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ADMISSIBILITY OF INVARIANT CONFIDENCE PROCEDURES
FOR ESTIMATING A LOCATION PARAMETER

By V. M. JosH1i

Secretary, Maharashtra Government, Bombay.

1. Introduction. Let X be a random variable with a probability density f(X-6)
involving the location parameter 6. Let x = {x;, x5, ***, X,} be n independent
observations of X and let g(0 | x) be the conditional probability density of 0 given x
defined as follows:

(1) 96]%) = [T1= 1S (ty=0)- [0 TTo= 1 S (5= 0) O]

Let C, be the confidence procedure which assigns to the observed values x, the
confidence set for 0, given by

) Cox,7) = {0:9(0]x) 2 b}

where b > 0 is some fixed constant. The procedure C, is translation invariant,
ie., if x;/ = x;+k,i=1,2, -+, n, then the confidence set Co(X’, *) is obtained by
translating each point 0 of Cy(x, *) to 0+k. It is easily verified that the expected
Lebesgue measure of the confidence sets of C,, viz. Egv C, (X, *) is equal to some
constant v, for all . Similarly the inclusion probability, i.e., the probability that
the “true value” @ is included in the observed confidence set Cy(x, *) is independent
of 0 and equal to (1 —a) say. Further C, has the minimax property that amongst the
confidence procedures C with given lower confidence level (1 —a), C, minimizes the
maximum expected Lebesgue measure of the confidence sets viz. E,v C(x, *). This
minimax property has been proved by Kudo (1955) and is also deducible from results
proved by Valand (1968).

In the following we investigate the question whether the procedure C, is unique in
having the minimax property and show that subject to the density f(x) satisfying
two conditions, the procedure is essentially unique, i.e. to say, it is unique if we
treat as equivalent procedures whose confidence sets for almost all x, differ from
each other at most by null subsets of the parameter space. The uniqueness is proved
in the extended class of randomized confidence procedures.

Investigating a conjecture of Stein (1958) a similar uniqueness property of the
usual confidence sets for univariate and bivariate normal populations was proved
previously (1969). The present result contains the previous result for the univariate
normal population as a particular case.

2. Preliminaries. X is a random variable with a probability density f(x—0)
where 0 is a location parameter; x,, x,, ** -, X, denote n independent observations
of X:x = (x;, X5, """, X,) denotes a point in the n-dimensional Euclidean sample
space R; 0 assumes values in the parameter space Q = (— 00, ©); on R, Q and the
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Cartesian product space R x Q is defined Lebesgue measure, all sets and functions

considered being Lebesgue measurable.
For convenience we make a transformation of variables in R, by putting

(3) x = x,
Yi= Xip1— Xy, i=1,2-,(n=1).

y denotes the (n—1)-dimensional vector (y;, y,, ", y,_); the point xeR, will

hereafter be denoted by (x, ).
A randomized confidence procedure is one in which the confidence set assigned

to the point (x, y) instead of being fixed, is selected from a number of sets by an
independent random procedure. We obtain the class of all such procedures by
takmg as the decision space

@ 2= {¢(x,y,0); ¢ jointly measurable in x,y and 0, 0 < ¢(x, y,0) < 1}.

A ¢ which for every (x, y)€R, is a simple or elementary function of 6 represents
a randomized or non-randomized confidence procedure. When ¢ represents a
confidence procedure, the following relations hold, viz.
) ¢(x, y, 0) = probability that the point 0 is included
in the confidence set selected when (x, ) represents
the observed values;
6) vP(x, ¥, *) = [qd(x, y, 0)db, = expected Lebesgue
measure of the confidence set selected when (x, y)
represents the observed values;

@) Ey[¢(-, -, 0)] = Total probability that the true value
0 is included in the confidence set selected.

For convenience we shall refer to every ¢ € 9 as a procedure, though as stated
before not every ¢ corresponds to a confidence procedure. Equivalence of pro-

cedure is defined by

DEFINITION 2.1. Procedures ¢, and ¢, are equivalent if ¢,(x, y, 0) = ¢,(x, y, 6)
for almost all (x, y, 0).

Using (5), it is seen that two non-randomized procedures are equivalent if for
almost all (x, y), their confidence sets differ at most by null subsets of Q.

It has been shown in the previous paper (1969) that in the absence of any restric-
tions on the geometrical form of the confidence sets, no uniquely minimax or
admissible procedure can exist as given any procedure another one uniformly
superior to it can always be constructed. All the procedures so constructed are
however equivalent according to Definition 2.1 and uniqueness can therefore pertain
to the equivalence class which contains a given procedure. The uniqueness of ¢,
proved in the following therefore means the uniqueness of the equivalence class
which contains ¢,. For a more detailed discussion of the notion of equivalence,
randomized procedures and the alternative restrictions on the geometrical form of
the confidence sets we refer to the previous paper (1969).
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A notion of strong admissibility for confidence procedures has been defined by
the author (1969) as follows.

DEFINITION 2.2. A procedure ¢, is strongly admissible if there exists no other
procedure ¢, such that for all 6 e Q

(1) EBU(ISZ(xa Vs ) é Eov¢1(x, Y, )3 and

(i) Epldo(-, -, )] 2 Eoldy(-, -, O],
and the strict inequality holds either in (i) or (ii) for at least one 0 € Q. The definition
of weak admissibility is obtained by replacing (i) above by
(1% vPa(x,p,0) S vdy(X,y,) for almost all (x, y)

and requiring the strict inequality to hold in (ii) only: Strong admissibility of a
procedure ¢ implies its weak admissibility.

It is easily seen that uniqueness up to the equivalence of Definition 2.1 of ¢, in
having the minimax property implies its strong admissibility up to the equivalence.

3. Main theorem. On making the transformations in (3), the conditional pro-
bability density in (1) is seen to be a function of (x — ) and y. We accordingly put

® g(x—8,y) = g(0]x).
Then by (5), the procedure ¢, corresponding to the confidence sets in (2) is given by
©) bo(x,y,0)=1,  if g(x—0,y) 2 b;

=0, otherwise.

It is easily verified that vgo(x, y, *) is independent of x. We therefore write

(10) v9o(x, Y, ) = vo())
We further write,
(11) p(x_o’y)= n:=1f(xr_'0)’ and

u(y) = [2, p(x~0, y) do,
so that the conditional probability density in (8) is given by
(12) p(x—0,y) = u(y) - g(x—0, y).

Let u denote the measure defined on subsets of the space R,_, of y, by the density
u(y), i.e. for every measurable Sc R, _,

(13) u(S) = fsu(y)dy

where dy is written for dy,, dy,, - -+, dy,_ and will be so written hereafter.
We now assume that the density f(x) satisfies the following conditions.

ConpITION 1. The density f(x) has finite first absolute moment, i.e.

(14) 120 [x]f(x) dx < o0.
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CoNDITION 2. g(x—0, y) being the density in (8), for almost all y(u),
{6: g(x—0, y) = b} isanull subset of Q, i.e.,

(15) Ju(y)dy fg=p;d0 =0

where [g = b] is written for short for the 6-set, {0: g(x—0, y) = b}. By substituting
z for (x — 6) the left-hand side of (15) is seen to be independent of x.

In (15), and also everywhere hereafter, unless otherwise specified the integral
with respect to y is taken over the whole space R,_, of y.

Condition 1 is a sufficient condition for our theorem, while Condition 2 can be
shown to be necessary also.

We now prove the following.

THEOREM 3.1. If the density f(x) satisfies Condition 1 and Condition 2, ¢, is the
procedure defined by (9), and ¢, is any other procedure such that for all 0 € Q, '

(16) bEO v(bl(x’ ,V)"Eo (bl( Tty 6) é on U¢0(X, y)_EO ¢0( 5" 6)
= bvo_(l —a)s
then ¢ (x, y, 0) = ¢o(x, v, 0) for almost all (x, y, 0).

Proor. For a procedure ¢, we define, following Blyth (1951) a loss function,
L¢(x’ s 0) by

(17) L¢(x9y’0) = bv¢(xay")—¢(x,y90)'
For brevity we put v,(x, y) = vd,(x, », *), and
(18) q(x9y9 6) = L¢0(x9y’ 0)—L¢1(x9 Y, 0)

= [bvo(») = do(x, y, )] —[bvs(x, y) — d41(x, y, 0)].
It now follows from (16) that

Jdy 2. a(x,y,0)p(x—0,y)dx = 0.
Hence for any L > 0,

Using (18) and the bounds on ¢ in (4), the integrand in (19) is seen to be bounded
in absolute magnitude by f(x, y) = [2+bvy(y) +bv,(x, )] p(x—0, »), and since by
(16) BEgw,(x, y) £ bvg+a, f(x, y) is integrable on the domain of integration in (19).
The order of integration will therefore be changed wherever necessary, without
further justification.

NoTtE 3.1. The following proof is a close adaptation of the proof of a theorem
(Theorem 2.1.1) of Brown (1966), relating to invariant estimators.

Interchanging the order of integration in (19) with respect to 6 and (x, y) and then
transforming 0 by putting z = x— 6, we obtain

(20) Jayj2edxfiiLa(x, y,0)p(z,y)dz 2 0.
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In the integrand g(x, y, 6) becomes g(x, y, x—z), but for convenience we shall
continue to write it as g(x, y, 6), it being understood that 0 = x—z.
Partitioning the domain of integration in (20) we obtain

21) left-hand side of (20)
= j.dy {IL/E/Z dx “.L/ L/2 dZ +“._ g‘éjz dx IL L/2 dZ +IZL/2 d.X jL/ZL dZ
+[g,dz it dx+ (22 dz [iITdx} . q(x, y,0)p(z, y) dz
=F1+T2+T3+T4+T5 say.

(Note the change in the order of integration in T, and T5).

Here we have written [g = b] for short for the 6-set {0 g(x 0 y) = b}.
Thus bvy(y) < 1 for all y and hence by (18)

(22) q(x,y,0) = 1+bve(y) = 2.
Using (22), we have in (21),
T+ Ts <2fdy {J=5?dz [2*Ldx+[f), dz [i11 dx} p(z, y) dz
SAL[dy f1.>12 (2, ) dz

(23) <8fdyfi>12 2| p(z, y) dz
= 8,[|x1|>1,/2 |x1]f(x1)dx1 H" ) 2o S(x,)dx, by (11),
=8 ixy >z |X1| S () dx = 0 as L— oo by (14).

Next, in the expression for T', in (21) changing x into x4 L, we get
T, = [dy{|212dx %1 2dz+[§2ax |25, dz+ [ dx |2 dz}
"q(x—L, y,0)p(z,y)
(24) §4fdyf(l,_/2|z|p(z,y)dz
+[§2 dxfdy [% ca(x—L,y,00p(z, y) dz by (22)
S4fdy[2,|z| p(z, y) dz
+ 5/ dx {supy, e o [[ dy | ca(x— L, y, 0)p(z, y) dz]}
=t,+t, say.
In (24)
25) t; < by (14) and (11).

In the expression for ¢, since for each (x, y) by (18), the expression in square
brackets vanishes if we put

¢1(x—'L’y59) = ¢o(x—L,y,0),
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the supremum in curly brackets = 0. Hence

(26) ty £ [§ dx{supy, e o [J dy [« q(x—L, y,0)p(z, y) dz]}.
We shall show later that
27 the right-hand side of (26) < a constant independent of L.

Assuming (27) for the present (to avoid an interruption in the argument) and
combining (27) and (25) we obtain

(28) T, £ ¢, (¢, is some constant independent of L).

By a similar argument we obtain,
(29) T2 ¢

Combining (23), (28) and (29) with (21), we obtain that there exists a constant
¢, (¢, = ¢y +¢,') such that

(30) T, = [dy jll/f/z dx Ili/f/z q(x,y,0plz, y)dz Z —c,.

Since the integral in (26) is finite, there exists a sequence A; — oo, such that the
quantity in braces ({ }), in that integral — 0 like 0(4;” ') as i > 0. Hence if k is any
fixed integer, putting in (26), L = 0,

liminf,,, {[%,, dx [dy [*, a(x, y,0)p(z, y) dz}
31) S liminfy, o {[*, dx [dy [4;,a(x, v, 0)p(z, y) dz
+.V—'Ai dx {supy, c o [j dy P—ia. q(x, ,0)p(z, y) dz]}
= liminf,, , [*;, dx [dy [*,, 9(x, y, 0)p(z, y) dz.
Since the choice of k in (31) is arbitrary,
(32) timinf, ., [dy j2,dx %, q9(x, y,0)p(z, y) dz
< (2o dx {fdy [2, q(x, y,00p(z, y) dz}

where in the right-hand side, the braces are added to emphasize that the order of
integration in it cannot be changed. We next define a function w on R = R, and
some new sets as follows.

(33) w(x9.V) = j(foo |¢O(xa Vs 6)_(/)1(X, Y, o)l : Ig(x-—-G, y)_bl do

where g(x—0, y) is the density in (12).
Let A > 0 and > 0 be any given numbers which may respectively be arbitrarily

large and arbitrarily small.
Forevery L = 0, S(L) is the subset of the sample space R, defined by

(34) S(L) = {(x,y): w(x,y) > 8, —L—A < x < —L+ A},
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T(L)and T, are subsets of R; = (— o0, o0) defined by

(35 T(L) = {x: u{y:(x,y)eS(L)} > %}

where f; > 0 is any given arbitrarily small number and p is the measure on the
space R,_; of y given by (13);and T = >0 T(L).
From the definitions of T, T'(L) and S(L) it follows that

(36) forany pointxeT,  u{y:w(x,y) > 6} > % )

Now
[ {b0o()— Bolx, ¥, 0)} p(x—0, y) dO
(37 = bog(y) - u(y) = [2 o Po(x, y, O)p(x—0, y) dO by (11),
= u(y) 2 [b—g(x—0, y)]o(, y,0) dO by (6) and (12).
Writing down the corresponding expression for
JZ0 {bvs(x, ») = $1(x, y,0)} - p(x—0, ) dO
and combining with (37), we have from (18),
(38) J2@a(x, ,0)p(x—0, y)d0
= u(y) [Zo [b—g(x~0, )] [do(x, ¥, 0)— §1(x, y, 0)] dO.
Now from (4) and (9),
$1(x,9,0) = @o(x.y, ) =1 if  g(x—06,y)2 b, and
$1(x,,0) 2 o(x,y,0) =0 if  g(x—06,y)<b.

The integrand in the right-hand side of (38) is therefore always non-positive. As
its absolute magnitude is equal to the integrand in (33), (38) and (33) combined give

(39 J2 0 a(x,y,0)p(x—0,y)d0 = —u(y)- w(x,y) < 0.

We now integrate both sides of (39) with respect to x and y. Since the right-hand
side of (39) is always < 0, we have,

2edx[dy[?, q(x,y,0)p(x—0,y)d0
= [2 dx {—u(y)w(x, y)} dy

(40) § j’l‘ dx ,“(y: w(x, y)>6} {_ u(y)w(x, y)} dy
< =6 pdx-p{y:w(x,y) > 8} by (13)
< -5 jT dx by (36),

where f8, = 6f,/(4A4).
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Hence combining (30), (32) and (40), we obtain

(a1) —ey S [2o dx {[dy[2, 4(%,2,0)p(z, ) dz} < — B, [rdx.

Hence

(42) IT dx < ¢y,
Since T = >0 T(L), (42) implies that

(43) fra@ydx—0 as L-— 0.
Let

(44) T(L)y={x:—L—-A<x < —L+4, and x¢ T(L)}.
Then

(45) jS(L) dx-u(y)dy = jT(L) dx p{y:(x,y)eS(L)} +5T|(L) dx p{y:(x, y)eS(L)}

< j dx+gi2A by definition of T'(L) in (35).
T(L) 44 .

Since f8, can be taken arbitrarily small, it follows from (45) and (43) that
(46) fsawyu(y)dxdy -0 as L— 0.
Now reverting to (21), we have
T, = [dy |25, dx[*1} a(x, y,0)p(z, y) dz
= [dy{|-ftadx[Eihdz+ [ 5 4dx [~ dz
+ [T ax i cdz+ (TR g dx [215T dz} q(x, , 0)p(z, )
47 < [2adxfdy[Zr,a(x—L,y,0)p(z, y)dz
+fdy{[=f dz ;A bax+ 2R dx [21%  dz
+ 212 dz [7Z1  dx} a(x, v, 0)p(z, y)
< [Aadx [dy{sup,,, ;, 1 a(x— L, y,0)p(z, y) dz}
+4[dy =4 [|z]+A] p(z, y)dz
+[% dx {supy,ca {fdy [ < a(x,y,0)p(z, ) dz} }
=1, +1,+1; say.

Here we have used (22) in the last but one step for obtaining the term 7,, and that

in the term I the expression in braces is nonnegative.
In (47) A can be made arbitrarily large. It follows from Condition 1, i.e. from (14)

that 7, can be made arbitrarily small by making A4 sufficiently large, i.e.
(48) 1,-0 as A-— co.
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Similarly using the result in (27), for L = 0, we obtain,

(49) I;-0. as A - oo.

It remains to consider the term ;. S(L) being the set in (34), let S,(L) denote the
subset of R = R,, defined by

(50) Si(L)y={(x,y): —A—L<x < —L+A, and (x, y)¢S(L)}.
Then using (22), we have
(51) Iy = 2IS(L)dXdyIO—pr(Z’y)dZ
+s,@ydxdy [2, q(x, y,0)p(z, y) dz

=1, ,+1; , say.
Then

(52) I, =2fsqyu(y)dydx -0 by (46).
Next in the integral for 7, ,,
(53) |00(¥) = 01(%, V)| = [[Zo0 [Do(x, ¥, 0)— D1 (x, y, 0)] dO| by (6).
S 20 [Bo(x, ,0)— ¢1(x, y, 0)| d6.
Hence by (18),
(54) la(x, v, 0)] £ bloo(y)—v1(x, )| +|¢o(x, ¥, )= 1(x, y, 0)|.

Using (54) and (53) in the expression for I, ,, in (51) and substituting for p(z, y)
by (12), we obtain,

(55) I, SA+b)JZiradx [ru(y)dy [2o |do(x, y,0)—d1(x,y,0)| - g(x—0, ) dO

where K = {y: (x, y)eS,(L)}.
We partition the inner integral in the right-hand side of (55) by

(56) §%200 0 = fi1g-p) <572 40+ Jg1—by 2921 40

where [|g—b| < %] = {0: |g(x—0, y)—b| < 6*} and similarly for [|g—b| = 5*].
Now in (55),

(57) Stig-b1 <s121|Do(x, ¥, 0) = b1 (x, y,0)| g(x— 0, y) dO
é 2(b+5%)_f[|g—b| <§1/2] dg by (4)'
We now show that K being any subset of R,_; (independent of §)

(58) lim,_,o _fK u(y)dy I[|g~b| <sund = jx u(y)dy j[g=b] do=0
by the assumed condition 2.
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The integral of u(y) with respect to (6, y) defines a measure on the Lebesgue
measurable sets of the product space R,_; x Q. Alsoin (58)asd — 0,
(59 {(0,»):yeK;|g(x—0,)—b[ < 6*}1{(6,y): ye K;9(x—0.y) = b},
and

jK u(y) dJ’.f[lg-w <61/2] do < (b+5%)_1 jx u(y)dy j[|g—b] <,5-1/z]g(x—9, y)do
(60) <) g, u(y)dy [, g(x—0,y)do
=(b)"' < .

(59) and (60), together imply (58) by the property of a measure.
Hence by (57) and (58), we have in (55)

(61) j(y: (x, ) e S1(L)} u(y)dy j[]g—b| <61/2) |¢o(x, Y, 0—di(x,y, 9)| g(x—0,y)do
= p(3),

where f(6) > 0asd — 0.
Next, the expression g/ | g— b| being monotonically decreasing as g increases
above (b+ 6%) or decreases below (b— 6%), we have

(62) 9(x=0, ) [|g(x—0,»)=b|]™* < (b+5%)s™*

for 0e[|lg—b| = 6].
Using (62), we have in (55)

(63)  [frig-b125v2|Po(x, ¥, 0)— Pi(x,y,0)| g(x—0, y) db
é (b+5%)6—%.‘~[|g—b| >61/2) |¢O(xa Vs 0)—¢1(X, Vs o)l lg(x_ 0, y)_ bl do

< (b+6H07w(x, y) by (33)
< (b+6%)o* if (x, y) e S4(L), by (50) and (34).
Hence in (55), '

(64 [i: ey e 50 ¥ A fr1g-b) zavm | Do(%, ¥, 0)— h1(x, y,0)| - g(x—6, y) dO
S (b+6%) 8% fg,_ u(y)dy = (b+8h) 6%
Combining (61) and (64) with (55), we get
(65) Iy, , S24(1+b) {B(6)+ bs* + 6}

which — 0, as § — 0, by (61).

For given A, the right-hand side of (65) can be made arbitrarily small by making
o sufficiently small. Thus combining (65) and (52) with (51) and then with (48) and
(49), we obtain that the right-hand side of (47) can be made less than an arbitrarily
small positive number, by making A sufficiently large, then § sufficiently small for
given A and then letting L — 0.
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Hence, in (21),
(66) limsup; ., T, < 0.
By a similar argument
67) limsup; ., T3 < 0.
Combining (66), (67) and (23), we obtain from (21),
(68) liminf, ., [dy {2, dx [“}, a(x, y,0)p(z, y) dz = 0.

The required result is now proved by combining (68) and (32) and noting that
by (39), the expression in braces, in the right-hand side of (32) is £ 0. Hence from
(32)

|20 a(x,y,0)p(x—0,y)d0 = 0 for almost all (x, y)
so that

(69) #1(%, y,0) = Po(x, y,0) for almost all (x, y, 6)

which was the result to be proved.
To prove our theorem, it still remains to prove the result which was assumed in

7.
Now in the right-hand side of (26)

j{x Q(x—Ls ) B)P(Z, y) dz

(70) = |2 [bvo(y) = po(x—L, y,0)]p(z, y) dz
— 2 [boy(x =L, y)—s(x~L, y,0)]p(z, y) dz
=s,—8, say.

We remind again that in (70), 0 is to be put = x—L—z. For obtaining the
supremum in (26), ¢, remains fixed, and hence we have to choose ¢; so as to
minimize s,.

Now let
(71) s = [X.[bvs(x=L, y)—¢1(x—L,y,0)]g(z,y) dz
so that in (70), s, = u(y) - s,’ by (12).

Now put
(72) G(x,y) = [%,g(z, y)dz.

Then in (71),

SZ, = bvl(x_L, y) ' G(xa y)—jx—x ¢1(X—L, Vs B)g(z, y) dz
= bG(x,y) |2 ¢1(x—L,y,00d0— %, ¢,(x— L, y,0)9(z, y) dz, by (6)
(73) = bG(x, y)_[o—ooo d)l(x_L’ Y, e)dz—j’ixd)l(x_l‘s Y, B)Q(Za y)dZ
by putting z = x — L—0 in the first integral
= Ilzl >x bG(x» J’)¢1(x— La Vs 0) dz
+ 121 <x [0G(x, y)—g(2, )]$1(x— L, y, ) dz.
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Clearly the right-hand side of (73) is minimized by replacing ¢, by ¢, defined by

74 ¢2(x_Lay90) =0 if (1) IZI Zx or g(z, y) = bG(x,y);
Pa(x—L,y,0) =1 if (i) |z} <x and g¢(z,y) > bG(x, y).

For brevity, letv,(x—L, y) = vp,(x—L, y, *).

We next show that v,(x, y) is bounded above for all (x, ).

For given x, and y, let B, , denote the set of values of z on which both the in-
equalities in (74)-(ii) hold.

Then
vy(x—L,y) = fp, dz
(75) < [bG(x, )] f5,,,9(z, y)dz by (74)-(ii)
S [bG(x, »)] ' [Z:9(z,y)dz  as B, ,c(—x,x)
=1/b by (72).

In the above it was assumed that G(x, y) > 0. But if for some x, y, G(x, y) = 0,
then for such x, y, g(z, y) = 0 for almost all z, |z| <X, so that B, , is a null set.
Hence for such (x, y) v,(x— L, y) = 0, so that (75) continues to hold.

Since substitution of ¢, for ¢, minimizes s,’ and hence s, in the right-hand side
of (70), we have
(76) right-hand side of (70)

é jx—x {[bl’o(J’) - ¢O(x_ La Vs 9)] - [bUZ(x - L’ y) - ¢2(X - L’ Y, 0)]}

“p(z,y)dz.
Next by an argument similar to that in (39), we have
(77) jg—ooo {[bUO(y) - (I)O(x - L9 Vs 0)] - [bUZ(x _La y)_ ¢2(X '—La Y 6)]}
p(z,y)dz £ 0.
Combining (77) and (76) with (70), we obtain
J2xa(x—L,y,0)p(z, y)dz
_,‘Iz| >x {[va(.v) - ¢0(x _L’ Vs 0)] - [bvl(x_ L9 y)_ ¢2(x - L9 Yy, 0)]}
“p(z,y)dz

jlzl >x [¢0(X—L, Vs 0)+ bUZ(x_Ls .V)]P(Z, y) dz
£2(i2)>xP(z, ) dz by (75) and (4).

IA

(78)

IIA
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Hence,
right-hand side of (26)

2[5 dxfdy.1>xp(z,y)dz
(79) =2{dy[?,dzp(z,y) [ dx
=2[dy[%,|z|dz p(z,y)
=27 x4 f(x0) dx, by (11)
= k (independent of L) by (14).

This proves the result assumed in (27) and thuys completes the proof of
Theorem 3.1.

4. An application. An interesting application of Theorem 3.1. is the following.
Let the probability of the rv - X be p(x — ) where p(¢) strictly decreases as ¢ increases
for ¢ = 0 and as ¢ decreases for ¢ < 0. We assume that only one observation x of X
is taken. Then the usual shortest confidence intervals with confidence level (1 —«)
are given by

(80) {x—h, <0< x+hy} where h; > 0,h, >0,
are uniquely fixed by
(81) ', p(Hdt =1-q, and

p(—hy—=0) = p(h;) = p(—hy+0).

It is easily verified that Condition 2 of Theorem 3.1 is satisfied by virtue of the
strict monotonicity of p(¢). If in addition

(82) = |1 p(t) < 0

holds, then Condition 1 of Theorem 3.1 is also satisfied and hence the confidence
intervals in (80) are uniquely minimax up to the equivalence class.
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