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AN ITERATIVE PROCEDURE FOR
ESTIMATION IN CONTINGENCY TABLES!
By StTeEPHEN E. FIENBERG
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0. Summary. Deming and Stephan (1940) first proposed the use of an iterative
proportional fitting procedure to estimate cell probabilities in a contingency table
subject to certain marginal constraints. In this paper we first relate this procedure
to a variety of sources and a variety of statistical problems. We then describe the
procedure geometrically for two-way contingency tables using the concepts pre-
sented in Fienberg (1968). This geometrical description leads to a rather simple
proof of the convergence of the iterative procedure. We conclude the paper with a
discussion of extensions to multi-dimensional tables and to tables with some zero
entries.

1. The method. The iterative proportional fitting procedure (IPFP) was first
examined by Deming and Stephan (1940) as a method for estimating cell proba-
bilities, p;;, in an r x ¢ table based on observations, where the marginal totals

(1.0 pi~:Z§=1pij (i=1,2,-,71)
(1.2) p.j=Yi=1by (=1,2"",0

are known and fixed. They proposed the IPFP as a way of arriving at estimates
which minimized

(1.3) Z:’: 1 Zi: 1 (g — npij)z/’”ij

subject to the marginal totals, assuming n;; > 0.

Stephan (1942) later showed that although the solution provided by the IPFP
satisfied the marginal restrictions, it did not satisfy the normal equations and hence
was only an approximation to the actual solution. He also pointed out that he had
been unable to find a proof of convergence for the IPFP.

Deming (1943), Smith (1947), El-Badry and Stephan (1955), and Friedlander
(1961) continued to examine the problem of Deming and Stephan, but they did not
provide a proof of the convergence of the IPFP.

The Deming and Stephan IPFP runs as follows:

1. Suppose that there are n;; observations in the (i, j) cell, where

(1.4) Z;=1Z;=1nij= n,
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and we take as our initial values
(1.5) iy’ = nyin Yi,j.
2. At the (2m)th step (m = 1) we take

m— m— Di. ..
(16) Pi,z D= psz 2 T (2m-2) Vla./‘

3. At the (2m+ 1)th step we take

(2m)

n, @m-v_Pi Yi.j.

= Dij 2m—1
p&m=

4. The iteration is continued until two successive sets of values for the cell
probabilities agree sufficiently well.
In Sections 4 and 5 we show that, as N — oo,

(1.8) Py = pi; Vi, j,

where the p;; satisfy (1.1) and (1.2).

Mosteller (1968) pointed out that the IPFP can be used for adjusting a table to
given marginal totals while preserving the interaction structure of the original table
as defined by the crossproduct ratios

n;n . .

(1.9) L (i # h,j# k).
nik nhj

We first note that p{}, for all N, is of the form

(1.10) P = a,™ b;M(n;/n) Vi, j

where a;™ and b, are greater than zero. Thus the values p{}” at each stage of the
lteratlon satisfy

(N)
. Ry Ry Pz 'pik . .
(1.11) - UL (i# h.j#k).
Ny Ny P.(liv)P(N)

The fact that the IPFP does preserve crossproduct ratios allows us to explore
the geometrical description of procedure using the concepts presented in Fienberg
and Gilbert (1970) and Fienberg (1968), and thus leads to our proof of convergence.

Extensions of the iterative proportional fitting procedure (a) to multidimensional
tables and (b) to tables with some »;; = 0 are discussed in Section 6.

2. Uses of the iterative proportional fitting procedure. Although the IPFP does
not provide the correct solution for the problem of Deming and Stephan, it can be
used to provide solutions for a wide variety of related problems. We have already
discussed how Mosteller (1968) has used the IPFP to adjust a table to given mar-
ginal totals while preserving the interaction structure. Other authors, many of whom
were not familiar with the work of Deming and Stephan, have also made use of the
IPFP and have discussed its properties.
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Brown (1959), using an approach described by Lewis (1959), showed that when
the IPFP is used to provide cell estimates for a 2x2x --- x 2 table where certain
marginal restrictions must be satisfied, the approximation improves at each step of
the iteration, according to a minimum information criterion.

Bishop (1967), using a duality theorem of Good (1963, 1965) which gives a
relationship between maximum likelihood estimation and maximum entropy (or
minimum discrimination information) estimation for contingency tables, first
showed that Brown’s proof of convergence can be extended to any multidimensional
table. She then showed that the IPFP could thus be used to derive maximum like-
lihood estimates for a variety of loglinear models suggested by Birch (1963). Birch
had proved that, for these loglinear models, certain sets of sample marginal totals
were the sufficient statistics. Thus the M.L.E.’s had simply to satisfy the marginal
restrictions given by the sufficient statistics, and the IPFP could then be used to
produce the appropriate estimates. Because of various aspects of the Birch-Bishop
models, when the IPFP is used to derive the M.L.E.’s, the initial values in each cell
are taken to be equal instead of being given by the observed cell counts as in (1.5).
Thus the requirement that all the observed cell counts be positive can clearly be
relaxed. Darroch (1962) first suggested the use of the IPFP in this context, and
Caussinus (1965) related Darroch’s work to that of Deming and Stephan.

Working independently of Bishop, Ireland and Kullback (1968) also showed that
Brown’s proof of convergence could be extended, and they gave a more rigorous
derivation of the convergence. Good (1965, page 75) had previously recognized that
Brown’s result could be extended in this way, while Dempster (1969) simplified the
proof of Ireland and Kullback, and extended the IPFP to deal with problems in-
volving general exponential family models.

Thionet (1961, 1963, 1964) examined the IPFP as the solution to a linear pro-
gramming problem, similar to those examined by econometricians. He suggested
that the convergence of the procedure could be demonstrated by invoking the
Brower fixed-point theorem, but his method was somewhat different than the one
discussed in this paper. Caussinus (1965), who used the IPFP for contingency table
problems, also gave a detailed proof of convergence based on a second method
suggested by Thionet. Both Thionet and Caussinus discussed extensions for situa-
tions where some of the initial values, n; j» are zero. Indeed Caussinus demonstrated
convergence when exactly one n;; is zero.

Sinkhorn (1964) showed that corresponding to each positive square matrix A
there is a unique doubly stochastic matrix of the form D,;AD, where D, and D,
are diagonal matrices with positive main diagonals. He also showed that this doubly
stochastic matrix could be obtained as a limit of the iterative process of alternately
normalizing the rows and columns of A. In Sinkhorn (1967) the proof was
generalized to demonstrate diagonal equivalence to positive rectangular matrices
with prescribed rows and columns. Of course, the iterative procedure used to
obtain this more general equivalence was simply the IPFP. Menon (1967) gave a
simple proof of Sinkhorn’s result using a version of the Brower fixed-point theorem.
Brualdi, Parter, Schneider (1966), and Sinkhorn and Knopp (1966) deduced
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Sinkhorn’s first result when A is a nonnegative fully indecomposable matrix.
Marshall and Olkin (1968) also proved this latter result and suggested the use of an
iterative procedure different than the IPFP.

3. A geometrical interpretation of the iteration. Fienberg and Gilbert (1970)
examined ideas about 2 x 2 contingency tables in terms of the geometry of the
3-dimensional simplex. They chose the tetrahedron of reference so that 4, =
(1,0,0,0), 4,=(0,1,0,0), 4;=(0,0,1,0), and 4,=(0,0,0, 1) correspond
respectively to the tables
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The general point P = (pyy, P12> P21> P22) then corresponds to the table with
probabilities, p;;, in the (i, j) cells. They then showed that for a given value of the
crossproduct ratio

P11 P22
o= —"""
P12P21

where o0 > o > 0, there exists a doubly ruled surface of constant « consisting of
points which correspond to all tables having the given crossproduct ratio. One
family of rulings consists of lines 77* with the point 7 on the line 4,4, and the
point T* on the line 434, such that

3.2)

_ -
A
TA: T4 01,

(3.3) — = = —
AT 1-t AT

while the other family of rulings consists of lines SS* with S on 4,4; and S* on
A,A, such that

SA; s —aS*A4
4,8 1=s 4,87

(3.4)

o
1A
A

Figure 3.1 shows the surface for o = 1, when the corresponding tables have rows
and columns which are independent. Figure 3.2 shows the surface corresponding to
o= 3.

As we noted in Section 1, & remains invariant under row and column
multiplication, and thus the tables produced at each step of the IPFP have the
same value of o as the original table. The points corresponding to the tables at
each step of the iteration thus lie on a particular surface of constant o.. We can
easily show that the (2m)th step of the IPFP corresponds to moving from the point
produced at the (2m — 1)th step to a new point along one of the family of rulings,
{TT*}, while the (2m+ 1)th step corresponds to moving from the point produced
at the (2m)th step to a new point along one of family of rulings, {SS*}.



AN ITERATIVE PROCEDURE FOR ESTIMATION IN CONTINGENCY TABLES 911

Aq
A
A 3
Az
F1G. 3.1. The surface of independence defined by the family of lines T7T*.
Aq
A
A 3
A

F1G. 3.2. The surface of constant « (« = 3) defined by the family of lines T7*.

Fienberg (1968) examined ideas about r x ¢ tables in terms of the geometry of the
(rc—1)-dimensional simplex,

(3.5) Sre={(x11s X125 """ X105 777 Xt X)X 2 0, Ziijij =1}.

Generalizing the results of Fienberg and Gilbert, he showed that the locus of all
points corresponding to tables with a given set of crossproduct ratios is a mariifold
of constant interaction generated by a family of non-intersecting (¢— 1)-flats, and
by a family of non-intersecting (r— 1)-flats. Each of the generating (c—1)-flats
meets each of the generating (»— 1)-flats in exactly one point. These manifolds are
special cases of the determinantal manifolds discussed by Room (1938).
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Since the crossproduct ratios remain constant at each step of the IPFP (see
(1.11)), all the points corresponding to the tables produced at each step of the
iteration thus lie on a particular manifold of constant interaction. Again, we can
easily show that the (2m)th step of the IPFP corresponds to moving from the point
produced at the (2m — 1)th step to a new point along one of the generating (¢ — 1)-
flats, while the (2m+ 1)th step corresponds to moving from the point produced at
the (2m)th step to a new point along one of the generating (r— 1)-flats.

4. Convergence of the IPFP for 2 x 2 tables. First we must determine the cross-
product ratio a, for the given table. If «, = 1, the rows and columns of the table are
said to be independent, and the iteration obviously converges by the end of the
first cycle (i.e., by the end of the 3rd step).

If oy # 1, we map the surface of constant o, onto the unit square, U, so that

A1A2a A2A4, A4A3 and A3y41
are mapped into the sides of U as in Figure 4.1, while preserving both distances
between points on each of these lines and incidences between generators. This
mapping is a homeomorphism, and so we need only show convergence in the
Euclidean metric on U. Furthermore, without loss of generality we may assume
4.1) P1.=Pr=DpP1=D2=1

for otherwise the mapping onto U can be redefined to make distances between
points on the sides correspond to the situation where (4.1) is true.

A, Ag

A, A,

F1G. 4.1. The mapping of the surface of constant « (« = 3), with the family of lines 77T%*, into
the unit square.

As an illustration, Figure 4.2 shows the course of successive iterations for a
particular a, and starting point. Note that the starting point must always be in the
interior of U since n;; > 0 V1, j.

The proof of convergence now rests on the following observation: Each generator
of the family {77*} makes an angle of greater that 45° with 4,4, and with 4,45,
while a similar statement is true for each generator of the family {SS*}.
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A, Ag

A, Ay

F1G. 4.2. The course of successive iterations as mapped from the surface of constant « (« = 3)
into the unit square.

Thus, if we denote by ¢ the mapping of the interior of U into itself induced by
one complete cycle of the IPFP, the above observation implies that ¢ is a contrac-
tion according to the Euclidean metric p. By this we mean that there exists a con-
stant f8, with 0 < f < 1, such that

4.2) p(ox, @y) £ fp(x, y)

for any two points, x and y, in the interior of U. In this case, B! is the slope of the
generator of the family {77*} which passes through the center of U. Since ¢ is a
contraction mapping, it has one and only one fixed point, the center of the square
(Kolmogorov and Fomin, 1957, page 43). Moreover, successive applications of ¢
produce a sequence of points which converge to the fixed point, and the IPFP
converges to that table corresponding to the unique fixed point.

The contraction condition (4.2) implies that the convergence is geometric in the
sense that, if p is the fixed point and p™ the point corresponding to that table
produced at the Nth step in the iteration,

(4.3) p(p*™, p) = p(e™p'?, ¢"p) < B"p(p'?, p), and
4.4 p(p?"* Y, p) = p(e™pV, ¢™p) £ B"p(p'V, p).

5. Convergence of IPFP for r x ¢ tables. Suppose we consider a simplex
OD;---D,_, B, -+ B._, in (r+c—2)-space. Then a new polytope is generated by
moving the simplex of r—1 dimensions, R= (0D, - D,_,), parallel to itself so
that O moves over the whole boundary of the simplex C = (OB, ‘- B,_,), and the
same polytope is generated by interchanging the roles of the two simplices. This
polytope is called a simplotope of type (r—1, c—1). When R is orthogonal to C, the
polytope is an ortho-simplotope of type (r—1, c—1). We can think of the ortho-
simplotope of type (r— 1, c—1) as the rectangular product of the simplices R and C
(cf. Sommerville, 1958, page 113, and Coxeter, 1963, page 124).

For the r x ¢ contingency table, Fienberg (1968) indicated that the manifold of
constant interaction has co-dimension (r—1)(c—1) with respect to (rc—1)-space.
The boundary of the intersection of the manifold with the (rc—1)-dimensional
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simplex of reference consists r non-intersecting (c— 1)-dimensional simplices and
¢ non-intersecting (r— 1)-dimensional simplices, where each (c—1)-simplex meets
each (r— 1)-simplex in exactly one vertex and vice versa. Thus the intersection of the
manifold with the (rc—1)-simplex of reference is homeomorphic to an ortho-
simplotope of type (r—1, c—1). For r =c =2, we saw in Section 4 that the ortho-
simplotope could be taken as the unit square. For r =2 and ¢ = 3, it becomes a
triangular prism.

Now, we map the intersection, 1 —1, onto an ortho-simplotope of type (r— 1,
c— 1) so that (i) boundaries are mapped onto boundaries, (ii) the relative distances
between points on each of the r (c—1)-simplicial boundaries and between points on
each of the ¢ (r— 1)-simplicial boundaries are preserved, and (iii) incidences between
the generators of the manifold are preserved.

Again, without loss of generality we may assume that

(5.1) P.=1/r and p,=1/c Vi, j

for otherwise the mapping can be redefined to make distances between points on
the boundary correspond to the situation where (5.1) is true.

We can now make several observations:

(a) the point corresponding to the table to which we wish to converge is the
center of the ortho-simplotope; .

(b) the intersection of the (r¢—1)-dimensional simplex of reference with the
(r—1)-flats which generate the manifold of constant interaction are (r—1)-simplices,
and similarly the intersection with the generating (c—1)-flats are (c—1)-simplices;

(c) the (r—1)-simplices in (b) are mapped into a family of (r— 1)-simplices in the
ortho-simplotope, each of which intersects all of the (c— 1)-simplices on the boun-
dary in exactly one point such that the y = min(r—1, c— 1) mutually invariant
angles (see Sommerville, 1958, page 45) between each (r—1)-simplex and each
(¢c—1)-simplex are all greater than 45°;

(d) a statement similar to (c) holds true for the (c— 1)-simplices of (b).

Now, if we denote by ¢* the mapping of the interior of the ortho-simplotope
into itself, which is induced by one cycle of the IPFP, the above observations imply
that ¢* is a contraction according to the Euclidean metric p* defined on the ortho-
simplotope, i.e., for any two points in the interior, there exists a constant f*, with
0 < B* < 1, such that
(5.2) p*(@*x, 9*y) £ B¥p*(x, )

We can determine a value for * as follows. Look at the (r—1)-simplex from (c)
which passes through the center of the ortho-simplotope and denote by 6, the
minimum mutually invariant angle which this simplex makes with the (c—1)-
simplicial boundaries. Similarly denote by 6, the corresponding minimum angle
between the (c—1)-simplex of (d) through the center and the (r—1)-simplicial

boundaries.
We can then take as our contraction constant

(5.3) p* = {tan[min (0, 6,)]} 7"
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The contraction condition given by (5.2) and (5.3) implies that the convergence
of the IPFP is geometric in the sense of (4.3) and (4.4).

6. Extensions and discussion. Deming (1943), Darroch (1962), Caussinus (1965),
Bishop (1967, 1969), Mosteller (1968), and Ireland and Kullback (1968) have
discussed the generalization of the iterative proportional fitting procedure to
multi-dimensional contingency tables. The geometric proofs of Sections 4 and 5
can easily be extended to cover the convergence of these generalizations.

A more involved problem is the extension of the IPFP to situations where the
initial values n;; are not all positive, i.e., some n;; are zero. Ireland and Kullback
(1968) avoided this extension to simplify their argument. Brualdi, Parter and
Schneider (1966) showed that if r = ¢, and if the marginal totals are all equal, then
there exists a unique table with these marginal totals and the same cross product
ratios as the given table iff the original table, after permutation of rows and columns,
can be written as the direct sum of fully indecomposable matrices. This condition
clearly does not apply when the margins are unequal. In addition, Bishop and
Fienberg (1969) and Goodman (1968) have presented conditions for the con-
vergence of the IPFP, in tables with zero cells, where the margins of the original
table are preserved and the interaction structure amongst the non-zero cells is
changed to correspond to the hypothesis of “quasi-independence’’. Fienberg (1970)
has shown how the solution of the IPFP in this context corresponds to unique
maximum likelihood estimates under several related sampling schemes.

The extension of the geometric arguments to problems involving tables with
zero entries is quite complex, since such tables correspond to points on the boun-
daries of the (rc¢—1)-dimensional simplex of reference. The geometrical models
require further developments in order to handle the asymmetries introduced by
these problems.
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