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BOUNDS FOR THE POWER OF LIKELIHOOD RATIO TESTS
AND THEIR ASYMPTOTIC PROPERTIES'

By OLAF KRAFFT AND DETLEF PLACHKY

University of Miinster

0. Introduction and summary. Let P, and P, be two probability distributions on
a measurable space (%, #). We consider the problem of testing the simple hypo-
thesis H:P = P, against the simple alternative K: P = P, on the basis of 7 in-
dependent random variables X,, X;, -**, X, with common distribution P. The
method that is widely used in the literature for investigating large sample properties
of optimal tests is the following: according to the Neyman-Pearson lemma an
optimal test can be described by means of sums of independent random variables.
Theorems from the theory of probabilities of large deviations or ergodic theorems
then allow one to obtain results on the asymptotic behavior of the error prob-
abilities of optimal tests. In this paper we use a representation of the power of an
optimal test which has its origin in the duality theory of infinite linear programming,
in order to derive upper and lower bounds for the power. The bounds hold for any
sample size n. This is done in Section 1 for two different types of tests, namely for
most powerful tests at level «, and for tests which minimize a weighted sum of the
error probabilities. It turns out that those bounds allow one to derive the well-
known asymptotic properties under slightly more general conditions, i.e. a, is
permitted to tend to zero faster than any negative power of n (but not exponentially
fast) and the weight 4, to tend exponentially fast to zero. This and another applica-
tion are discussed in Section 2.

1. Bounds for the error probabilities. Let P, and P, be two probability distribu-
tions on a measurable space (%', #) and f, and f; their densities with respect to a
o-finite measure u. We consider the problem of testing the simple hypothesis
H: P = P, against the simple alternative K: P = P; on the basis of » independent
random variables X;, X,, - -, X, with common distribution P. By ¢, , we denote a
most powerful test for testing H against K at level a, 0 < o < 1. Since the customary
procedure of maximizing the power with respect to all tests of size a does not seem
to be very appropriate when the sample size approaches infinity, Chernoff [2], [3],
proposed to consider an unconstrained version of that extremal problem, namely
to choose under all tests ¢ one that minimizes E,(1 — @)+ AE,¢. Here Aisa positive
constant (independent of P, and P, but in our approach not necessarily in-
dependent of n). Such a test is denoted by ¥, , and called a W-test at weight 4.
This kind of test exhibits some nice properties, two of them are recorded below,
cf. Krafft [4]: , is a W-test if and only if

H ya(x) =1,  fi(x) > Afo(x),
=0, fi(x) < Afo(x); p-a.s.;
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hence y, is a likelihood ratio test for which one does not have to calculate a
quantile in order to determine an optimal test as in using the optimality criterion
of Neyman and Pearson. The test ¥, can be chosen arbitrarily on the set
{x:f1(x) = Afo(x)}; hence there always exists a non-randomized W-test.

The problem of determining a most powerful test at level « can be regarded as
a problem of infinite programming, cf. Krafft, Witting [5], to which corresponds a
dual problem, namely to determine a number £ = 0 such that

2 ak+ [ (fi(x)—kfo(x))*du = inf.
Similarly, cf. Krafft [4] page 551, to the problem of determining a W-test ¥/, there
corresponds the problem of determining a number u, 0 < « < 1, such that

3) u+A— [ max (ufi(x), Afo(x))dp ="sup.

(2) and (3) can obviously be extended to the n observations version by replacing
f1(x) and fo(x) by f1(x) = [ [i=1/1(x;) and fo(x) = []i= 1 fo(x;), respectively, and
by the product measure u™. The relations between the primal problems and the
dual problems are given in the following lemma, the proof of which is in this form
due to the referee.

LemMMA 1. Let @, , be a most powerful test at level a, 0 <o <1, and y, , be a
W-test at weight A, A > 0. Then
4 Ei ., =1nfy 5, {“kn‘l',f (fi(x) =k, f o(x))+dﬂ(")} s
(5)  Ei(1=y,)+AEo¥, = SUPo <y, <1 {U+A— max (u,f1(X), Afo(x)) du™}.

ProoF. Let ¥, , be a W-test at weight &, > 0. It follows from (1) and from the
definition of ¥, , that

L= [ (f1(x) = ko fo(x))* du™ = E;(1 =, )+ kn Eo Vi,
é El(l - q’u,n) + kn EO Pon < El(1 - (Pa,n) + kn o.

Hence E, ¢, , < ak,+ [(fi(X)—k,[o(x))* du™. This inequality holds for k, =0,
too.

Equation (4) follows from the fact that, according to the Neyman-Pearson
lemma, there exists a number k,* = 0 such that ¢, , is a W-test at weight k,* if
k,*>0and E,¢,, = 1if k,* = 0. In order to prove (5) let 4, = A/u, and ¥, , be
a W-test at weight 4,, 0 <u, <1. Then

U, +A— [ max (u,f1(x), Afo(x))du™ = u, E,(1 =y, )+ AEo Y, 0
Su,E\(1=vY,,)+2Eo ¥, , S E\(1-V, )+ AEo Y, ,

with equality in both inequalities for u, = 1. The case u, = 0 is trivial.
For any two probability densities (w.r.t.u) g(x) and A(x) let the functions
Pg.u(t) and I(g: h) be defined as

PaiD) = [ COR"~'(x) d and
I(g:h) = [ () In(g(x)/h()) dp.
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Here for g = 0 the expressions p'q' ~!(t > 1) and p In (p/q) are, respectively, defined
to be 0 or oo as p is equal to zero or greater than zero. Note that 0 < p, ,(¢) = 1
for 0 < ¢ £ 1, that [g'(x)h" ~'(x) du™ = pj; ,(¢) and that p, ,(t) < co for some 7 > 1
implies j‘x,,,(x)=o,g(x) du=0. For pg, ,(t) we shortly write p(#). The quantity
(t—1)"'1n p(¢), t # 1, is usually called information measure of order # and denoted
by I(fo:f))- For t =1 I(fy:fy) is defined to be equal to I(fy:f1). For further
properties of these notions which are related to the subject of this paper cf. Vajda
[9]. Lemma 1 enables us to derive upper and lower bounds for E;¢,, and
Ey(1= ;) +AEoY ;. , in terms of I,(fo: /).

THEOREM 1. For the power E|@, , of the most powerful test at level a, 0 <a <1,
and any fixed sample size n it holds that

6) Ey Qg < 1—(1=a)"*" D exp[—nl, (fo: )], t>1,
@) E @nz 1-(1 =000 Vexp [ —nl(fo:f1)] 0<t<l.

PROOF. If p(t) = oo for ¢ > 1, inequality (6) is trivially satisfied. Assume p(#) < o
for some ¢ > 1. In that case we have for k, = 0

®) [ —kufo(®))* du™ = [ f1(x) max [k, fo(x)/f1(x), 1] du® — k.

The relation

9 max(z, 1) £ az' +1, t>1,z20,a=(0-1y"1""
(8) and Lemma 1 then imply

(10) Ey @y S infy, 50 {1+ (= Dk, +ap"(0k}.

The right-hand side of (10) attains its minimum at k,* = [(1 —&)/atp"(£)]"/¢~ 1.
Inserting k,* into (10) we obtain (6). If p(z) = 0 for some £, 0 <t < 1, P, and P,
are orthogonal. Hence E; ¢, , = 1. Assume p(t) > 0 for 0 < ¢ < 1. Since for k, 2 0

1) [ = kafo®)) " du® = 1= [ f,(x) min [k, fo()/f(x), 1] du,

(12) min(z, 1) £ 7', 0<t<1,z20,
we get from Lemma 1 that

13) E| @y, 2 infy 5o {0k, +1—k,'p"()}..

The right-hand side of (13) attains its minimum at k,* = [o/zp"(£)]"/* ?. Inserting
k,* into (13) we obtain (7).

REMARK. For all (arbitrary) tests (6) can also be proved by means of Hélder’s
inequality. The following example shows that inequalities (6) and (7) are sharp.
Let P, be the uniform distribution over [0, 1], P, be the uniform distribution over
[0, 9], 9 > 1, and u be the Lebesgue measure. In this case we have E(l—¢,,) =
(1—a)/9", which can be proved e.g. with the help of Lemma 1, and I,(f5:f1) = In3.
Then for t - oo and ¢ = « equality holds in (6) and (7), respectively.
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THEOREM 2. Let s, , be a W-test at weight A > 0. Then for any fixed sample size
n=1and0 <t <1 it holds that

(14) E\(1-¥,,)+2AEo ¥, . < Aexp [n(t—DI(fo:f1)],
and for n = I,” '(f1:fo) In tA/(t—=1), t > 1, it holds that
15) E\(1—=y;,)+AEo Y, = Aexp[—nl(f;:fo)]

ProOOF. Since Ey(1—v; )+ AEgY; , = [fi(x) min (Afo(x)/f1(x), 1) du™, (14) fol-
lows from (11) and (12). Essentially the same argument as used in the proof of
Theorem 1 applied to equation (5) yields inequality (15). The condition u, < 1 in
(5) has as consequence the restriction on 7 in (15).

COROLLARY 1. Let ¢, be a likelihood ratio test for testing H:P = P, against
K:P =P, on the basis of n independent random variables X, X,, ++, X, with
common distribution P. Then for v,(t) = t'(1—1)' "'p"(t) it holds that

EO(pn é inf0<t<1'yn(t) or El(l_(pn) é inf0<t<1 yn(t)'
Moreover, there always exists a likelihood ratio test @,* such that
Eyp,* < infoc<17(t) and E;(1-9¢,*) < info << q 74(0).

PROOF. Assume that Ey¢, > infy.,.7,(?) and E;(1—¢,) > infy<,<;7,(¢). Then
for some 7, 0 < 7 < 1, we have Eyp, > ,(1) and E;(1—¢,) > y,(1). Let ¢, , be a
most powerful test at level a, = y,(z). Since Ey@,, , < E,¢, and ¢, is most powerful
at level Eqp,, we get a contradiction from E,(1—¢,) < E;(1—@,, ) < 7,(7). Here
the last inequality is a consequence of (7). In order to prove the second assertion,
let {t,} be a sequence such that lim,,,7,(t,) = info<,<;7,(t) and {p},}, a
sequence of most powerful tests at level y,(z,,). According to the weak compactness
theorem for test functions (a proof for the case that 4 is not necessarily separable
is given in [6]) and to (7) there exists a test ¢,* such that Eyp,* < infy<,<; 7,(?)
and E((1—¢,*) <infy<,<7,(¢). The most powerful test at level infy., <, 7,(?)
then fulfills the second assertion.

REMARK. The uniform distribution example in the remark of Theorem 1 shows
that the bounds of Corollary 1 cannot be improved.

2. Applications. In this section two modes of applications, namely large sample
properties of tests and a large deviation theorem, shall illustrate the use of the
bounds derived in Section 1.

COROLLARY 2. If I(fy:f1) < oo for some t > 1 and {a,} issuch thatlim,_, , o,}/" =
lim,_,  (1—a,)" =1, then

lim, ., [E\(1=,,)]'" = exp [~ 1(fo: )] = lim,.,, ¢,'",

where c, is the critical value of ¢, , as it is given by the Neyman—Pearson lemma.
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Proor. The left-hand equation is an immediate consequence of (6) and (7),
since lim,., - L(fo:f1) = lim,, {4 L,(fo: /1) = I(fo:f1)- According to (14) it holds
that

El(l —(pa,‘,n) é cntpn(t) and EO Do,n é cnt_lp"(t)’ O<t<l.
This implies
el 2 [Ey (1= 0, )] and  ¢," < [a, 116~ D p(1)] /D
which has as consequence the right-hand equation.

REMARK. Again the uniform distribution example can be used to show that the
assertion of Corollary 2 is not true if lim,_, (1 —a,)'/" < 1.

The next theorem shows that the assumption on I,(f,:f;) in Corollary 2 can be
discarded, if we impose a slightly stronger condition on the sequence {o,}. This
will be proved by using the conjugate distributions of Y = In (fy(X)/f1(X)) under
P;—a technique which is by now well known in large deviations theory and which
was employed by Wald [10], Section 3.4, in sequential analysis. To this end let
g«(x) for all ¢ with 0 < p(#) < oo be defined as g,(x) = f,"(x)f,! ™ '(x)/p(¢). By P,
we denote the distribution corresponding to g,(x) and by E,, the expectation
operator with respect to g,. ‘

THEOREM 3. If {0} is such that lim,_, , o,'/" = 1, then

(16) limsup,, ,, [E{(1—0,,)]"" < exp [ 1(fo:f1)].

If, moreover, {0} is bounded away from unity, then

17 lim,, o [E;(1 =0, )]"" = exp[ = I(fo:f))], and
(13) lim,, , ¢, = exp [~ I(fo:f1)],

where c, is the critical value of ¢,, , as it is given by the Neyman—Pearson lemma.

Proor. Since lim,.;_I,(fy:f1) = I(fy:f1), (16) follows from (7). We now
prove (18). If I(fy:f,) = oo and if there is an n, such that ¢, = 0 for n = n,, then
(18) is trivially true. Let {c,} be a subsequence of {c,} such that c,, > 0 for all m.
By the Neyman-Pearson lemma ¢, ,, is a W-test at weight 4, = ¢, Neglecting
the term E;(1-¢,,,) we get from (14) for 0 <t < 1limsup,.,c, ™ <
(lim e, ™M= Dexp [ — I,(fo:f1)], so that

(19) hm SUPp - oo cmllm é eXP[_I(fo :fl)]‘

If I(fy:f1) = oo, then (18) follows from (19), since ¢, = 0 for all n. Assume that
I(fy:f1) < oo. In that case we have j(x:,‘(xpo)fo(x)du =0,sothat 0<n=1-a,
implies ¢,>0 and, moreover, 0<n<1—o, S Py(n™ Y0 Yi—I(fo:f1) 2
—n"'Ine,~I(f,:f1)), where Y; = In(fo(X))/fi(X))). Note that E,Y; = I(fy:fy).
Applying the weak law of large numbers, from the last inequality it is seen
that to y >0 there does not exist a subsequence {c,} < {c,} such that
—m~tInc,—I(fy:f,) 2 y forallm. Hence we get lim inf,_, , ¢,*™ = exp [—I(f,:f1)].
This together with (19) implies (18).
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If I( fy: f,) = oo, then (17) is satisfied because of (16) and E;(1 — ¢, ,) = 0. Assume
I(fy:f1) < oo. In that case j'{x: rim=0pfo(x)du = 0, so that p(z) is positive. Hence
g,(x) is well defined for 0 <t < 1. Since g,(x)/gx) = (f1(x)/ Fo(X) " p()/p(t),
the class {gg(x)}, 3 = 1—¢, has monotone likelihood ratio in T'(x) = f1(x)/fo(x).
Therefore ¢, , is a most powerful test for testing H:P = P,,0 <7<, against
K:P = P, at level E, ¢,, ,, so that from (6) we get for 7 > 1

E\(1=04,0) 2 [Eg(1— )]~ Vexp[—nl (g, :f1)].
Observing that I;,(g,:f1) = I,(fo:f1) and putting = = 1/t we therefore have
(20) Ey(1=0q,) Z [Eo(1 = 04,1 7" exp [—nlfo:f1)].
For b, = e™™, &> 0, and B, = {x:5,¢,/o(X) < f1(x)} we‘ have
Ey(1=0g) Z p7"(0) [, (1 = 0o S ()1 (%) dpu®

2 (bucw)' 0 7(D) 3, (1 = P m)fo(X) Au®

2 (bycn)' "' (D[ Po(By) — ]

Z (byen)' ' T(O[Po(B)+n—1].

Since Po(B,) = Po(n™*Yi=1 Y;—I(fo:f;) S e—n"'Inc,—I(fo:f1)), according to
(18) and the weak law of large numbers Py(B,) will be greater than 1—/2 for
sufficiently large n. From (20) we then obtain that

limin,,  [E1(1— @, )] 2 p*/“~ (t)exp [— L(fo: f)] lim, - o, (by )",
so that, finally, since & can be chosen arbitrarily small, (18) implies
@n liminf, ., o, [E1(1 — @q,»)]'" Z exp [—1(fo:f)]-
From (21) and (16) we get (17).

REMARK. (16) was obtained by Rao [8] page 381, under the condition that
lim, ., , o, =, 0 <a <1, and (17) obtained by Chernoff [3] (with reference to
Ch. Stein) under the condition «, =a. Rao [7] then proved that (17) holds if
lim,_,, o, = &, 0 < & < 1. Relation (18) is contained also in that last paper (with
reference to Basu).

The next two results deal with W-tests. Although inequalities (14) and (15) are a
certain analogue to inequalities (6) and (7), they do not yield the direct proof of an
analogue to Theorem 3, since (15) is somewhat weaker than (6). Nevertheless, a
technique similar to that used in the proof of Theorem 3 will enable us to transform
the problem in such a way that we can apply (6) instead of (15).

THEOREM 4. Let {A,} be a sequence of positive numbers such that lim,_, A =
A > 0and t* with 2 p(t*) = inf A*p(¢) be an interior point of the interval {t: p(t) < o0 }.
If the set B = {x:fy(x)fi(x) > 0} has positive y-measure and if f1(x)/fo(x) is not
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equal to A p-a.s. on B, then for \, , it holds that

(22) lim, ., , [Eg(1=¥3,.)]"" = 1, t=t*,
= Ap(t*)[Xp(t), t<t®
(23) lim,, , [Eg,¥3,.]'" = 1, t<t,
= A"p(t*)/Xp(1), t>t*,

PROOF. g, is well defined on {¢: p(t) < o0}, since u(B) > 0 implies p(¢) > 0.Inthe
interior of {z: p(t) < oo} the second derivative H''(¢) of H(t) = A'p(t)can be written
as

lfo(x)]z 4
1 a,
Si(x)

so that it follows from the assumption that z* is the unique minimum of
H(t). Let A(s,t) for t<s be defined as A(s, ) = 4,5 [p(s)/p()]". Then
{x:/1(x) > 4,/0(x)} = {x:9,x) > A(s, 1)g,(X)}, so that according to (14) for all T,
O<t<l,

H'()=X ffot(x)fl 1) [ln

E, (1=, + A, DE, Y5, S AXs, D)%, (%)

The last inequality implies that E,(1—y, ,)=1—A""'(s, t)p} ,(r) and
E,(1-y,, ) < A%(s, t)p)_,(7). Since H(t*) < H(¢) for ¢t > t* and lim,_ , 4,'" = 4,
we therefore have

(24) liminf,_, , [E, (1—y, )] = 1, §> %,

25) im SUp,. o, [E,, (1 —1,,)]"" < H()H(), t<

Let ¢,, , be a most powerful test for testing H: P = P, against K: P = P, at level
o, = E, W, » According to (6) and the definition of ¢, , it holds that for 7 > 1

Eﬂg(l - wln,n) = Eg,(l - (pa,,,n) g (1 _Egs .//l,.,n)t/(t_ 1)[pgs,gg(1)]n/(1 ‘—t)'

From (24) and letting t tend to one we therefore get for all s> r*
liminf,, , [E, (1 =¥, )]'" = exp [ —I(g,: g,)]. Since

ca1="Dexpl (t—5)p- Jo sy ft-s
(26) exp[—I(g,:9)] = o0 exp[(‘ s)p 1(S).[(ln fl(x)>f° Ofi! (x)d#]

and £* is an interior point of the interval {¢: p(f) < oo} the exponential term on the
right-hand side of (26) tends to A**/A* as s tends to ¢*, so that for all ¢

lim inf, - o, [E (1= ¥15,,)]"" 2 H(*)/H(1).

This result together with (24) and (25) implies (22). (23) follows from (22), since
Vipn = 1—y,, . is a W-test for testing H:P = P, against K: P = P, at weight
At
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COROLLARY 3. Under the assumptions of Theorem 4 it holds that
lim,, . o, [E;(1 =3, +An Eo ¥3,,]"" = info <, < X'p(8).
PrOOF. According to (14) we have
Hm Sup,, o [E{(1 =¥, 0) + 44 Eo ¥, 41" < infoc <y Ap(2).

Since E(1-V,,.) + AMEo¥,,n = max[E;(1—=y,, ), AnEo¥,, »], the assertion
follows from (22) and (23). :

REMARK. Putting 4, = }, > 0 we obtain Chernoff’s result [3] page 16, as a special
case of Corollary 3. A further consequence of Theorem 4 is

COROLLARY 4. If ¢, , is most powerful at level a,,,
lim,, oo, " =lim,, o (1—a,)" =1 and I(fy:f)) < ©

for some t > 1, then

lim,, [Egt(l--q)am,,)]l/" =1, t=>1
=exp[—1(fo: 9], 1< i;

lim, - o, [E,, @5, n]""" = 1, 1<1
=exp[—I1(fo:9)]: t> 1.

PROOF. Since 1,(f:f1) < oo for some ¢ > 1 implies [. ;=03 o(X)du = 0, p(t)
is positive and, consequently, g, is well defined. ¢,, , is a W-test at weight c,,
where ¢, is the critical value of ¢, ,. According to Corollary 2 we have
lim,_ . ¢c,'" = exp[ —I(fo:f1)] = A > 0. Differentiating A'p(z) with respect to ¢
yields

Ini=p 1(:*)J1n (fi("—)>fo"(x)f1‘-"(x) du
Jo(x)
as condition on ¢*. Hence ¢* = 1, so that ¢* is an interior point of {¢:p(¢) < 0 }.
Therefore we can apply Theorem 4, if f;(x)/fo(x) # A u-a.s. on B. In that case the
assertion then follows from the fact that according to (26) for s = t* =1 we get
exp [—I(fy: 9)) = H(t*)/H(z). If f(x)/fo(x) = A p-a.s. on B, then the assertion
follows from lim,_, , «,'/" = lim,_, , (1—a,)!/* =1, Corollary 2 and from the fact
that g,(x) = fo(x) p-a.s. for ¢t > 0 and g,(x) = f,(x) p-a.s. for t < 0.

Some of the results recorded above could have been derived or have been derived
from results of the theory of probabilities of large deviations. Our last result shows
that, conversely, the method used in this paper leads to large deviation results.

COROLLARY 5. Let { X;} be a sequence of independent random variables with common
(non-degenerate) distribution Py and let S, =Y7_,X, If the moment generating
Junction m(t) of P, exists for some 1> 0 and if e~ “m(t) attains its minimum at
t=1*>0 in the interior of {t:m(t) < oo}, then for any sequence {a,} with
lim,, , (a,/n) = a it holds that lim,_, , [Po(S, > na,)]'" = e “'m(z*
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PROOF. Let 1 be a measure dominating P, and denote by f, a u-density of Py,
Let P, be a distribution given by the p-density f1(x) = folx)m™(z*) ™. Let
Y. be a W-test for testing H:P =P, against K:P=P; at weight
Ay =m~"(T*) e, Tt follows that fi(x) > 4,fo(x) if and only if S, > na,, i.e. that
Po(S,>na,) = EoY,,, - Theorem 4 with #* = 0 then implies the assertion.

REMARK. The result of Corollary 5 is due to Bahadur [1], Lemma 2.2, who
proved it by a different method.
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