
where n > 0 is arbitary such that ¢ —n and d+n belong to (a, B).

PROOF. The set of probability one is Q' as described in Section 4. Pick ¢, in
(c—n, c). Let 5&(0, c—1,). Since f has a point of increase in (¢,, c—9), f, and f,*
must both eventually have a jump in (¢z,, c—9d). Let y; be the smallest observation
greater than ¢, for which f, has a jump and let y,, be the smallest observation
greater than ¢, for which f,. has a jump. Without loss of generality, we may assume
Y2 y;. Let y;. be the largest observation smaller than or equal to ¢, for which
there is a jump in £,*. Thus we have y,« <, < y; < y;». We wish to show equality
holds in the last inequality. Assume y; < y.. Let f = f,*(t,) and T, = [f,* = t], so
T, = [y, yis] for some observation y.=m+4e. Then [y;, y.]eL([m—1e,
m+%e]). Hence by (4.1)

(5.1 t= (Yi_,Vj*)—l f[yj*,yi]gn* da,
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where g,* = g, as defined in Section 2. In a similar manner using (4.2), we can
show

(52) t g (yi*—yi)_ L j[yg,yi‘] gn* di‘

Let §, = Jum, as defined in Section 2. For sufficiently large n, g, and g,* will
agree. This is easily seen, since m,—%¢ converges to m'—Le > c—4. As soon as
m,—%&>c—9, §, and g,* agree. This together with (5.1) and (5.2) shows

(5.3) ()’i*"Yi)_l .J.[yg,yg*] gudi = (J’i_)’j*)_ ! '.[[y,-*,y,-] gndA.
Now let ¢ = f,(t,) and P, = [f, > t]. Again by use of (4.2), we have
(54 Jt) 2 =)™ fiypa G dAe
Finally letting ¢ = f,(y;) and using (4.1), we have
(5.5 Fi) = Gi=9)""  fiypur G di-

Using (5.3), (5.4) and (5.5), f,(to)) = f,(v;). But y; is a jump point in f,, so
Fi(to) < f.(y). Thus our assumption y: # yu is false. Let us now consider ¢ = £, *(t,)
and P, = [f,* > ¢]. Recall now that the definition of £,* involves the conditional
expectation of g,* with respect to & ,([m—%e, m+1e]). Since there are only a
finite number of sets in this lattice, the supremum in (4.2) is really a maximum.
Let L = [u, v] be the member of the lattice such that f, *(#o) = (L—P) ™ [, _p g, * dA.
Rewriting this f,*(t0) = (V;—u+0=y) " [luviommen 9n¥ @A But by (4.2),
S¥(t0) Z 0= p) ™' a1 9n* dA. Combining these two displays, we obtain
fn*(to) = (yi_u)_ L J.[u,yi] gn* dA. But also by (42)’ fn*(to) = (yi_u)_ ' J.[u,yil gn* da.
Hence, for sufficiently large n,

fn*(to) = SUP, <y, {(y; - u)_ L j[ll,)’i] gn* di}
Similarly, for sufficiently large n,

fn(to) = Supu<y,- {(yi_u)_l ' .[[u,y,].‘in d;t}

Since g, and g,* eventually agree in this region, f, and f,* must be equal at to
eventually. For any  <¢,, by virtue of the fact, f,(t,) = f,*(,), and by use of
(4.1) and (4.2), we obtain the desired conclusion.

We may now state and prove the theorem.

THEOREM 5.1. If ¢ <min{M—oa, B— M} and the entropy of the continuous
unimodal density f is finite, then with probability one lim,_, , m, = m, where m is
the mode of H.

Proor. If not, a subsequence of {m,}, (which we again label {m,}), converges
to m'#m, with at+te<m <p—te. Let f, =E(f|ZL(Im—1e, m+4e])) and
fw =E(f I,Q’([m'—%e, m’+1%e])). Let f,* be the maximum likelihood estimate
when the mode is known to occur at m and let f, be the maximum likelihood
estimate when the mode in unknown. We intend to show that f,* has a larger
likelihood product than f,. This will be a contradiction, so that with probability



470 EDWARD J. WEGMAN

one, m, converges to m. (It is understood that {f,*} and {f,} refer to the sub-
sequences corresponding to the subsequence {m,} converging to m'.) Recall that
on [c, dl°, f=fw =fu- Let n > 0 be sufficiently small so that c—# and d+# are
in the support of /. For sufficiently large n, £,* and f, agree on (c—#, d+#,)¢ with
probability one by Lemma 5.4. Let k = min {f{c—#), f(d+n)}. Because f,, > 1k
and f,, >k on [c—n, d+n] and because f, converges to f,. almost uniformly
with probability one and f,* converges to f,, almost uniformly with probability
one, log (f,) converges to log (f,,) almost uniformly with probability one and
log (f,*) converges to log (f;,) almost uniformly with probability one. Let ¢ > 0.
Pick the set A of arbitrarily small measure where uniform convergence is not
guaranteed so that P(A)-log(ke/2) > —d. Now if y; <--- <y, are the ordered
observations, let

Ln(fn*) - Ln(fn) =n" ! Z:l: 1 {IOg (fn*(yt) ) —" lOg (fn(yi) )}

For sufficiently large n with probability one, f,* and f, agree on (c—#, d+n)°.
Thus if we let ), be the summation over y; in [c—#, d+n], for sufficiently large
with probability one,

L) = L(f) = n™ L1 {log (f,*(y) ~log (Ju(¥)}-

Now on 4, log (f,*)—log (f,) > log (ks/2),‘eventually. This follows since f,* > 1k
eventually and f, < ¢”!. Thus

n= Y, {log(f,*(y))—log (f,(y:))} > n*/nlog(ke/2) eventually,
where n* is the number of observations in 4 and ), is the summation over
y;in [c—n,d+n)nA. Since (n*/n) converges to P(A) with probability ons,
n~ 1Y {log (f,*(y))—log (fu(»:))} > —& with probability one for sufficiently
large n.

In a similar manner, one may show eventually —n~') ,{log(/.(»))
—log(f,y(¥))} > —&. Then if ) 5 is the sum over y; in [c—n, d+n]—A4,

Ly(f)=L(f) 2 n™" Ls {log (f,*(y)) —log (f.(y))}
+n71 Y, {log (f,(y:) —log (fu(y))} —26
with probability one for sufficiently large n. By the uniform convergence properties

of log(f,*) and log(f,) on [c—#, d+n]—A, we have eventually with probability
one,

L(f")=L(f) 2 n=" ¥ {log (fu(y)) = log (fu(y:))} ~ 30.
On [c—n, d—n), f=f,= f, so that with probability one and for sufficiently
large n,

Ln(fn*) - Ln(fn) g n- ! Z?= 1 {lOg (fm(yx) ) - IOg (fm'(y') )} —30.
By the Kolmogorov Strong Law, with probability onelim,,, , inf (L,(f;,*) — L,( f,,) )=
[ log (fou fw)fdA—38. Since m is the unique mode of [log(f,)fdA, and since
0 was arbitrary, with probability one

iirnn—*oo inf(Ln(fn*) _Ln(fn) ) > 0.
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This is equivalent to f,* having a larger likelihood product than f,. This is a
contradiction. Hence with probability one, {m,} converges to m.

6. Summary. For ¢ > 0, we have given a maximum likelihood estimate of a uni-
modal density. This estimate is a strongly consistent estimate of

S = E(f | £ ([m—4e, m+4e)).

Of course, f,, =f except on an interval of length ¢. Here m is the mode of
H(m) = [log(f,)fdA. If £ =0, the same method yields a maximum likelihood
estimate. The lack of a uniform bound causes the consistency arguments described
in this paper to fail. Hence the asymptotic behavior of this sort of estimate is

unknown.
Wegman [6] describes a consistency argument for a related continuous estimate.

The analogue for f, is not difficult.
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