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INADMISSIBILITY OF VARIOUS ‘“GOOD’’ STATISTICAL
PROCEDURES WHICH ARE TRANSLATION INVARIANT!

By S. K. PERNG

Kansas State University

1. Summary and introduction. The purpose of this paper is to try to show that
certain moment conditions are essential for the admissibility of various “good”
translation invariant statistical procedures. In 1951 Blackwell [1] first gave an
example in which he proved that a best invariant estimate may be inadmissible.
Since then many papers dealing with the admissibility of the best invariant pro-
cedures have been published.

The problem of admissibility in the case of point estimation of a location para-
meter was treated by Blyth [2], Blackwell [1], Stein [9], [10], [11], Fox and Rubin
[6], Farrell [4], Brown [3]. The problem of admissibility of certain confidence
intervals was treated by Joshi [7]. The problem of admissibility in the case of a
best invariant test involving a location parameter was treated by Lehmann and
Stein [8]. In each paper cited above, admissibility requires the existence of one more
moment than what is needed for finite risk. The first two examples of this paper
indicate that, without this extra moment, inadmissibility may result.

In Section 3, we show, by example, a unique best translation invariant estimate
may be inadmissible if a certain moment condition fails to be satisfied. In Section 4
we prove a theorem which gives a set of sufficient conditions for the admissibility
of certain translation invariant confidence interval procedures and we also give an
example which shows that a certain translation invariant confidence interval
procedure may be inadmissible if a certain moment condition fails to hold. In
Section 5 we show by example a best translation invariant test may be inadmissible
if the test is non-unique.

2. Notation and assumptions. In this section we shall state the notation and
assumptions which we will use later.

Let # be the o-field of all Borel subsets of the real line & and % be a g-field of
subsets of a set %. Consider the following estimation problem. Let G be a prob-
ability measure on 4 and F be a # x ¥ measurable function on & x % such that
F(- —0, y) is a distribution function for each ye® where 6 is an unknown real-
valued parameter. We observe (X, Y) and try to estimate § with loss L(6, §) =
W(0—0) where 0 is the estimate of § and Wis a fixed, nonnegative, Borel function
from E, to E,* (where E, is one dimension Euclidean space and E, * = E, u{oo}).
A non-randomized estimate of 6 is of the form §(x, y) = x+y(»).

Secondly, consider the confidence interval problem. We assume that X, Y, have
joint distribution given by H(dx, dy) = f(x—0|y) G(dy) where f(x—0|y) is the
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conditional density function of x given y, and G be a probability measure on %.
We observe (X, Y) and try to set up a confidence interval for 8. Then every non-
randomized invariant confidence interval has the form [x+a(y), x+b(y)] where
a, b are real-valued functions of y and a(y) < b(p).

Finally, for each i = 1,2 and ye% let F,(-, y) be distribution functions on X
such that Fy(-, ) is # x ¥ measurable. For every 6 and for i = 1, 2 let the joint
distribution of (X, Y)e Z x % be given by usual extension of P,((X, Y)e C x D) =
[pdG(y) [c F(dx—0, y) to measurable subsets of % x #. Now consider the
problem of testing H,:i =1 versus H,:i = 2. If we apply the invariance principle
to the testing hypothesis problem then the maximal invariant statistic is Y and,
hence, a test is invariant if and only if it depends on y only.

3. Inadmissibility of the best invariant estimate of a location parameter. We shall

follow the notation and assumptions stated in Section 2. Brown (Theorem 2.1.1
in [3]) presented a set of sufficient conditions for the admissibility of the best
invariant estimate of a real location parameter in the sequential case under quite
general assumptions on the loss function. Now let us consider the fixed sample
size case with loss function of the form W(x) = |x|* k = 1. By applying Brown’s
theorem just mentioned, a unique best invariant estimate is admissible if the follow-
ing moment condition is satisfied.
3.1 E|X|"W(X) < o fora=1.
It is interesting to see whether this is the weakest moment condition we can have.
Brown (Theorem 2.4.1 in [3]) gave a partial answer to this question by giving an
example. He gave a probability density function such that (3.1) is valid for
0 < a < k/(2¥—1), yet the unique best invariant estimate is inadmissible. Is a unique
best invariant estimate admissible if the moment condition (3.1) is satisfied for
k/(2¥—1) £ « < 1? We answer this question by the following theorem.

THEOREM 3.1. In the fixed-sample size case, if the loss function is W (t) = |t|* for
k > 1 then for every a(0 < o < 1) there exists a family of probability densities such
that E|X|* W(X) < oo and the best invariant estimate of the real location parameter
is unique but it is inadmissible.

PrOOF. Let 6 be an unknown real parameter —o0 <6 < 00, Y be a random
variable according to the known distribution G such that

c

=0 otherwise;
where 7, ¢, are positive constants and # < 1. Assume that X given y is distributed
according to F(x—0 | y) where

11 x —
(3.3) AF(x—0|y)=—z—dx for =0
y2b y
=0 otherwise;

and b is a positive constant.
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The unique best invariant estimate of 6 is X (unique a.e. with respect to Lebesgue
measure). By elementary integrations, we can show that E|X |°‘ W(X) < oo for

0 £ o < 1—7. Next, we shall show that X is inadmissible.
Let us consider the estimate of the form

@(x,y) = y¥(x/y)
(3.4) where  Y(x/y) = x/y+f(x/y)
f(2)=—edz if |z| S 1/,
=0 otherwise;

and ¢, 6 are constants such that 5~! > & > § > 0. Then the risk of ¢ is

by +6 c
3.5) R(p,0) = f '[ - k+2 ; 2bdxdy
by+0
by+6 X ek c
=== ;s dxdy.
J fbyw lp<y> y| 2y XY

Let x/y = z and 0/y = t, then (3.5) becomes

CO" 1 O (t+b

[¥(2)—|* dz:Ir"’ dr.
26 Jo b

By (3.4) replace y/(z) by z+f(z) and z—1 = w. We have

(3.6) R(e,0) =

L.J T

Cerl—l ] b
3.7 R(p,0) = ( |f(w+D)+wlfdw |17 "de.
2b JolJ-s
Now we will evaluate the inner integralin (3.7). Fork > 1, |w| < b,and |f| £ 6 < o0
(3.8) WS (w+D)* = [w]*+f W+ )k |w|* "L sgnw+o(f (w+7)).
Hence

(B9) [2y|fw+1)+wl dw

= (", |w|dw+k (", fF(w+1) |w[*~(sgnw) dw+o(supy,,; < | f (W +17))).

Thus
bk
3.10 R(p,0) = ——
(3.10) (9,6) k+1)1=n)
Grl 1 0 b
+——{ Jt"’f fw+o)|w|*~ ! (sgnw) dw dr
2b 0 -b

]
+f 0(SUP| ) <b |f(w+1)|)r"’dr} .
0

b
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The second term on the right of (3.10) equals

01} 1
2b

(3.11) J |w[*~ I(SgllW)J fw+1)r "drdw

c9" t

= f[f fw+)—f(—w+1))~ "dr]|w|" Ldw.

For 6 <&¢™'—b and ¢! > b, the inner integral on the right-hand side of (3.11)
becomes

0

oL
—2edwt "dr = —285w[ ]

1—py

(3.12) (f(w+r)—f( w+1))T” "d‘c-f

0

For 6 2 ¢~ '—b and ¢™! > b, the inner integral on the right-hand side of (3.11)
becomes

(B313) [BLf(w+D—f(—w+D)]t"dr = [Fn ™ =% _2p5yr7 dr
+ [ et B ed(t—w)r " dr

—2edw

< [mm (e =w,0)] ""+ed0(em.

Substituting (3.12), (3.13) in (3.10) and evaluatmg the error term gives

cb* co"~ 1{—28501_"bk+1 }
3.14 R(p,0) < + +0(256) b,
R R (- T
if 0<f<e '—b,
and
(315 R0 < +wr{ %Mwhm@”—bmy"
T (k+1)(1—1n) (1-

+ O(e")ed + o(min (5/e, £66) )}, if 6=¢ '—b.

Hence by choosing ¢ sufficiently small and then choosing § so that §/e is sufficiently

small then we have
cb*
(3.16) R(9,0) < ——F
@0 < Gnia—m

for all 6 > 0.

For the case § <0, by the symmetry of the problem, we can show (3.16) still
holds. For 0 =0 we can prove (3.16) by direct computation. Summarizing, for
fixed ne(0,1), k> 1,0 <d <e < b™?, and ¢, §/e sufficiently small we have

cb*
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for —o0 < 6 < 00. On the other hand, we know the risk of the best invariant
estimate X of 6 is equal to ch*[(k+1)(1—)]~ . Therefore we have

(3.18) R(p,0) < R(X,0)
for —oo < 6 < co0. This completes the proof of the theorem.

REMARK. The form of dF in the proof is not critical. In fact one can certainly
take dF(x—0|y) =y~ ' h(|y~'(x—0)|) dx so long as h(w) = O for |w| > b. Further-
more, any loss function which satisfies an appropriate version of (3.8) can be used
in the example.

4. Inadmissibility of confidence intervals for a location parameter. We shall use
the notation and assumptions stated in Section 2. We define the admissibility
of confidence intervals as follows.

DEFINITION 4.1. A set of confidence intervals [a(x, y), b(x, y)] is said to be
admissible if, and only if, there exists no other set of confidence intervals [a,(x, ),
b,(x, y)] satisfying

() b,(x, y)—a;(x,y) £ b(x, y)—a(x,y) for almost all (x,y)eZ x% with
respect to Lebesgue measure and

(i) Py(ay(x,y) = 0 = by(x,)) 2 Pyla(x, ) £ 0 = b(x, )
for all 0 €Q where Q is the parameter space, the strict inequality holding for at least
one 0eQ.

In 1966 Joshi [7] proved a theorem which gave a set of sufficient conditions for
the admissibility of certain confidence interval procedures for a location para-

meter. Instead of stating Joshi’s theorem, we shall state and prove a simpler theorem
given by a referee.

THEOREM 4.1. Suppose X, Y have joint distribution given by H(dx,dy)=

f(x—0)|y)G(dy). Suppose f(—v,(»)|y) =f(vi(»)|y), where vi(Y), v,(Y) are two
nonnegative statistics, and f(t|y) is strictly decreasing in |t| on the set f(t|y) > 0.
Suppose

4.1) JG@y) [t ft|y)dt < .
Then the confidence interval procedure given by x—v,(y) £ 0 £ x+v,(y) is admissible
according to Definition 4.1.
PRroOF. Consider the problem of estimating 6 with loss function
“4.2) L(6-0,y)=0 if —0,(y) S6-0=0v,(»);
=1 otherwise.

Then the best invariant estimator is &(x, y) = x. The risk of this estimator is
R(0,0) =1-P{x—v,(y) S 0 < x+0v,(»)}.

Now, suppose the confidence interval procedure a(x, y) £ 0 < b(x, y) is better
than the procedure of the theorem in the sense of the Definition 4.1. Define the
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estimator d,(x, y)=a(x, y)+v,(»). By (i), (ii) in Definition 4.1 we have R(8, §,)<
R(0, 6) with strict inequality for some 6. Hence (x, y)=x is an inadmissible
estimator. However (4.1) guarantees that §(x, y)=x is admissible by Brown [3].
This contradiction proves the theorem.

Now we notice that the moment condition in Theorem 4.1 is quite similar to the
moment conditions in the estimation problem. It is interesting to check whether the
moment condition here is also essential for the admissibility of the specified
confidence interval procedure mentioned in Theorem 4.1.

THEOREM 4.2. For every a(0 < a < 1) there are a family of probability density
functions such that E|X|* < o, and a confidence interval procedure I which satisfy
all but the moment condition in Theorem 4.1, but I is inadmissible.

Proor. Let 6 be an unknown real-valued parameter —c0 <0 < o0, Y be a
random variable according to the known density function

(4.3) g(y) =c /y*"  fory>1,
=0 otherwise;

where 0 <7 <1, ¢; > 0 are constants. Let x given y have density function

- -0
(4.4) p(x-oly)=9(b-z"——") i =<,
y y |
=0 otherwise;

where c,, b, I, are proper positive constants and b > 2. We define
4.5) I(x,y) = [x—y,x+y] and
(4.6) I*(x,y) = I(x, y) if y<elx|+1,
= [x(1-ed)—y,x(1—ed)+y]  if y=e|x|+1,

where ¢, é are constants such that 5™' > ¢ > § > 0. By elementary integrations, we
can show that E|X|* < oo for 0 < a < 1—7 and diverges if « = 1 —#. Clearly all
but the moment conditions in Theorem 4.1 are satisfied.

Now we shall show that I*(x, y) dominates I(x, y) in the sense of Definition 4.1.

for sufficient small ¢, 6 and /. Clearly the length of I(x, y) is equal to the length of
I*(x, y) for every (x, y)eZ x %. Hence we need only to show that

“.7 Py(0el(x,y)) < Py(0eI*(x, y))

for all 0 and strict inequality holds for some 6. For 0 = 0, clearly (4.7) holds. By
the symmetry of the problem, we need only to consider the case § > 0. That is,
we wish to show

4.8) Py(0el(x,y)) < Po(BeI*(x,y))
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for all 6 > 0. Showing (4.8) is equivalent to showing

(4.9) P,0el(x,y) and y=e|x|+1)<PyBel*(x,y) and yze|x|+1)

for all 6 > 0.
Now we shall evaluate the two probabilities in (4.9).
(4.10) Py(0el*(x,y) and y=e|x|+1)
1+¢e0—¢d y—1 | 0
- [‘"”"[ ‘ ?-—lff—z—(b—lx;)dxdy
1+e0-25 | 0-yy* "y Ly
J 1+e—¢€d 1—¢d
@ 04y | 0
1—6501 CZ X—
+J'1+€0_86J'0_y yz—";<b_l—y )dxdy,
1—¢ed—¢ 1—¢d
and
(4.11) PyBel(x,y) and y=el|x|+1)
1+ €6 !:_1 9
| e e cycyl [x—
“[MJ yz—n;<b—’r7‘>d"dy
J o 1+e 60—y
o« 6+y | 0
Cl Cz X — "
+ (HBOJV y——r_”;<b—l!—-y )dxdy.
v 1-¢gdJ 60—y ! '

We note that the regions of the integrations are subsets of the support of the joint

distribution.
Using the dominated convergence theorem and by elementary computation we

have

(4.12) lim,_o Py(0eI*(x,y) and y=e|x|+1)

1+ 60— ¢€d y—1
1—¢ed—¢ & C1 czb

= 3=, dxdy
1+¢e0—ed -y y n

1+e—¢d 1—¢d

o 0+y b
1-e¢CyC
+J J ) 13_2 dxdy
1+e0—es | 60—y y°7"

1—-¢ed—¢ 1—¢&b

e b[(1+6—88)*""—(1—85—)* "]
T e(1—-e8)(1—n)Q2—n)1+e0—e8) ™"’
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and

(4.13) lim, o Py(0€l(x,y) and y=el|x|+1)

1+¢6 y—1 b
1-¢ & clc2
B ano Jv ISR dxdy
1+e -y
0 y+6
cicyb
+Jv1+eoj 3=n dxdy
y
1-¢ 6-y

ey ey b[(1+8)2 "= (1—)*7"]
T e(l=n)X1+eh) T"2—n)
From (4.12) and (4.13) we have
(4.14) lim, o [Py(0el*(x,y) and y 2 ¢|x|+1)—Py0el(x,y) and y 2 &|x|+1)]

ci e b{[(1+e—e8)> " "—(1—e—ed)>~"|(1+€0)' "
—[(L+6)> "= (1= 8)>~"](1 + &0 — 68) ~"(1 — £6)}
(L —28) (L — )2 —n)(1 +e0—3). (1 +6) " '

To show that the right-hand side of (4.14) is positive for all § > 0, it is sufficient
to show that the term in the braces of the numerator is positive for all 6 > 0.
Expand (1+¢&¢—ed)*>™", (1—e—&6)>~" and (1+&0—ed)' ™" by Taylor’s expansion
then we have

(1+e—e6)> "= (14> "—(2—nX1+¢)' ""ed +0(&d),
(4.15) (1—e—e8)>""=(1—e)* "—2—n)(1—&)' ""ed + 0(&d),
(1+e0—e8)' "= (14€0) ~"—(1—n)(1+0)~"ed + o(ed).
Using (4.15), we have
(4.16) [(1+e—e6)>"—(1—g—e8)2~"](1+¢6)' "
—[(1+e)? "= —&)*""]|(1 +e0—ed)* ~"(1 —¢d)
2[-Q=-n)1+e) "ed+2—n)(1—e—ed)* "edJ(1+€0) "
+ (142" = (1 =)~ "](L +26)" ~"ed — o(e3).

Expand (1+¢&)'™", (1—e—&8)! ™", (1+¢)>~" and (1—¢€)>~" by Taylor’s expansion
then we have

(1+&)' "= 1+(1-n)e+o(e),
@.17) (1—g—8)! ™" = 1 — (1 —n)e(1 — &)+ ofe),

(1+&)* "= 1+Q2—-n)e+o(e),

(1-¢)* "= 1-(2=n)e+o0(e).



INADMISSIBILITY OF ‘““GOOD’’ STATISTICAL PROCEDURES 1319

Substituting (4.17) into (4.16), we have
(4.18) [(1+&—ed)* "—(1—e—ed)* "](1+eh)* "
—[(1+&)? "=(1—e)* " "](1 +e0—ed)* ~"(1 —&6)
Z ed(1+¢6)' (2 —n)e[2n— (1 — 1) —o(e)].

For given n > 0, it is possible to choose ¢, d, sufficiently small so that the right-hand
side of (4.18) is positive for all 8 > 0. Equivalently, for sufficiently small &, d,

(4.19) lim,_o[P(8eI*(x,y) and y 2 ¢|x|+1)—P(0el(x,y) and y 2 ¢|x|+1)] > 0
forall 6>0.
(4.19) implies that there exists a positive /, such that
Py0elI*(x,y) and y=elx|+1)> P0el(x,y) and yz=elx|+1)
for sufficiently small ¢, 6 and all > 0. This completes the proof of the theorem.

5. Inadmissibility of a non-unique best invariant test involving a location para-
meter. We shall use the notation and assumptions stated in Section 2. Consider
the problem of testing H,: i = 1 against H,: i = 2. For any level of significance a
best invariant test ¢, is of the form

) 4G, _
3.1 0o(x,y) =1 if m()’) >c;
=0 dG, y) <ec.

. dGy
" 4G, +Gy)

Lehmann and Stein [8] have shown that if Fy(-, y) are absolutely continuous
with respect to u where u is Lebesgue measure on the real line, E,-OIX | < oo for
i=1,2, and if

dG,

©? UrCreURL Rt

then ¢, is admissible.

It is interesting to see whether condition (5.2) and the moment conditions are
essential for the admissibility of the best invariant test. Fox and Perng [5] have
given an example showing that, with the moment condition violated, ¢, may not
be admissible. In this section we give an example which shows (5.2) is essential.

THEOREM 5.1. There are distributions P, with F,(- | y) absolutely continuous with
respect to p, EiOIXl <o for i=1,2 and Gl{yIdGz[d(G1+G2)]'1 W=c}=9¢
where 6 > 0, 0 < ¢ < 1 such that a best invariant test is inadmissible.

ProoF. Without loss of generality, we assume 6 = 1 and ¢ = 1. Let
(5.3) G({yh=6G(yhH=1% if y=2,3;

=0 otherwise.
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Let fi(x—0 | ) be the conditional densities of F(x—0|y) with respect to Lebesgue

measure on real line for i = 1, 2 and define

(54) fi(x=0]|y) =1 ify=2and0<x<0+lory=3and0—-1<x<6;
=0 otherwise.

It is easy to see that

dG, 1
5.5 G — =_-r=1,
e Plawrar =3

hence the best invariant test with ¢ = is not unique. One version of the best
invariant tests at significance level .5 is

(5.6) Po(x,p) =1 if y=3;
=0 ify=2
Define
5.7 o*(x,y) =1 ify=2andx=0o0ry=2and x £0;

=0 otherwise.
Then, clearly,
(5.8) Epoo(X,Y)=1

Eyppo(X,Y)=1%
for all 6, and

(5.9) Epo*(X,Y)<4}  for |6 <1
=3 0] = 1;

E»o*(X,Y)>4%  for |0j <1

=} 0] = 1.

Therefore ¢* is better than ¢,. This completes the proof.

REMARK. Consider the sample space & x %, where % = Z. The sample space is
divided into four quadrants by the axis x = 6 and y = 0. Then any distributions
P, on & x % such that the support of P,, is the upper right corner and lower left
corner, while the support of P,, is the upper left corner and lower right corner can
be used to provide an example to show that inadmissibility of a best invariant test
when the test is not unique.
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