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1. Summary and Introduction. Consider a sample (x;, x5, "+, xy) from a popu-
lation with a distribution function Fy(x), (0€Q) for which a complete sufficient
statistic, s(x), exists. Then any parametric function g(f) possesses a unique
minimum variance unbiased estimator U.M.V.U.E., which may be obtained by
the Rao-Blackwell theorem provided an unbiased estimator of g(f) with finite
variance for each 6eQ is available. In this paper we will consider the Koopman-
Darmois class of exponential densities and develop a method for obtaining the
UM.V.U.E,, ¢, of g(0) without explicit knowledge of any unbiased estimator of
g(0). The UM.V.U.E. ¢, is given as the limit in the mean (l.i.m.) of a series and a
convergent series is also given for the variance.

For any arbitrary but fixed 6, €Q, it can be verified that the complete sufficient
statistic s(x) has moments of all orders and that these moments determine its
distribution function. Hence the set of polynomials in s(x) is dense in the Hilbert
space, V (with the usual inner product), of Borel measurable functions of s(x).
Since ¢, is an element of ¥, we may obtain a generalized Fourier series for it by
constructing a complete orthonormal set {¢,} for V. Such a set {¢,} may be ob-
tained from the density function and its derivatives with respect to 6. For a sub-
class of the exponential family, Seth [18] has obtained {¢,} in a form which is
convenient for our purposes. We will study this case in Section 3 and use Seth’s
results to give an explicit construction of #,. Criteria for the pointwise convergence
of the series will also be given. In Section 4 examples illustrating the use of the
method are given and some related results are discussed.

The general theory for the representation of minimum variance unbiased esti-
mates, both local and uniform, has been developed in depth, for example in [5],
[18], [19], [16], [3], and [4]. The present remarks, though founded in the general
theory (in particular [3] and [4]), are tailored specifically to the exponential family.

2. Preliminaries and construction. Let x be a sample from sample space (X, %);
where X is a Borel subset of N-dimensional Euclidean space and 4 is the Borel field
of subsets of X. Let 2 = {py(x) | 6eQ} be a set of probability measures admitting
exponential densities {f(x;0)|6eQ} with respect to a fixed o-finite measure A(x),
(either Lebesgue or counting measure). Following Lehmann [13] we will write

2.1 J(x;6) = a(x)(0) exp Os(x); 0eQ
with Q, an open interval, the natural parameter range.
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DEFINITION 2.1. A parametric function g(f) will be said to be estimable if there
exists at least one #-measurable, square integrable () real-valued function A(x)
such that

(2.2) J h(x) dpg(x) = g(6) forall 0eQ.

Let Y denote the range of s; =&/ the Borel field of subsets of ¥ and %, the subfield
of # induced by s. Then 4, is a sufficient and complete subfield. Let 6, be arbitrary
but fixed, u(x) = p,,(x) and v(s) the corresponding measure on &/ induced by s.
By Thearem 9, Chapter 2, of [13] it can be verified that y(6) = (1/8(6)) is analytic
at all points of Q (indeed, a slight modification of the argument shows g(6) analytic
there) and that the moments, {u(n)}, of s(x) at 8, exist and are given by

(2.3) u(n) = [s"dv(s) = B(Bo)y™(6,).

It can be further verified from (2.3), the analytic properties of y(8) and Feller [8]
or Kendall [11], [12], that the set of moments {u(r)} determines the distribution
function corresponding to v(s). Hence the set of polynomials {s"} is dense in the
Hilbert space W =.%,(Y, &, v); Akhiezer [2]. However the .«/-measurable, square
integrable (v) functions of s are precisely the %,-measurable, square integrable (u)
functions of x; Halmos [10]; hence the set of functions {s(x)"} is dense in V =
Z,(X, B, 1) which is a subspace of H =%,(X, 4, u). Further if Pisthe orthogonal
projection operator from H onto V, then from Bahadur ([3], [4]), P is also the
conditional expectation operator given %, and hence projection onto V¥ yields the
U.M.V.U.E. when applied to any /4 e H satisfying (2.2).
Differentiating w.r.t. any strictly monotone analytic function of 0, let

(2.4) Ua(x) = /(x5 00)/f (x5 06) n=12--

and Yo(x) = 1. Then it is easily seen that the set {¥,(x) | n=0,1,2,---} is a set of
polynomials in s(x) dense in ¥V in view of the above remarks, and for any unbiased
estimator, /(x), of g(6)

(2.5 (W) = [ hC(x) dp = g™(0,).

Hence if {¢,(x)} is the complete orthonormal set obtained from {y,(x)} then
(A, p,) for any » is a linear combination of the derivatives of g(0) and since, by the
above remarks, the projection onto V is the UM.V.U.E,, t,, of g(0) the latter is
given by

(2.6) ty=Lim. 3} % o (h, 0)0,
with variance
(2.7) V(t) = Yuei(h9,)?

since (4, @) = g(6,). Clearly then the expressions in (2.6) and (2.7) may be obtained
without explicit knowledge of any unbiased estimator, 4(x), of g(6). Further, the
convergence of (2.7) for all e Q is necessary and sufficient for the estimability of g.

In the next section we will use the results obtained by Seth [18] and display more
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explicitly the series (2.6) and (2.7) for the case where the density belongs to a
subclass of the exponential family which includes the normal, gamma, exponential,
Poisson, binomial and negative binomial distributions.

3. Pointwise convergence. Consider the subclass of exponential densities
satisfying, for 0 a strictly monotone analytic function of the natural parameter,

(3.1) n~1s(x)—0 = K(O)Y(x;0)
where K(6) may depend only on 6 and is a quadratic in 6, that is
(3.2) K(0) = ab*+bl+c,

a, b, c real constants, as well as the regularity conditions on page 21 of [18].

Seth [18] has shown that for this subclass {y,} is a set of orthogonal polynomails
in Y, (and hence in s(x)) with respect the py(x). He also obtained the following
results.

(3.3) Vns1 =W =AW= B, Y, - where
3.4) A4, =nK'(0)/K

3.5) B, =n(n—1)K""(0)/2K+n/K and
(3-6) ”‘//nHGZ = H?: 1 Bi.

For this subclass we have the following theorem.

THEOREM 3.1. For the subclass of the exponential densities satisfying (3.1) and
(3.2), any estimable parametric function g(0) possesses a unique U.M.V.U.E., t,,
given by

3.7) ty = Lim. Y2 o g"(0) f™(x; 0)/ ||| |* £ (x;0)
with variance
(3.8) V(ty) = Yo [g™(O) ||l |* < 0.

Proor. Follows from (2.6), (2.7) and the fact that for this subclass ¢,(x) =
Va9,

If in (3.2) a <0 then ¥,(x) = 0 a.e. (#) for all n > N where N is the greatest
integer less than (¢— 1)/a. In this case the series has only a finite number of terms
and is therefore convergent. It appears from the construction that in such a case
no g(0) having non-vanishing derivatives of higher order than N is estimable. An
example of this occurs with the binomial distribution where

3.9) K(0) =0(1-6)/|N
and N is the number of trials. It is easily seen that
(3.10) Yu(x) =0 for n > N.

Hence only polynomials in 6 of degree < N may be estimable. This well-known
result is also given in DeGroot [7].
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Suppose now that, a > 0. Let
(3.11) d=1/a. Then
3.12) [[¥ull? = ni(n+d—1)1)(d—1)(dK)".
And a sufficient condition for the pointwise convergence of the series (3.7) is that
(3.13) {(d=DEY 0|90 (dK)[{ni(n+d—1)1}* < oo.

However, (3.13) holds if N is large enough to ensure (dK)* < &, where d,, is the radius
of convergence of the Taylor series expansion of g at 6; in particular, (3.13) is
guaranteed of convergence for all # and N when Q is the entire line.

Finally consider the case @ = 0. It follows from Loéve [14] that the series (3.7)
converges pointwise provided

(3.14) i=2 (97O K"(n—2)! < 0

since in this case

(3.15) W] = 1K,

However from (3.8), Y 22, [¢"(0)]*K"/n! < 0. Hence (3.14) is also convergent.

4. Applications and some related results. It is clear from the discussion in
Bahadur [4] on Bhattacharyya bounds that the variance of the U.M.V.U.E.
given here equals the limiting Bhattacharyya bound. We will illustrate this with
the negative binomial

4.1) P(X = x) = pq”, O<p<l, g=1-p, x=0,1,2,---.

Taking p as the parameter, Murty [15] considered the Bhattacharyya bounds for
estimating g(p) = p. He obtained the kth bound as

(4.2) L, =p?q(¢" " +q" 24 +1). Hence
“3) lim, ., L, = p*q(1—q)™" = pg,

which will now be shown to be the variance of the U.M.V.U.E. using (3.8).
With the parameterization 6 = p~! we find

(4.4) Py(X =x)=(0—1)"0~*D, Hence
4.5) (x+1)—6 = K(O)W,(x) where
(4.6) K(0) =0(0—-1).

Thus from (3.12)

4.7 [¥alle® = {6(6—1) }"(n1)? and

(4.8) g9(0) =671
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Thus, g™(0) = (—=1)"n10~"* D Hence from (3.8)
V(t) = Yo ()02 D (n)*{0(0 - 1)} ™"
= 07235, {(0-1)/6)" = 67(0—1) = pg.
DeGroot [7] has considered the more general problem
P (X =x+¢)= (""" Dpq%, x=0,1,2,-".
Using the above reparameterization we obtain
' x+c 0(6—1)

ST 9=

4

2

and [[Wal|? = (606 —1)}~"nY(n+c—1)1f(c—1D)L.

Hence, with g(6) =07", (3.8) yields V(1) =0"2Y2,{(6-DO"'}("* 5.
Again, under the conditions of Theorem 4.1 in [7], the series representation of any
estimable g(f) converges pointwise a.e. u. In fact the necessary and sufficient
condition for estimability given in that theorem is the condition required for the
convergence of the series.

Fend [9] and Rao [15] have shown that if the mth Bhattacharyya bound is
achieved when estimating 6, then the U.M.V.U.E. for 6 is a polynomial of degree
m in the sufficient statistic. Conversely if the density function satisfies conditions
(3.1) and (3.2) then any estimable polynomial in 6 of degree m has a U.M.V.U.E.
which is a polynomial of the same degree in the sufficient statistic. We will illustrate
this with the following Example 1 of Fend [9].

Consider f(x;a) =a~Mexp[—xa M) 0 < x, 0 <a. Let 0 =o'/ Fend [9]
gives the UM.V.U.E. of o = 6" as x"/n!. We will verify this result and give the
variance using the method developed here.

Thus consider estimating g(6) = 6" with density

4.9 f(x;()),=0”1exp—x6’”1 0<x, 0<06.

It can be verified that the density (4.9) belongs to the subclass of the exponential
family considered in Section 3 and that

(4~10) ‘pl 'I’j = ¢j+1+(2j/0)¢j+(.j/0)2¢j—1

(4.11) Will? = G2/,

Hence from the theorem in Section 3 with g(0) = 6"

(4.12) t,="1-0(DO" Y/ and

V(t) =02y 5= () = 0> [N~ 1].
It can also be verified by induction that 7, = x"/n! which is the result given by
Fend [9].
Fend also gives the following Example 2 to show that the kth Bhattacharyya
bound (k finite) may be unachievable. Consider f(x;o) = a "exp[—xa™"] 0 < x,
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0<a. Let @ =a" Then f(x;0) =0"'exp[—x07']10 < x, 0 <8 with g(8) = /".
Since g?(0) does not vanish it follows from the results here that if g(6) is estimable,
the U.M.V.U.E. cannot be a finite polynomial and hence no finite Bhattacharyya is
achievable.
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