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1. Summary. In a recent paper [3], White and Hultquist extended the use of
finite fields for the construction of confounding plans to include ‘“asymmetrical”
or “mixed” factorials. The technique, in their own words, was to define addition
and multiplication of elements from distinct finite fields by mapping these elements
into a finite commutative ring containing subrings isomorphic to each of the fields
in question. The standard techniques were then applied to the asymmetrical case
illustrating the procedure with a numerical example for 3% x 5 factorial experiment.
Later, Raktoe [1] also provided an equivalent theoretical basis for the results
obtained by White and Hultquist [3], worked out a generalization of the technique
and illustrated his procedure with an example of 22 x 3 x 5 factorial experiment.

It appears, however, that to provide a basis of the required calculus covering
confounding plans of “mixed factorials’ of the types discussed by them, it may not
be necessary to invoke the properties of finite fields and to combine them. Instead,
properties of finite multiplicative groups may be sufficient to construct such
confounding plans.

The aim of the present note is to indicate that this alternative approach, when it
exists, is structurally identical with the procedure as outlined in [3], and that this
methodology is simple, taking as it does only the properties of multiplicative
groups. The procedure has been illustrated with reference to the same example of
32 x 5 factorial design as discussed in full in [3]. The correspondence relationships
between the levels of the factors and the elements of the group may be so worked
out that the complete model for the 3% x 5 experiment as provided in Table 4.1 of
[3] would come out exactly the same by this alternative approach. The procedure
of White and Hultquist would require that the number of levels of a factor be
prime. But by the procedure presented here, it would be possible to cover mixed
factorials of other types where the number of levels of a factor may not be a prime
number.

Analysis of variance is not attempted here, as such analysis can be carried out
following the procedures as given by White and Hultquist [3].

2. Introduction. White and Hultquist [3] combines residue classes of integers
(mod p,) with the residue classes of integers (mod p,), all elements of both sets of
residue classes being considered as members of the set of residue classes of integers
(mod p; - p,) where

(i) p,, p, are prime numbers;
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(ii) the correspondences between i(p;) or j(p,) and the integers (mod p; - p,)
[x (mod a) being written for short as x(a)] are determined by the following rules:
i(p,) and j(p,) are made to correspond respectively to ¢[i(p,)] and ¢[j(p,)] as
elements (mod p, * p,), where

(@) ¢[1(p)] = kup1p2) Pp1p2), and k,p(p,p,)= 1(p,)

(b) ¢ll(p)] = Up1p2) ki p1P2) PP1P2); U, v=1,2,u # 0.

Some basic results are then indicated on the “mapping” and it is eventually proved
that in the residue class ring (mod p; - p,), every element x(p, - p,) has a unique
decomposition, x(p, * p,) = x(p,)+ x(p,), where x(p,) and x(p,) are not necessarily
the same integers.

As a numerical illustration combining residue classes of integers (mod 2) and
(mod 3) (i.e. p; =2, p, = 3), the following mappings are indicated in [3] along
with the decompositions of the residue classes (mod 6).

Mappings

0(3) — 0(6) - 4(6) = 0(6)
1(3) — 1(6) - 4(6) = 4(6)
2(3) = 2(6)- 4<6) = 2(6)

0(2) = 0(6) - 3(6) = 0(6)
1(2) - 1(6) - 3(6) = 3(6)

Decompositions
0(2)+0(3) = 0(6) 1(2)+0(3) = 3(6)
2.1) 0(2)+1(3) = 4(6) 12)+1(3) = 1(6)

02)+23)=2(6)  1(2)+2(3) = 5(6).

3. Alternative procedure. As a first step, we recognize that for p, =2 and p, = 3,
we may utilize the group properties of the multiplicative group of the 6 (2 x 3)
non-zero residue classes (mod 7), the elements being given by the set of residue
classes G = {(1), (2), (3), (4), (5), (6)}. G has two subgroups (normal divisors)
S, = {(1), (6)} and S, = {(1), (2), (4)} of orders 2 and 3 respectively such that G
is the direct product of S; and §,, being given by G = S, ® S, with the properties
[see 2] that

@ SinS, = (1),

(ii) every element of G is expressible as a product, g = ab, a€S;, beS;, geG,
and that @ and b are uniquely determined by g.

Since 3 is a primitive element of GF(7), we may rewrite G in terms of the
power cycle of 3, as G={3°=1, 3! =3, 32=2, 3° =6, 3* =4, 35 = 5}. The
subgroups (normal divisors) S; and S, may be shown as S; = {x° =1, x*} and
S, = {x® =1, x*, x*}, where x = 3.

If a 2x 3 factorial experiment is attempted, 0(2) and 1(2) will correspond to the
levels 0 and 1 of the first factor 4, and 0(3), 1(3) and 2(3) to the levels 0, 1 and 2 of
the second factor B.
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The correspondences of the levels of the factors with the elements of the sub-
groups (the powers of x) may be made in any manner. But to bring out the analogy
with the procedure of White and Hultquist [3] and to point out that the present
procedure leads to the same structure we introduce the following correspondences.

Factor 4 ~ Factor B
02)-»x*=1  03)-»x"=1
1(3) - x*
12) - x3 2(3) - x2.

With the above correspondences, we rewrite the decompositions (2.1) with
“multiplication” substituted for ‘“‘addition’ as given below:

x0-x0=x0=1 x3x0=x3
x0-x* =x* x3-x*=x!
x0-x2=x? x3x%2=x5.

The above gives the table of unique decompositions of the elements of G as pro-
ducts of the elements of §; and §,. It will be noticed that the powers of x on the
right-hand sides of the above decompositions are exactly the same as the residue
classes (mod 6) as given in (2.1).

We now indicate how we would obtain the treatment combinations corresponding
to an effect (a main effect or an interaction) according to this procedure. Let us,
for this purpose, consider the same example of the mixed factorial 3% x 5 with three
factors 4, B, C where A, B have three levels each, and C, five levels. The effect
AB?C is represented in [3] by the equations (mod numbers omitted),

3.1) i+2j+k=(0),(1), -, (14),

where 7, j and k represent the running variables corresponding to the three factors,
and (0), (1), ---, (14) represent the residue classes (mod 15). In the present pro-
cedure, the corresponding equation will be denoted in the product form by

(32) i)k = x%x, -+, x4,

where i, j and k will represent the running variables, and x°, x!, -+, x'4, the 15
elements of a multiplicative group which is easily available as the direct product
of two subgroups (normal divisors) of orders 3 and 5 respectively. It will be noticed
that in this representation of the effects, the running variables have been combined
as a “product” instead of a sum.

We would thus get an analog of the procedure of White and Hultquist,
where the operation ‘“‘addition” is substituted throughout by the operation
“multiplication.”

We indicate below the mappings and the decompositions in respect of the above
factorial experiment on the lines as indicated by White and Hultquist.
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Mappings

03)— 0(15)  0(5)— 0(15)
13)> 10(15)  1(5) > 6(15)
23) > 5(15) 25 - 12(15)
3(5)— 3(15)
4(5) - 9(15)

Decompositions

03)+0(5) = 0(15)  1(3)+0(5) = 10(15)
03)+1(5) = 6(15)  13)+1(5) = 1(15)
(3.3) 03)+2(5) = 12(15)  1(3)+2(5) = 7(15)
03)+3(5) = 3(15)  1(3)+3(5) = 13(15)
03)+4(5) = 9(15)  1(3)+4(5) = 4(15)

23)+0(5) = 5(15)
203)+1(5) = 11(15)
203)+2(5) = 2(15)
23)+3(5) = 8(15)
2(3)+4(5) = 14(15).

It is well known that it is possible to have a Galois Field GF(2*) with 16 elements,
and that the 15 non-zero elements giving the multiplicative group G will be available
as a power cycle of the primitive element x being given by

x°=1, x=x, x2=x%, x*=x° x*=x3+1, xS=x34x+1,

x=x34+x2+x+1, x"=x*+x+1, xF=x3+x*+x,
x9___x2+1’ x10=x3+x’ x11=x3_|_x2+1’ x12=x_|_1,

P =x2+x,  xM=x*+x%

where the minimum function is x*+x3+ 1. [We note here the fact that it will be
enough for purposes of the calculus if it is granted that the 15 non-zero elements
are available as a power cycle of the primitive element. We do not need to know
the different forms of the polynomials which are congruent to the different powers
of x.] The above group G is the direct product of the subgroups (normal divisors)
S and S, such that G is given by

G=5,®S,={x"=1,x°x"" ® {x° = 1,x3,x5%,x% x'?}.

The above gives us the required calculus with 15 elements. An exact replica of
the decompositions in (3.3) is obtained, if the levels of the factors are made to
correspond as given below, it being understood that “addition” is substituted by
“multiplication” in the present procedure.
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Correspondences
Between the levels and the powers of the primitive element

For factors 4 and B For factor C

xX°=1-0 xX°=1-0
x5 x® -1
x5 -2 x'2 -2
x3 -3
x° —4

The decompositions may be similarly indicated. It will be noticed that residue
classes 0, 1,2, -+, 14 (mod 15) of (3.3) are the same as the powers of x in the
decompositions. The structures of the two decompositions are identical.

By the present procedure, the table of the complete model for the 3% x 5 factorial
experiment as given in Table 4.1 of [3] will be exactly the same. The table is not
reproduced here.

The principles for confounding are the same as outlined in [3]. For instance,
when AB2C is confounded, 4B? and C are also confounded. If AB*C is confounded
a block will be assigned to each of the 15 levels which are shown in the outermost
column of the table under 4B2C of [3]. The corresponding treatment combinations
are available in the first column of the same table. These 15 blocks will confound,
14 degrees of freedom of which 2 degrees of freedom will belong to 4B?, 4 to C, and
8 to AB*C [3].

Raktoe [1] has illustrated his procedure with reference to the mixed factorial
22 % 3 x 5. In this case, we need a calculus with 2 x 3 x 5 = 30 elements, and these
30 elements may be obtained from the non-zero residue classes (mod 31), 31 being
a prime number.

As in each GF(p), where p is a prime, there exists a primitive element, the 30
non-zero elements can be expressed as a power cycle of the primitive element. For
the required calculus, all that we need to know is to recognize the fact that the
multiplicative group G of 30 elements is the direct product of 3 subgroups (normal
divisors) of orders 2, 3 and 5 respectively as given by

G=5,®5,®S,={x"=1,x""} @ {x° = 1,x!%x?°}® {x° = 1,x%,x'?,x' %, x?*}.

In the solution of equations of the type (3.2) we need to know only the powers of
x with the condition that x*° = 1.

As it is always possible to have a cyclic group of order p" — 1 from GF(p"), it will
be clear that this methodology will work for any mixed factorial of the type,

m; M, m,
Py X P2 XX Py

where m,, m,, -+, m, are any positive integers and the product of the primes,
pips -+ py = p"—1 for any prime p and positive integer .
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It is well known (p. 148 of Van Der Waerden [2], Vol. I) that a cyclic group {a}
of order n = r- s is the direct product of its subgroups {a"}® {a’}, where (r, s) = 1.
Hence, the multiplicative group of the 30 non-zero elements of GF(31) will be
available as the direct product of two subgroups of orders 5 and 6 which are
relatively prime. From this representation it would be possible to provide the
calculus for mixed factorials of the types 5! x 6™, where m, and m, are any
two positive integers. It is noticed that 6 is not a prime number, and in order to
cover this case by the methodology of White and Hultquist [3] and Raktoe [1], it
would first be necessary to decompose 6 into 2 x 3, and then to combine them all.
On the other hand, in case of 5 x 7, for example, the present method will fail while
White-Hultquist-Raktoe would apply.
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