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ON BOUNDS ON THE CENTRAL MOMENTS OF EVEN ORDER
OF A SUM OF INDEPENDENT RANDOM VARIABLES

By BENGT ROSEN
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1. The theorem. We shall prove the following theorem.

THEOREM. Let X, X,, - -, X, be independent random variables with mean 0. Let
p be a natural number and A.(p) and p,(p) real numbers such that

(1) EX\'2k élVZk(p)pv(p)’ k = 1’ 2’ ..‘9 p’ v = 1" 2’ "" 'l'
Then .
(@ EQh-1 X)) 2 C(p)max((Xr=142(0puD))’s Y14 (D)D)

where C(p) is a number which only depends on p.
Before we enter the proof of the theorem, we shall discuss its content somewhat.
We list two particular cases, which are included in the theorem.

PARTICULAR CASE 1. Let Xy, X5, *, X, be independent random variables with
mean 0. Then we have forp=1,2, -

© E[Sle X[ S COXTimn [E |71

ReMARK 1. This is a special case of an inequality due to P. Whittle [4]. Whittle
proved that (3) holds for p =1 (also for non-integral p). Whittle also gives a
numerical value for C(p).

REMARK 2. By applying Hélder’s inequality to the bound in (3), the following
inequality is obtained. Forp =1, 2, - - -, we have

4) E|Yi_, X, < C(pn*~ ' Yi_ E|X,|*.

This is a special case of a well-known inequality due to Marcinkievitz and Zygmund
and Chung, who proved (4) for p = 1, see [1] page 348. Whittle’s numerical estimate
of C(p) works of course in (4) too. Other estimates of C(p) can be found in the paper
[2] by Dharmadhikari and Jogdeo.

PARTICULAR CASE 2. Let Xy, X,, -, X, be independent random variables with
mean 0. Let p be a natural number. Put

p,(p) = max(EX 2, EX *F) v=1,2,",n.
Then we have forp =1,2, -+
©®) EQ -1 X,)*" £ C(p)max((Ly-1puD))’s  Xh=1pD)).
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2. Derivation of the particular cases from the theorem. By using the well-known
fact that (E |X |’)‘/’ is nondecreasing as r increases, we see that condition (1) is
fulfilled for A,(p) = (EX,?*?)!/?? and p(p) =1, v=1,2, -+, n. By inserting these
choices of A, and p, into (2) and by using the inequality ¥ «,*” < (3 «,%?, (3)
follows. The second particular case follows from the fact that condition (1) is met
for 2,(p) =1 and p,(p) = max (EX,?, EX,*, -+, EX,*?) = max (EX,?, EX,??). The
last equality follows from the fact that E |X |’ is convex as function of r.

Neither of the bounds (3) and (5) is generally better than the other, which is
illustrated by the following two examples.

ExaMPLE 1. Let Y be Po(4) (i.e., Poisson distributed with parameter A). Then,
forr>1

(6) E|Y—EY|[ = e " "+ 1= +3A2= A+ )~ 2 as 1-0.

Consider a double sequence {X,,v=1,2,,nn=12--} where
', '+, X, are independent Po(x,/n) random variables, n=1,2,---, and

nis

a,—>0asn— 0. PutX,, = X,,—EX,,.As X, +- -+ X,,is Po(a,), we get from (6)
O EQV-1 Xy ~a, as noo, p=12-".

We calculate the values of the bounds in (3) and (5). By paying regard to (6)
we get

() (- i[EXZTVPY ~ (Ly=i(e/m) PP = oyn?™" as n— o0, p=1,2,"".
(9) max((z:=1pnv(p) )p, ZLanv(P)) ~ Oy as n—>o, p= 19 29 .

From (8) and (9) we see that for p = 2, 3, -+ (5) yields a better bound than (3)
when n becomes large.

ExaMPLE 2. Let X,, X,, ---, be independent random variables where X, is
normally distributed with mean 0 and variance n, n=1,2,---. Then we have,
omitting some straightforward calculations

(10) EQ -1 X,)?P ~ Cy(p)n?? as n—ooo, p=1,2-
(11 GQono i [EX,2P]HPYP ~ Cy(p)n®? as n—-oo, p=1,2,-
(12) max((Xh=1 )", Yro1pdp)) ~ Ca(p*®* D as n>c0, p=1,2,"".

From (11) and (12) we see that (3) is superior to (5) in this case, forp = 2, 3, - -
We now turn to the proof of the theorem. First we prove a lemma.

LeMMA. Let X,, X,, -, X, be independent random variables with mean 0. Then
we have forp = 1,2, - -+, k and u, being integers,

(13) E(Z':=l X,)*" < C(p) st; 1,u520, kg +kotiz++ - - +kpup=p H§’=1(Z'J= y EX 2heyts

where C(p) is a number, which only depends on p.
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ProOF. We first assume that X;, X,, --*, X, all have distributions which are
symmetric around 0. Put

A(m, k) = E(Y"_; X,)%, m=1,2,-+-,n; k=1,2,""*

and let A0,k)=0,k=1,2,---and Am,0) =1, m=1,2,---,n According to
independence and symmetry we have

(14) A(m, p) = E(Y02t X+ X,)% = Y220 CHE(LVZ! X )P EX,,*
= A(m_ 19 P)+Zf= 1 (%’:)A(m - 19 p— k)EXmZk'

As all terms in the last sum in (14) are nonnegative, we get

(15) A(m_19k)§A(msk)9 m=1.929'”9n; k=1929“
From (14) and (15) we get
(16) A(m’ p)_A(m_ 19 p) é D(P)ZII:=1A(", p_k)EXmZk

with D(p) = max ((¥), (¥), - -, (). By summing over m from 1 to n in (16) we
obtain

(17) A(n, p) < D(p) Yi=1 A(n, p—k) Y- EX, .

Now (13) follows by iteration of (17), starting with A(n, 1) = EX,*+ - +EX,>2.

Thus, the lemma is proved in the case when all X-variables have symmetric
distributions. To prove the general case we shall use the following inequality which
is well known. Let X and Y be independent random variables, ¥ having mean 0.
Then

(18) E|X| S E|X-Y[, r

v

1.

For the sake of completeness we indicate a proof. Let r = 1. The curve z = |x|’ is
convex (in x), and thus it does not fall below any of its tangents. This yields
|x—y|" 2 |x|"—p|x|""! - sign x, which gives |X—Y|" 2 |X|"—Y|X|"! - sign X.
Now, take expectation in the last inequality and (18) is obtained.

Let X,’, X,', -+, X,/ be random variables such that X, and X, have the same
distribution and such that X,, X,’, X,, X,', -+, X,, X, are independent. We have

19) E(X,—X,)* < 2%*EX *, v=1,2,--,n; k=1,2,""".
According to (18) we have:
(20) E(Yho 1 X)) S E(Y-1 (X, —X,))™.

As X,— X, has a symmetric distribution, we can—from what is already proved—
apply (13) to the right-hand side in (20). The proofis now easily completed by paying
regard to (19).
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3. Proof of the theorem. According to (1) and the convexity of log(Y -, 1,"p,)
as a function of r (see e.g. [3] 2.9, 2.10 and 3.6) we get

1) Y- EX,* S Y0- 1 A% (p)ey(p)
S (Uh=1 AP DIPTDN 4 4,2 (p)oy(p)) PR,
k=1,2",p
It follows from (21) that the product in (13) is dominated by

—Zug

(22) (Z A 2”(p);ov(p)) =1 (Z A 2(p);ov(p)) '

As (p— Zus)/(p— 1) and (Yu,—1)/(p—1) both are nonnegatlve and their sum is 1,
the term in (22) is dominated by

(23) max ((Yr=; A2(0eu0))  Yo=1 A22(P)py(D)).

The theorem now follows from the lemma, as each term in (13) is dominated by (23)
and the summation includes only finitely many terms.

Eus— 1
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