NOTE ON THE UNIFORM CONVERGENCE OF DENSITY ESTIMATES

By Eugene F. Schuster¹

Engineer Strategic Studies Group

1. Introduction and summary. Let X_1, X_2, \cdots be independent identically distributed random variables having a common distribution function F and let $f_n(x) = (na_n)^{-1} \sum_{i=1}^n k((x-X_i)/a_n)$ where $\{a_n\}$ is a sequence of positive numbers converging to zero and k is a probability density function.

If $\sum_{n=1}^{\infty} \exp(-cna_n^2)$ is finite for all positive c and if k satisfies:

- (i) k is continuous and of bounded variation on $(-\infty, \infty)$.
- (ii) $uk(u) \to 0$ as $u \to +\infty$ or $-\infty$.
- (iii) There exists a δ in (0, 1) such that $u(V_{-\infty}^{-u^{\delta}}(k) + V_{u^{\delta}}^{\infty}(k)) \to 0$ as $u \to \infty$.
- (iv) $\int |u| dk(u)$, the integral of |u| with respect to the signed measure determined by k, is finite.

Then the author [2] has established the following:

THEOREM. A necessary and sufficient condition for

$$\lim_{n\to\infty} \sup_{x} |f_{n}(x) - g(x)| = 0$$

with probability one for a function g is that g be the uniformly continuous derivative of F.

The purpose of this note is to show that this theorem remains true if conditions (i)-(iv) on k are replaced by the condition that k is of bounded variation on $(-\infty, \infty)$.

2. Proof of theorem. The sufficiency of the condition has been established by Nadaraya [1].

Conversely, we can establish Lemmas 3.1, 3.2, 3.3 of [2] assuming only that k is of bounded variation on $(-\infty, \infty)$. We first note that the proofs of Lemmas 3.1 and 3.2 in [2] only use the fact that k is of bounded variation. Next, Lemma 3.8 can be established by observing that the series of inequalities presented in its proof (in [2]) are valid here also and lead to a contradiction of Lemma 3.2. Upon integration by parts, we see that:

(1)
$$Ef_n(x) = -\int (a_n)^{-1} F(x - a_n u) dk(u)$$

so that the proof of Lemma 3.3 can be completed by a "3-epsilon" proof utilizing (1) above, the uniform continuity of F (implied by Lemma 3.8), and Lemma 3.2.

Let y be an arbitrary but fixed point and let (a, b) be an open interval containing y. If g is such that $\sup_x |f_n(x) - g(x)| \to 0$ with probability one then Lemma 3.2 tells us that $\lim_{n\to\infty} \sup_x |Ef_n(x) - g(x)| = 0$ so that $\lim_{n\to\infty} \int_a^y Ef_n(x) dx = \int_a^y g(x) dx$. By

Received November 17, 1969.

¹ Now at The University of Texas at El Paso.

interchanging the order of integration and using Lebesgue's dominated convergence theorem we see that $\lim_{n\to\infty} \int_a^y Ef_n(x) dx = F(y) - F(a)$ so that $F(y) - F(a) = \int_a^y g(x) dx$.

Since g is uniformly continuous (Lemma 3.3) the (Lebesgue) $\int_a^y g(x) dx = (Riemann) \int_a^y g(x) dx$ and hence F'(y) = g(y) by the fundamental theorem of calculus for Riemann integrals. Since y was arbitrary the necessity of the condition has been established.

REFERENCES

- [1] NADARAYA, E. A. (1965). On Non-parametric estimates of density functions and regression curves. *Theor. Probability Appl.* **10** 186–190.
- [2] SCHUSTER, E. F. (1969). Estimation of a probability density function and its derivatives. *Ann. Math. Statist.* 27 1187-1195.