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LEARNING WITH FINITE MEMORY!

MARTIN E. HELLMAN? AND THOMAS M. COVER

Massachusetts Institute of Technology and Stanford University

0. Abstract and summary. This paper develops the theory of the design and perfor-
mance of optimal finite-memory systems for the two-hypothesis testing problem.
Let X, X,, -+ be a sequence of independent identically distributed random
variables drawn according to a probability measure £. Consider the standard two-
hypothesis testing problem with probability of error loss criterion in which Z = 2,
with probability 7,; and # = 2, with probability r,. Let the data be summarized
after each new observation by an m-valued statistic Te{l, 2, -, m} which is
updated according to the rule T, = f(T, -, X,), where fis a (perhaps randomized)
time-invariant function. Let d:{1,2,---, m} > {H,, H,} be a fixed decision
function taking action d(7,) at time #n, and let P,(f, d) be the long-run probability
of error of the algorithm (f, d) as the number of trials n — co0. Define P* =
inf ;. 4 P/f, d). Let the a.e. maximum and minimum likelihood ratios be defined
by I = sup(2,(4)/2,(4)) and [ = inf(P,(A4)/?,(4)) where the supremum and
infimum are taken over all measurable sets 4 for which 2,(4)+2,(4) > 0.
Define y = I/L. It will be shown that P* = [2(mym,y™ " 1)¥—1]/(y"~ 1 —1), under the
nondegeneracy condition y™~! = max {n,/n;, n,/m,}; and a simple family of
e-optimal (f, d)’s will be exhibited. In general, an optimal (f, d) does not exist; and
e-optimal algorithms involve randomization in f.

1. Introduction. Let X, X,, - -- be a sequence of independent, identically distri-
buted random observations drawn according to a probability measure & defined
on an arbitrary probability space (X, 4, ). Consider the simple hypothesis testing
problem

@))] Hy:?=2, vs. H:P=2,.

Let the prior probabilities of the null hypothesis H, and the alternative hypothesis
H, be denoted by n, and =, respectively.

Let d,e {H,, H,} denote the decision made at time n. If d, is allowed to depend
on X, X,, -+, X,, it is well known that a standard likelihood ratio test yields a
probability of error tending exponentially to zero as the sample size n tends to
infinity. If the statistician has but a limited memory, several models come to mind.
For example, d, may be restricted to depend only on the last & observations [12].
This model fails to suit the author’s notion of limited memory because the cardinality
of the space in which (X, X,, - -+, X,) takes its values is unrestricted (and usually
infinite). For the same reason, models in which the statistician is allowed to re-
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766 MARTIN E. HELLMAN AND THOMAS M. COVER

member a single real number [15], [5] (e.g., a sufficient statistic such as the current
likelihood ratio) fail to be nontrivial or practical constraints on memory. For even
in those cases in which X takes on only a finite number of values, the likelihood
ratio can take on an infinite number of possible values in the infinite-sample case.
For these reasons, the problem of learning under a finite memory constraint
will be considered. Specifically, consider the family of all learning algorithms of the

type
) T=f(T-u X);  fi{L,2,,mpx X {1,2,-, m}
d, = d(T,); d:{1,2, -+, m}> {Ho, H,}

where X, is the nth observation, T, is the state of the memory at time n, d, is the
nth decision, and f'is a function (perhaps randomized), independent of n and the
data. The algorithm is said to have finite memory of size m if T is m-valued (i.e.,
T,e{1,2,---,m} for n=1,2,--). The goal is to minimize the expected asymp-
totic proportion of errors

3) P(e) = E{lim,,,n" ') e},

where e; =1 or 0 accordingly as d; # H, or d; = H,, where H, denotes the true
hypothesis. (In the case in which f describes an aperiodic ergodic process on
{1,2, -+, m}, it may be seen that P(e) = lim,_, , Pr {d, # H,}.) '

From elementary decision theoretic considerations it is clear that no ran-
domization of d is required for optimal procedures. However, it will be shown to
be generally true that an e-optimal f requires artificial randomization.

The pair (f, d) describes a finite-state machine (automaton) with inputs X,
outputs d, = d(T,), and state space S = {1, 2, - -+, m}. The state of the machine at
time 7 is T,. Under hypothesis H,, ¢t = 0 or 1, the sequence T, together with some
specified initial state, forms a Markov chain over the state space S. The action of
f may be prescribed by a (perhaps infinite) family of stochastic transition matrices
indexed by x,

Q) P(x) = [Pr{f(i, ) =}]1=[py(®]  ij=12",m,

where Y 7_; p;(x) = 1, and p;;(x) 2 0, Vi, j, x. Here p; j(x) is the probability that
T, =j given that T,_; =i and that X, = x is observed. Taking the expectation
over Xx, it is found that the state transition probability matrices under H, and H,
are given by

%) P' = [P(x) d2(x), t=0,1.
The stationary probability distributions on the states, denoted by

(6) Bo= (s 1 ) t=0,1
are then solutions to the matrix equations

@) u=uP, t=0, 1.
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The resulting long-run probability of error P(e) is now simply given by
(3) P(e) =m0 Y es, i+ 1 Diesobi's

where S; = {i:d(i) = H;},j = 0, 1, are the decision regions induced by the decision
rule d. Note that the (f, d) description and the (P(x), d) description are equivalent.
Define P* to be the greatest lower bound on P(e):

In this paper P* will be found for every memory size m, and an e-optimal class
of (f, d)’s will be demonstrated. (That is, it will be shown that for any & > 0 there
exists an (f; d) in this class for which P(e) < P*+e¢.) It will also be shown that, in
general, no optimal (f, d) exists.

Section 2 establishes a lower bound P* on P(e) in terms of the statistics of the
problem and the memory size m. Lemmas 1 and 2 and Theorem 3 are of primary
importance, although Lemma 3 and Theorem 1, which treat the mathematically
annoying case of reducible automata, are necessary for completeness. The section
concludes with Theorem 4 which establishes P* to be unachievable.

In Section 3 an e-optimal class of automata is derived. The special case P* =0
is treated in Section 4, and examples are given in Section 5.

The uniqueness of the e-optimal class is discussed in Section 6. Necessary and
sufficient conditions are given for a class of automata to be e-optimal, completing
the solution of the problem.

Using different methods, the time-varying learning with finite memory algorithm

(10) T;t=f(’1;t—1a Xna n)a Tne{la 2""9m}
d,,=d(1;,), d:{192"“’m}_){H0aH1}

has been shown by Cover [2] to yield P* =0 for a memory of size m = 4. Thus
there exist learning rules for a time-varying finite memory which yield asymp-
totically zero probability of error. No such hope exists (except in special cases) in
the time-invariant problem treated here. References [2] and [3] contain a further
discussion of finite memory constraints and sufficient statistics.

Several authors in the Russian literature [16], [10], [17] have investigated the
behavior of automata in random media. However, their work is primarily devoted
to the analysis of the behavior of various ad hoc machine designs. Moreover, the
problem formulations are more properly in the area of the sequential design of
experiments (the so-called two-armed bandit problem) than in the area of hypothesis
testing. This work is nonetheless interesting because of the similarity of the for-
malism to that of the problem considered here (see [8]). Under an alternative
definition of finite memory (in which the memory consists solely of the last k
observations) the two-armed bandit problem has been attacked by Robbins [12],
Isbell [9], Smith and Pyke [14], Samuels [13], and Cover [1]. Cover and Hellman [3]
have solved the two-armed bandit problem under a definition of finite memory
similar to that used in this paper. The methods used are based on those developed
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in this paper. The hypothesis testing problem under the constraint that the memory
be one dimensional (a single updatable real number) has been discussed by Spragins
[15] and Fralick [5].

2. A lower bound for P(e). Let f,, and f; be the Radon-Nikodym derivative density
functions of 2, and £, with respect to a dominating measure v, such as
v=2P,+2,. Define the likelihood ratio (l.r.) to be I(x) =fy(x)/f;(x). Let the
ess sup and ess inf of the L.r. be denoted by

(11a) 1=sup2y(A4)/?,(A) and
(11b) I =infPy(4)/2(4)

where the supremum and infimum are taken over all measurable sets A such that
Po(A)+2,(4) > 0.

LeMMA 1. The ratio of the probability p?j of transition from state i to state j
under H,, to the probability p}; of the same transition under H, satisfies the
inequality

(12) ~ 1< pijlpy =1, Vi
If both pY; and p}; are zero, their ratio is undefined.
PRrOOF. pf; is equal to [y p; H(0fi(x) dv(x), for k = 0, 1. Since fo(x) = (x)f1(x),
pij _ Jx py(®)I(x) f1(x) dv(x)
lej ,[ 2 Dij(X) f1(x) dv(x)
< ”x pij(x)fl(x) dv(x) =7
= Jepy(0fix)dv(x)

Similarly, replacing /(x) by its a.e. lower bound I, the other inequality is obtained.

(13)

DEFINITION. Let

(14) y=1/L

Note that y = 1, with y = 1 if and only if 2, = 2,, a.e. The parameter y will be
seen to be a natural measure of the resolvability of the two hypotheses in the finite
memory case.

Henceforth, it will be assumed that y < co. From Lemma 1 it follows that for all
i and j, py; and p}; are either both positive or both zero. Hence, the classification
into transient and recurrent states in the Markov chain is the same under either
hypothesis. The case y = oo will be disposed of in Section 4, and will be shown to be
in agreement with the results for finite y.

DEFINITION. The state likelihood ratio for state i is defined to be
(15) Ai=”i0/“i19 i=12-,m,

the ratio of the stationary occupancy probabilities under H, and H;.
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LEMMA 2. For an irreducible automaton in which the state likelihood ratios A;
are arranged in nondecreasing order, the following relation holds:

(16) 1< hiey /=D =y, i=1,2,,m—1.

REMARK. Irreducibility implies that 4; is defined for all states, since p;° > 0 and
ul>0i=12:-,m

ProoF. The lower bound of (16) follows from the assumption that the state
likelihood ratios have been arranged in nondecreasing order. To establish the
upper bound the following fact [6] will be needed: If the state space S is parti-
tioned into two sets C and C’, then in the steady state the probability of transition
from C to C’ must equal the probability of transition from C’ to C. This condition
must be satisfied separately under H, and H,. Precisely stated,

(17a) ZjecZkec'#jOPﬁc = ZjeC'ZkeCﬂjopgk’

(17b) Zjqukec'ﬂjlp,l'k =ZjeC'Zkecﬂj1P}k°

To establish the upper bound in (16), suppose the lemma were false. Then for
some /e S '

(182) ulut L e forall jeC={1,2,+,i}
(18b) wl it > clll forall jeC' ={i+1,i+2,---.m}

where ¢ = A;.
But using the inequalities (12) and (17a)

a9 . Yiecdnec bPh S Yjecdnec eIk,
so that

(20 ZjeCZkeC'ﬂjop?ké CIZjeCZkeC'ﬂjlp;k'
Similarly,

2D Yiec uectiPh > (€D e Yuec i Pl

But using (17a) the left sides of (20) and (21) are equal, and using (17b) the right
sides are equal, a contradiction.

Note that the irreducibility of the machine is used in obtaining (21), for if the
machine is reducible there exists a partition of S into two sets such that there is no
flow from either one to the other. Then none of the ratios u,°p%/u;' pj used to
obtain (21) is defined.

This is not to say that reducible automata have no restrictions on the rate of
increase of their state likelihood ratios. But a different condition and proof are
needed (see Lemma 3 and Theorem 1).
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COROLLARY 1. The second inequality in (16) becomes an equality

(22) li+1/j'i='y i=192,”'3m_1
if and only if

(23a) pY =1p}; for 2<j=i+1<m

(23b) = Ip}; for 1£j=i—1<m—1

(23¢c) =p;=0 for |i—jlz2

Proor. Follows from the proof of Lemma 2.

It is intuitively clear that an irreducible automaton is better than a reducible
automaton because of the lack of use of the transient states in the reducible case.
However, there seems to be no simple way to dispose of the reducible case short of
proving the following Lemma and Theorem.

LEMMA 3. For a reducible automaton with several recurrent communicating
classes R, R,, "+, R, and set T of transient states, with initial state ice T,
PGP _ .,

PYR)PUR)) ™
where my is the number of states in J and P'(2)) is the probability of absorption by
R, under hypothesis H,, for t =0, 1 and 1 =1,2, -, k.

(24)

Proor. Consider a new m-state automaton &/’ having the same state transitions
as o/ between states ie 7 and je . However, &/’ differs from < in that all transi-
tions of o from ie 7 to j¢J are changed to transitions from 7 to iy. Let S’ € I
denote the set of states which are accessible to &/’ from i,. Let t,° and ;' denote
the stationary distributions of &/’. Since &/’ restricted to S’ is irreducible, Lemma 2
can be applied to yield

(25) ¢ 20t eyt
But, as is known in the theory of Markov Chains [7],
(26) P(#) = Zie s T Zn e Din
where p!, is the state transition probability for the original automaton «/ con-
ditioned on H,, t =0, 1.
Then applying (12), (25) and (26)
PO('@i)Pl('%j) — [Zl eS’ TIO Zn € ﬂipgi] [Zl eS’ Tll Zn € ﬂjplln]
Pl(‘%i)PO('%j) [Zl s T Zn € ﬂ.-plln][Zl es T’ Zn e ﬂjPIOnJ
[c?mT- 1721 eS’ Tll Zn € .@iplln][Zl eS’ Tll Zn € @jplln]
[Zz es’ ‘rz‘Z,. € a,l’tln][c.l Zl es' T Zn ea,len]

=y L=y, 0

27)

IA
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DEFINITION. The spread ¢ of an automaton is the ratio of its maximum state
likelihood ratio to its minimum state likelihood ratio. If the states are ordered as
usual, so that 1, £ 4, £--- £4,, then 6 = 4,,/4;.

THEOREM 1. The spread of a reducible automaton is less than or equal to y"~2.

PROOF. Case 1. If the automaton has only one recurrent communicating class,
R (with m; < m states) and a set of transient states J (with m; = m—m, states),
the automaton must eventually reach £ independently of the initial state. Thus the
machine effectively reduces to an m, state irreducible automaton. Then by repeated
application of Lemma 2, the spread is less than or equal to y™ ~*, which is less than
or equal to y" 2,

Case 11. The automaton has no transient states, but several recurrent com-
municating classes %, Z,, ***, %, having m,, m,, -+, m, states respectively. If
the automaton starts in state ie #;, it never leaves #;. Thus the machine is effec-
tively irreducible with m; states. Again by Lemma 2 the spread is less than or equal
to ,ym1—1 é ,ym—2.

Case III. There are several recurrent communicating classes, Z,, %Z,, ***, %,
having m,, m,, - -+, m, states respectively. In addition there is a set of transient
states J having my states, where my = 1. If the automaton starts in a recurrent
state, Case II applies. If, however, the automaton starts in a state i, € 7, several of

the #,;’s may be accessible from i.
Let v/ be the stationary distribution for the m;-state recurrent class %;. Then

for re4;,
(28) ”r' = Pt(‘%i)vlz:ra and
(29) Lym=t S vifvl, S g™

Thus, for re;, seR;,

P°(%)P(R; 0 /yl
(30) AnlAs = 1( ) 0( g 1) [v:),/'v,;]
P (@’)P ('%J) [vjs/ vjs]
é,ym1—1<,ym—2 ]f l=J
(31) é .))MT,)’Mi‘l,ym_j"l é ,ym—z if i #j'

This is the desired result.
THEOREM 2. The spread of an m-state automaton is less than or equal to y™ 1.
Proor. If the automaton is irreducible then m—1 applications of Lemma 2 yield
the desired result. If the automaton is reducible, Theorem 1 gives an even stronger
bound.
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THEOREM 3. For an m-state automaton, P(e) = P* where

_ 2Amomy Y -1
o" =1

= min {ny, 7, }, otherwise.

(32) P* , if YT 2 max {mno/ny, my/mo)};

REMARK. This theorem shows P* to be a lower bound on P(e). In the next
section P* will be shown to be the greatest lower bound.

ReMARK. If 7y = nr; = 4, (32) reduces to
(33) P* = (p¥m=Dpq)~1,

REMARK. It has been assumed that y < co. However, as shown in Section 4, if
y = oo then P* = 0, in agreement with this theorem. Thus the theorem holds without
restriction on y.

REMARK. The case y"~! < max {n/n,, m,/m,} is trivial, as it can be seen from
Theorem 2 that then no state likelihood ratio will cause a reversal of the a priori
decision. No machine is needed since the trivial rule of deciding upon the hypothesis
with the larger prior achieves the lower bound min {r,, 7, }. Note that y"~! =
max {my/n;, 7y /7, } implies that P* = min {n,, 7, }, in agreement with this heuristic
discussion.

ProOF OF THEOREM 3. If k is the minimum state likelihood ratio, then by
Theorem 2

(34) k< pllut < kym 2, VieS.
Using this equation and letting « = P(e | H,) and f = P(e| H,), it follows that

&= Yies, i° Z kY jes, 15" = k(1—B), or
(35) o= k(1-p); and
B = Yieso i 2 (1/ky™ 1) Y ieso 1 or
(36) Bz (ky" )7 (1 ~a).
Multiplying (35) and (36) one obtains
(37) afZy D —a)(1 - ).

Equation 37 gives a lower boundary for the operating characteristic of a decision
rule (automaton) with memory of size m. Thus the results of this analysis apply to a
Neyman-Pearson formulation of the problem, as well as to the Bayesian approach
that is being followed. The algorithms that will be demonstrated in the next
section can approach any point on the operating characteristic.
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Straightforward Lagrange minimization [7] of P(e) = myo+7,f, subject to the
inequality constraint (37), yields minimizing values

(38) o = [((mi/meyy™ ™ =17/ = 1),
B* = [((mo/my )y~ H=1]/(y"~*=1)
and the resulting minimum value of P(e)
(39) P* =[2momy "~ =11/ 71 = 1)
for y"~! = max {rno/n;, n,/mo}. Thus P(e) = P* as was to be shown.

COROLLARY 2. A reducible (m+ 1)-state automaton obeys the same bound (32)
on P(e) as an m-state irreducible automaton.

Proor. If the bound of Theorem 1 is used in the proef of Theorem 3, it is seen
that a lower bound on P(e) for an (m+ 1)-state reducible automaton is the same
as the lower bound derived for a general m-state automaton. Thus a reducible
automaton ‘““wastes” at least one state.

The following theorem shows the unachievability of the lower bound P* in all
but degenerate cases.

THEOREM 4. If m > 2 and y"~ ! > max {no/n,, n,/no}, then P(e) > P*.

ProoF. From the proof of Theorem 3 it is seen that P(e) = P* implies that
equality must hold in (37). This in turn implies that

(40) llio = llil = 0, i#1 or m.

Since irreducible automata have all u; > 0, any automaton achieving P(e) = P*
with m > 2 must be reducible. Corollary 2 rules out this possibility.

3. A class of c-optimal automata. In this section an g-optimal class of automata
will be demonstrated, i.e., for every ¢ > 0, it will be shown that there exists an
automaton in this class with P(e) £ P*+e¢. Thus, the lower bound P*, although
shown to be unachievable by Theorem 4, is established as the greatest lower bound,
completing the solution of the problem.

The structure of an g-optimal automaton is almost given away by the following
theorem. However, an understanding of this theorem is not necessary for what
follows.

THEOREM 5. Let {2/(n)} be a sequence of m-state automata. Further let {p(n)},
t =0, 1, and {P,(n)} be the associated sequences of u' and P(e). If

Y"1 > max {mo/n;, 1y 7o},

then P, (n) — P* if and only if

Lo {[sn My 1} {1t ()11, °(m)]} = y™ L. (It is assumed that for each n the
states of o/(n) are numbered in order of increasing state likelihood ratio.)

2. ui(n)>0,2<i<m—1,t=0,1 and

3. 1y °(m) = [((myfmo)y™ ™ HE—1]/[y" 1 —1].
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ReMARK. It is assumed for each n, that the decision rule 4 is optimal with respect
to the state transition function f; i.e., d(i) = H, if and only if mou,°(n) > 7 u;*(n).

Proor. The sufficiency of the conditions will be proved first. Since the expression
(8) for P(e) is a finite sum,

(41) P, =1im, o Po(n) = 7o Y jes, 1"+ 71 Yseso i where
(42) ' = lim,_, , p1'(n), t=0,1; ieS.
Thus condition 2 implies

(43) P,=mou,°+my ! and
44 ', =1, t=0,1.

Conditions 1 and 3, together with (44) result in

o _ [mofm)ym 1t -1
?m—l_l *

(45) Him

Hence

- 2(momy ?m_.l)*— 1 _

,ym—l___ 1 P*’

(46) P,
proving the sufficiency of the conditions.

The necessity of the conditions follows from the proof of Theorem 3. For P(e)
to approach P* it is necessary that (37) approach equality and that o« — a*, f — B*
as given in (38). []

We shall now propose an automaton which achieves the maximum spread of
Condition 1 of Theorem 5. We will subsequently modify this automaton in order
to meet Conditions 2 and 3. Consider an automaton which moves up on high-
likelihood-ratio events and down on low-likelihood-ratio events. To this end
define the sets

(47a) H,={xeX:1(x) = [(1/D+]""}
(470b) T, ={xeX:l(x) < (I+¢)}

47¢) F.={xeX:x¢(H 0T )}
Further define, for t =0, 1

(48a) hf =2K,)

(48b) t) = P(T ).

By definition of ] and [, for any & > 0, A, and ¢ are strictly greater than zero. Note
also that

- (49) I 2 b =[efodvZ [(1D)+e]™" [ frdv
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or equivalently

(50) Ihzh?=[A/D+e]" " h,". Similarly
(51) It <1° < (I+9)t,t
Consider the automaton with state transition function
(52) fG,x)=i+1 if i<m, xeH,;
=i—1 if i>1, xeT ,;
=i otherwise.

Using (17) and letting C = {1,2,---,i} and C' = {i+1,i+2, -+, m} it is seen
that

(53) urht =iyt t=0,1; i=1,2,---,m—1.
From (50), (51) and (53)

M1/l _ hOt,! > 1

pllwt t0h T [(A/D+e]ll+e)
Therefore, for a sequence of automata {=/(n)} with &(n) — 0, 4, 1(n)/A,(n) —y and
the spread a(n) —y™~!. Condition 1 of Theorem 5 is thus satisfied.

In order to satisfy conditions 2 and 3 a slight modification of the state transition
function will suffice. Let (i, x) be specified as follows (see Figure 1):

For2<i<m—1let

(54 y=>Dz

(55a) fl,x)=i+1, xeH,
=i, xe,
=i—1, xXeT ,.

In the end states let

(55b) f(1,x)=2, withprobability >0 if xesf,;
=1, otherwise.

(55¢) f(m, x)=m—1, withprobability k6 >0 if xeJ;

= m, otherwise.

SAHe He € H, He
Te

Q QJ € Q 01/6 Q ;
% A T T T

Fi1G. 1. An ¢-optimal algorithm.
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If in this modified sequence of automata {=/’(n)}, 8(n) — 0 with d(n) > 0 for all n,
then Condition 2 of Theorem 5 is satisfied. Furthermore, by varying k it is possible
to force u,° to any desired value. Thus for some value k = k*, Condition 3 of
Theorem 5 is satisfied. It is easily verified that these modifications do not affect
A;+1/A;- Hence, the spread a(n) is unaffected and P (n) — P*. This demonstrates the
g-optimality of the class of automata depicted in Figure 1.

The value of k*, obtained by straightforward minimization of P(e), depends on
the relative probabilities of #, and 7, (and hence is a function of &) and on the
a priori probabilities.

Defining

(56a) Yo = Po(H ) Po(T )

(56b) Y1 =P1(H)P(T ),

k*(¢) is given by

k*(e) = T e =Tyl !
(mo—m)+ (5~ =97 1)\/ on;: 1
(o¥1)
if Y™~ ! > max {#o/ny, T1/To};
(57) =0, if y"~' < max {no/ny, My /mo} and wy > 7Wy;

= o0, if 9™~ ! < max {my/n,, 7,/7;} and wy < 7.

It is interesting to note that although the state transition matrices P(x) were
allowed to differ with x, and therefore could have been infinite in number, it is
found that only three are needed, one each for the regions #,, 7, and &,.

It is also of interest to note that if X has a continuous probability distribution,
it is possible to satisfy the conditions of Theorem 5 without recourse to artificial
randomization. Define sets #, < #,, 7, =7 , such that, for 1 =0, 1,

(58) PUANP(H )~ &
PAT DIPLT ) ~ k*6.

For ¢ sufficiently small, the approximations (58) can be made as accurate as desired.

Then if the automaton exits from state 1 with probability one when xe s, is

observed, and exits from state m with probability one when xe .7, is observed, the

desired behavior is achieved, and no artificial randomization is required. Thus in

the continuous case, but not in the discrete case, deterministic rules can be optimal.
A more detailed derivation of this e-optimal class is given in [7].

4. The case of infinite y. Although it was assumed that y < oo for the derivation
of P*, it is easy to show that if y = co then P* = 0 for any memory at all (m = 2),
in agreement with (32). If y = oo, either I = oo or [ = 0. We shall treat the case
1 = oo since interchanging the role of H, and H, yields the other case.
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Let # = {xe%:l(x) = c0}. Then 2 ,(#) = 0. If P () > 0, then the following
two-state machine achieves P(e) = 0. Start in state 1; transit to state 2 only if
xe# is observed; and once in state 2 never leave. Decide H,, in state 2 and H, in
state 1. Then, with probability one, this automaton makes only a finite number of
errors.

If 2,(s#) = 0, then no machine achieves P(e) = P* = 0. However, the ¢-optimal
class of Section 3 will e-achieve P* = 0. All the formulae of Section 3 may be
applied. For example, #, = {xe % :l(x) = 1/¢} which is the extension of (47a) to
the case 1 = co.

5. Examples.
EXAMPLE 1. Let X be a Bernoulli random variable with distribution
(59) X=Heads , p
=Tails , 1-p.

Consider the two-hypothesis testing problem Hgy:p = p,vs.H,:p = p,, under
equal priors m, = 7; = 4. Recall in the case n, = m; that the g-achievable lower
bound on the probability of error reduces to P* = 1/(14 y*™~1),

(a) Let po=.99---99 and p; = .99---90 (with the same number of 9’s in be-
tween). This problem appears difficult because of the large number of trials
necessary to obtain a significant test of the small difference between p, and p;.
Since an m-state automaton can only “count to m,” it seems that memory will be
exhausted before the test reaches an interesting level of significance. However, in
this problem 1 = po/p; = 1, I = qo/q, = .1, and y =1/l = poq:/p1q, = 10. Thus for
m =5 (a five-state memory), P* = 1/101 = .01.

(b) Now let po = 2, p, = 4. Here y = poq,/p190 = 9, and P* = 1/82 (for a 5-state
automaton). This probability of error is actually higher than that of the previous
example in which p, =.99--:99 and p, = .99---90.

(c) Of peculiar interest is the case p, = .501, p; = .499. Here y =~ 1.008, which
yields P* = .496 for a 5-state automaton-little better than using no memory at all.
In fact, approximately 500 states are required to obtain P* = .01. Clearly the
difference | po—p,| is a poor measure of the resolvability of H, vs. H, in the finite-
memory case.

In Examples 1(a), 1(b) and 1(c) the optimal algorithm moves up one state on
Heads and down one state on Tails, with appropriate randomization in the end
states. Also in Examples 1(b) and 1(c) it is seen from the symmetry n, = n, = % and
Do = 1—p; that k* = 1. In Example 1(a), k* > 1 to offset the drift to the right
caused by py, p; = 1.

The difference between examples 1(a) and 1(c) is that in Example 1(a) there is
an event (Tails) which occurs much more frequently under one hypothesis (H,)
than under the other. By essentially disregarding the other events, the high informa-
tion content of the extreme event is well utilized. Neither Heads nor Tails is a high
information event in Example 1(c).



778 MARTIN E. HELLMAN AND THOMAS M. COVER

EXAMPLE 2. Let X be a univariate normal random variable with mean y = +1
(under Hy) and p = —1 (under H,) and fixed variance ¢ = 1. Let ny = 7; = 4.
In this case the likelihood ratio is given by /(x) = exp(2x). Therefore I = oo, [ = 0,
and y = co—resulting in P* = 0 for any memory whatsoever (m = 2). To achieve
this, let #, = {x:x 2 T} and I, = {x:x £ —T}. Move to state 1 for xeJ,, to
state 2 for xe #,, and remain in the current state otherwise. Then P(e) tends to
zero as T — oo.

EXAMPLE 3. X has a Cauchy distribution with pdf f(x) = 1/r(1+(x—p)?). Test
Ho:p=1vs. H;u= —1 with 7y = w; = 1. This example is of interest because
the Cauchy and the normal distributions have similar shapes and have comparable
convergence rates for the probabilities of error in the infinite-memory case. How-
ever, calculation shows that 7 =]"! ~ 5.8 and y =~ 33.6. Thus a 2-state memory
yields P* =~ .15 for the Cauchy distribution, in marked contrast to the P* =0
obtainable in the normal case. The optimal algorithm for the Cauchy distribution
also differs markedly from that for the normal distribution. Here #, and 7, are
small intervals centered at x = 2%, in contrast with the semi-infinite intervals in
Example 2.

6. Characterization of all ¢-optimal algorithms. The real purpose of this somewhat
technical section is to show which learning algorithms are bad. P* has now been
established as a lower bound on P(e), and the e-achievability of P* has been demon-
strated by the family of automata depicted in Figure 1. Theorem 5 gives necessary
and sufficient conditions for an algorithm to be e-optimal. However, these con-
ditions only relate to gross properties of the algorithm and do not adequately
characterize the structure of all e-optimal algorithms. In this section more explicit
conditions will be given. From Theorem 5 and Corollary 1 it appears that any
g-optimal algorithm must resemble that of Figure 1. However, this is not entirely
true, as is demonstrated by the class of six-state machines depicted in Figure 2.
Using (17) to solve for u° and u', it can be verified that P, » P* as § —» 0, ¢ — 0 for

60>0,e>0.
He

SHe  SAH. He

A e 8% T k37
FiG. 2. An alternative e-optimal algorithm.

In particular, it is seen that the tempting conditions of Corollary 1 are not necessary,
even in the limit, for a sequence of automata {<#(n)} to have P,(n) — P*. Of the
three conditions given in Theorem 5, only Condition 1 is nontrivial, since given
condition 1, conditions 2 and 3 can always be achieved by multiplying the matrices
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[p;;()]in the first and last rows by 6 and k 6 respectively. It remains only to specify
1

the conditions under which the spread approaches ™~ *.

THEOREM 6. Consider a sequence of irreducible m-state automata {sf(n)} with
stationary occupation probabilities p'(n), state transition probabilities p;,(n), state
likelihood ratios A(n) £ A,(n) £ -+ < 2,(n) and spreads o(n) = A, (n)[A,(n); with
respective limiting values (as n — oo) ', pi;, A; and a. Then o =y~ if and only if
the following conditions are satisfied:

1.
Yk 1 (M) j(n) R
o 1 Yk 1 1 () (n)
(60b) Yt (M)Dhs 1, ()

—
Z;"=k+ 1 Z;‘: 1 Hit(")ng(")
fort=0,1andk=1,2,---,m—1; and

2.
(61a) [Z}"=k+ 1 p;?,~(h)/[27’=k+ 1 Pl:j(")] -1
(61b) [Zl;= 1 Pl?+ lj(n)]/[Z';= 1 Pé+ 1,j(")] -1

fork=1,2,--- , m—1.

REMARK. Let C = {1, 2, -+, k} and C' = {k+1, - -+, m}. Then Condition 1 says
that the fraction of probability flow from C to C’ which is from state & must tend
to one; similarly, the fraction of flow from C’ to C, from state k+ 1, must tend to
one. Condition 2 states that the probability ratio of upward (or downward) transi-
tions under H, and H,; must approach I (or ]).

Proor ofF THEOREM 6. The sufficiency of the Conditions will be proved first.
Considering ke {1, 2, ---, m—1} as fixed, using (17),

(62) :‘= 1 Z?:H 1 1 (n) D} j(n) = Z;"=k+ 1 Z’;=1 1 (m)p; j(") = F'(n)
fort=0, 1. Let
(63) &(n) = [Z;”=k+2 ’;: 1 Hio(")P?j(n)]/FO(n)

denote the fraction of the probability flow from C’ to C which is not from state
k+1, under H,. From (62) and (63)

(64) (1 —81("))_1#1?+ 1(")2?:1 Pl?+ l,j(n) = FO(") = .uko(") ZT=k+ 1 pl(c)j

where the inequality follows from (62). Similarly, defining &,(n) to be the fraction
of flow from C to C’ which is not from state & under H, results in

(65) (1—ey(n))” lﬂkl(") Z?=k+ 1 Plij(") = /111+ 1(n) Z’,‘= 1 PI%+ 1,j(")~
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Combining (64) and (65) and taking the limit as » — oo yields

0 1 m 0 m 1
/"k+(1)/#k:- > (1—g,)(1—¢,) Z£=k+ 10Pk, j/Zj;‘=k+ 11Pk,j =1

B [ e Zj=1Pk+1,j/Zj=1Pk+1,j
where the limiting behavior follows from Conditions 1 and 2. Thus 4, ((#)/A,(n) = ¥
and therefore a(n) — y™~ 1, completing the proof of the sufficiency.

The necessity of the first part of Condition 1 will be proved by contradiction.
Let &,(n) be defined as before. Assume that &,(n) = ¢, > 0 in contradiction to
Condition 1. Now a(n) — y™~! implies that for any ¢ > 0 there exists a number
N(e) such that, for n = N(e),

(67) pE M)t (n) > A4(n)(y' ™" —e).
Using Lemmas 1 and 2 and (62), for » > N(g),
(68)  Ay(m)y*~MTF'(n) Z FO(n) > Ay(m)I Y i kv 1 2 =1 (7' =) (m)pis(m).

Using the expression (62) for F!(n) results in

(66)

(69) Yimke1 = (L= D ey (m)pi(n) > 0.
Since 1—y'~**D < 1—y for i 2 k+2, one obtains
(70) ey “[1—ex(m)]F' (n)+(1—y+ey~Fex(n)F'(n) > 0.

Since Fl(n) > 0,y > 1, and &,(n) — &, > 0, it is seen that for sufficiently small ¢ the
left-hand side is negative in the limit; a contradiction. A similar argument proves
that the second part of Condition 1 is also necessary for a(n) —y™ .

Proceeding to the necessity of Condition 2, recall, from Lemma 2 that

(71) .uko(") = '11(")7"_ lﬂkl(")
for all n. Thus
(72) Fo(n) = Yk 1 Y hmke 1 1 (M)piy(n) < Ay (n)y*~'1F(n).

Then from (64) and (67)

k0
(73) Fz ;;%A(n)(vk—e)[%%———%]uh(n) Y1 Phes, )

_ 1 _83("_) Al(n)(‘yk—s) [M]Fl(n),

1—¢,(n) ’}=1P;:+1,j(n)

where &3(n) is the fraction of flow from C’ to C not from state k+1, under H;.
(Note that y~ ™ D]g,(n) < e5(n) < y™ 'le, (n), so that &;(n) —» 0 is equivalent to
&3(n) = 0.) From Condition 1, which has already been established, it is seen that
o(n) —» y™~ ! implies &,(n) — 0. Thus, combining (72) and (73) one obtains

YL =gy (m)]
(74) [Z’;= 1 Pl?+ 1, ,(")]/ZL 1 Pl%+ 1,j(")] = [1_33(”——%;—_—8) -1,
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where the limiting behavior (as n — oo followed by ¢ — 0) follows from &,(n) — 0,
£5(n) = 0. Thus (61b) has been shown to be a necessary consequence of a(n) — y™~ 1
The necessity of (61a) has a similar proof.

7. Conclusions. The principal results of this discussion may be stated in a way
which emphasizes the independence of the results from a Bayesian formulation.
Let o = Pr {Decide H, |H,} and § = Pr {Decide H, | Hy}. Then every algorithm
with time-invariant m-state memory must satisfy (by (37)) the inequality.

(75) (a+B+t) = t(1+1)

where 1 = (y"~*—1)"* and y =I/I. Also, for any «’, ' such that (&' +1)(f'+¢) >
t(1+1¢) there exists an algorithm of the form shown in Figure 1 for which o <o’
and B < f’. It has also been shown that an optimal algorithm, i.e., one for which
equality is achieved in (75), does not in general exist. Finally, e-optimal algorithms
require artificial randomization, or, what amounts to the same thing, a randomiza-
tion induced by the observation itself through the action of &, and .

Although stochastic transition rules are unnecessary in the continuous case, their
introduction allows the unification of the discrete and continuous cases in much the
same way that stochastic decision procedures unify the continuous and discrete
cases in the Neyman—Pearson formulation of the hypothesis testing problem. It is
somewhat surprising that randomization is needed at all, since randomization
usually decreases information.

The form of the e-optimal class provides insight into the optimal decision making
process. Essentially the automaton changes state only on maximal or minimal
likelihood ratio events. Furthermore, once in an extreme state the automaton leaves
only with small probability. In the case of discrete distributions, this requires
artificial randomization.

It is noticed that the automaton waits for extreme events before changing state.
This shows that in many cases roundoff schemes are far from optimal, since they
put emphasis on small changes. Thus taking a sufficient statistic and rounding it
off to a finite number of decimal places will in general not be close to an optima
finite memory strategy. :

Transitions may be restricted to extreme events, even if they occur infrequently,
since the number of trials is infinite. If the number of trials & is finite, the automaton
will not be able to neglect events of moderate information. The problem of finding
an optimal machine when N is finite is an interesting one, for, except in certain
degenerate cases, if P(e) approaches P*, & must approach zero. The resulting con-
vergence time increases without bound. Thus a machine which is nearly optimal
for an infinite number of samples is far from optimal in the small sample case.
However, we conjecture that for finite N the optimal machine will still resemble
Figure 1 in certain respects. We believe that high likelihood ratio events will cause
upward transitions, and low likelihood ratio events downward transitions although
the events need not be as extreme as before and transitions need not be between
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adjacent states. Furthermore, we also believe that artificial randomization will still
be needed in the discrete case; although the values of & will not be near zero.

Let &/*(V) denote the optimal m-state algorithm for N observations, having
associated probability of error P*(N). It is easily seen that P*(N)-— P*, and we
believe that o/ *(N) will in some sense approach the structure of Figure 1 as opposed
to a more complicated structure such as that of Figure 2.

It would also be of interest to see whether human beings, in problems to which
they have allotted finite memory (such as “like,” “indifference”” and “‘dislike”)
demonstrate an optimal randomized learning procedure similar to that suggested
by this paper.
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