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1. Introduction. An unavoidable initial issue in treating many questions on
Markov processes is that specifying the objects to be studied. There are various
different possible means of specification, and the one chosen will depend, of course,
both upon the purposes of the work at hand and upon the particular process, or
class thereof, to be specified. If we assume the process to have stationary transition
probabilities, one important means (which provides a good analytical access to the
process) is to give an “infinitesimal generator” defined in any one of several ways.
A standard example is based on the well-known formula of Lévy and Khintchine
for the characteristic functions of infinitely divisible processes in R", which can be
interpreted as giving an instantaneous decomposition of the process into indepen-
dent Gaussian and Poissonian components ([6] page 550).

Quite a different method of specification is usually employed in studies of general
potential-theoretic questions. Here the necessary requirements involve stopping
times, and are therefore expressed qualitatively in terms of the behavior of the path
functions of the process together with some general requirements on the regularity
of the transition function.

This distinction in method naturally raises the problem of determining how the
two approaches are connected, which is not an easy matter to settle. Much recent
work on Markov processes, particularly that of A. V. Skorokhod [12]-[15], can
be considered as being directed toward obtaining the explicit generators of a
sufficiently wide abstract class of processes.? Partly for technical reasons, this work
is often done in the reverse order. The generators are specified first and the corres-
ponding processes are then constructed. Up to the present, however, the constructive
method has not attained the goal of producing a complete class of processes free
of unnatural restrictions, except perhaps in the very particular case of one-
dimensional diffusion processes. On the other hand, general methods involving
square integrable martingales have been developed recently for treating the same
problem by starting with the processes themselves. These methods, which are due
to several French, Russian, and Japanese probabilists, are fundamental to the
present paper.>

Received March 25, 1969.

! This paper was written while the author was a Sloan postdoctoral fellow.

2 Under the term “‘explicit generator” we do not include the general existence theories of the
strong, weak or Dynkin generators, but only those generators in which the Gaussian and Poissonian
components are distinguished.

3 The related problem of establishing properties such as quasi-left continuity and the strong
Markov property for processes whose generator or semigroup is known has also been extensively
studied, but it seems to be quite separate from that of obtaining generators for a given class of
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In more detail, we use some ideas and results of P. A. Meyer [7]-[9], A. V.
Skorokhod [12], [14], [15], M. Motoo [11], S. Watanabe [16], H. Kunita [5],
and E. Dynkin [3], [4] to obtain an instantaneous decomposition in explicit terms
for a rather large class of processes which is specified intrinsically in terms of the
qualitative behavior of the paths globally in time. This decomposition is similar to
that of Skorokhod [15], although considerably more detailed, and the class of
processes treated is only slightly different. To be explicit, we treat all Hunt processes
on compact spaces with resolvants mapping C into C and satisfying Meyer’s
hypothesis of absolute continuity. The present method, which relies upon applying
the more complete results of the other authors cited above at various points in
Skorokhod’s argument, is evidently susceptible to further extensions. Thanks,
indeed, to these known results, our problem here reduces largely to organizing the
material in such a way as to achieve the desired end. This does not apply to
Corollary 4.1, however (which is new), or to an essential feature which appears at
the outset, for which the name “excessive coordinates” is appropriate. This idea
is simply that if there is a sequence {f,} of excessive functions which separates
points in the state space, the Markov process X (¢) can be ‘‘coordinated” by the
vector process {f,(X(?)),1 <n} and the components f,(X(f)) become super-
martingales. The known results on decomposition of supermartingales can then be
utilized to study the local behavior of the original process.

This approach is perhaps slightly artificial, but it has the compensating merit of
illustrating the meaning and use of several broadly related theorems which have
appeared in different places and in such a way that their relevance to Markov
processes was not always clear. Indeed, since our results are perhaps still not the
final ones in this direction, the paper is best considered rather as a demonstration
of what can be done in the direction indicated by using these methods than as a
conclusive treatment.

The author wishes to thank Professor S. Orey for helpful discussion and sugges-
tions on this work. Furthermore, the seminar lectures of Meyer [8], although
largely avoided in the references below, have been of great assistance. They provide
a single account covering most of the results needed from [5], [10], [11], [16].

1. Representation of a process by martingales and additive functionals. We shall
be concerned only with Hunt processes, and therefore begin by recalling their
definition ([9] page 97). For reasons which become clear momentarily, the definition
is specialized to a compact state space E. (This can always be achieved via the usual
one-point compactification by a trap state.)

DErFINITION 1.1. Let E be a compact metric space with Borel field &, and let
p(t, x, A), t 20, xeE, Ae &, be a Markovian transition function, i.e.

processes. It will not concern us here, but it does serve to point up the fact that there is a wide gap
to be covered in connecting the “instantaneous time” and ““finite positive time” properties of
Markov processes.
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(i) p(t, -, A) is £-measurable,
(ii) p(t, x, *) is a probability measure on &,
(iii) p(0, x, A) = 1,(x), where I, is the indicator function of 4, and
(IV) P(’1 +129 X, A) = _’.p(tlﬂ X, dJ’)P(tb y5 A)
The semigroup P,: P,f(x) = Ip(l‘, x, dy)f(»), fe b(&) (the bounded &-measurable
functions) is called a “Hunt semigroup” if

(a) For each probability measure u on & there exists a Markov process with
right continuous paths and initial distribution p having p(t, x, 4) as transition
function,

(b) Every process satisfying (a) is a strong Markov process, and

(c) Every process satisfying (a) is quasi-left continuous.

A Markov process X (¢) is called a “Hunt process” if with its initial distribution u
it satisfies (a), and hence (a)-(c), for some Hunt semigroup.

It follows from (b) that if ##(¢) denotes the ““completion’ with respect to a// null
sets generated by the process with initial measure p of the o-field generated
by X(s), s<t, then FHt) = Ns>oF (t+0), ([8] XIUI, T13), and X(¢) is
Markovian relative to these o-fields. We assume henceforth, except where otherwise
indicated, that all of the processes and stopping times considered are relative to
these o-fields.

Next we introduce our only hypothesis which is in any degree innovative, post-
poning until Section 3 a discussion of its range of validity.

HypOTHESIS 1.1. There exists a sequence {f,} of continuous excessive functions
bounded by 1 and separating points in E.

Note. For the reader unfamiliar with the terminology of probabilistic potential
theory (for example “‘excessive’”) we refer once and for all to [1].

We now have a preliminary topological observation.

THEOREM 1.1. Let 1, denote the parallelotope X - ,[0, 1] with the product topology.
The mapping ¢@:@(x) = (f1(x), -+, f[i(X), - +*) is a homeomorphism of E onto a
compact subset of 1.

ProoF. Since {f,} separates points in E, it is clear that ¢ is one-to-one. From the
compactness of E it follows that if ¢ is continuous then its range is compact and it
is a homeomorphism. Let x, — x. Each neighborhood of ¢(x) contains an open set
in the form of a finite product of open intervals at certain coordinates #ny, -+, 1,
with the remaining coordinates unrestricted. Since each f, is continuous, i < j < k,
we have lim, , , f, (x,) = £, (). Thus for large n, ¢(x,) is in the neighborhood, and
the proof is complete.

In view of this theorem, we may replace for most purposes E by ¢(E), p(t, x, A)
by p(1, p(x), (4)), and X (1) by (fy(X(?)), ", /(X (7)), ). From now on we
assume that this replacement has already been made, and thus write E for ¢(E),
etc., and (X,(¢), - -+, X,(¢), - ) for the process. In most cases of interest, a finite
number of excessive functions suffices to separate points, and then the process has
as state space a compact subset of R". We now have a first decomposition result.
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THEOREM 1.2. The coordinates X,(t) can be written uniquely (up to a set of P*-
measure O for all initial distributions p) in the form X,(t) = M,(t)— A,(t), where the
decomposition (on the sample space) does not depend on p, A(t) is a positive
continuous additive functional (A4,(0) = 0), and, for each p, M ,(t) is a right continuous,
quasi-left continuous martingale with E*M*(t) <.

REMARK. Regarding the sample space, we assume only that it is sufficient to
define both the processes and the “shift” operators which appear in the definition
of additive functionals ([1] page 20).

ProOF. For each p it is obvious that X,(¢) is a right continuous supermartingale,
and therefore ([2] page 361) the limit X,(0c0) = lim,, ., X,(¢) exists a.s. and also,
since X,(1)<1, in L,. Thus if we write X,(t) = E(X,(0)|F())+(X,(1)—
E(X,(c0) | #(1)) = EXPX,(00) +(X,(t)— EX®(X,(c0))) we have a decomposition
free of y in which the first term is a martingale and the second term is a potential
of class D ([7] VI # 9, VI T 20). The second term then has a unique decomposition
(foreach p, P* a.s.)into the difference of a right continuous martingale and a natural
increasing process A,(¢) ([7] VII, T 31). Moreover, the o-fields % #(¢) are free of
times of discontinuity ([8] XIV, T 36), and hence the potential is quasi-left contin-
uous, and thus regular ([1] IV, Definition 3.2). It follows from ([1] IV, (3.8)) that
A,(1) is equivalent to a continuous additive functional of the process (and thus we
may choose it free of y). Since, finally, E#4,%(c0) < 2 ([7] VII, T 24), one notes that
E*(X,(c0)+ A4,(0))? < 7, and setting M, (t)=X,(1)+ A4,(1), the quasi-left continuity
of M,(t) follows from that of X (¢). This completes the proof.

For our next step in the analysis of the component processes X, (), we confine
attention to the martingales M, (7).

THEOREM 1.3. Each M,(t) decomposes (for each ) uniquely into M, (t) = M, (t)+
M, A1), such that M,(t) is a boundedly square integrable martingale with continuous
paths, and M,%(t) is a boundedly square integrable martingale, orthogonal to every
such martingale having no common discontinuities with it, with M,%0) = 0.

Note. In the terminology of ([8] I, Section 3) M,? is a “‘compensated sum of
jumps.”

Proor. This result is a direct application of ([7] VIII, T 32) (the ‘“‘second
decomposition of square integrable martingales.”).

To relate these martingales further to the Markov property of the process, we
need the well-known hypothesis of “absolute continuity” ([9] XV, Section 4):

HYPOTHESIS 1.2. There exists a finite measure v on (E, &) such that an excessive
function for P, which is 0 a.e. with respect to v must be identically 0.

THEOREM 1.4. The martingales M,*(t)— M,5(0) and M,%(t) can be chosen (by
modification for each p on a fixed P*-null set) to be additive functionals of X (t), the
JSormer continuous.
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Note. Obviously the latter remains a compensated sum of jumps.

ProOF. It is clear that X,(#)— X,(0) is an additive functional, and since 4,(¢) is
also, this implies that M,(¢#)— M,(0) is an additive functional. Moreover, {rom
E*M,2(t) < 7 it follows that M,(t)— M,(0) is in the space .4’ of martingale additive
functionals of Motoo and Watanabe [11], [16]. Let us redefine M,°(#)— M,°(0) as
the projection in .4’ of M,(t)—M,(0) onto the stable subspace of continuous
elements. Setting M,%(t) = M,(t)— M, (¢), it is known that M,%(t) is in 4" and
orthogonal to this subspace. On the other hand, as defined in Theorem 1.4, the
analogous martingales are the corresponding projections in the space .#* of
P*-square integrable martingales [5]. To show that these are equal to their analogues
Pr-almost everywhere it suffices to show that () the continuous elements vanishing
at ¢ = 0 which are in #*n.#" are dense in the corresponding subspace of .#*, and
(b) the elements of the space complementary to the continuous subspace of ./’
which are in .#*n.4" are also dense in the corresponding subspace of .#*. Indeed,
since the projections of M,(t)— M,(0) in .4’ are clearly in .#*, and since they are
determined in each of .#' and .#* by their orthogonality to the complementary
subspaces, it suffices that the intersection of these subspaces contain dense sets in
those of .#*. To establish this point, we can use the “generating system’” of elements
of the form u(X (¢))—u(X(0))— [oou(X(s))—f(X(s))ds, a >0, feb(&), u = R,f,
where R, = [§ e”*P,dt ([5]; [11] page 464). It follows exactly as in ([5] Theorem
4.2) that these elements are in #*N.4’, vanish at t =0, and are dense in the
subspace of .#* vanishing at ¢ = 0. Let .#*, and .44, denote the two orthogonal
subspaces of .#* required for (a) and (b). For M, e #%,, we can choose for each ¢
elements of the generating system which approximate M, in the sense of the
seminorm (E*M,%(¢))*. Let these elements be written as sums of orthogonal
projections onto the continuous and (purely) discontinuous subspaces of .#'.
Clearly these projections remain in .#*, and the continuous one is orthogonal to
M,. Tt follows that the discontinuous ones approximate M, even better than the
original sums, which implies that if we now choose any Me.#*, M(0) = 0, and
write M = M|+ M,, M,e MY ,, M,eM*",, then in approximating M by elements
of the generating system, the continuous projections in .#’ of those elements also
approximate M,. This proves (a), and to complete the proof of (b) it suffices to
observe that the discontinuous projections in .#’, being orthogonal to the contin-
uous subspace of .4’ are by (a) also orthogonal to that of .#*. Hence they are
in the discontinuous subspace of .#* and, as shown above, approximate any
M, e M} . This completes the proof.

2. An instantaneous decomposition. In this section, the two martingale additive
functionals M,°(t)— M,°(0) and M,%(¢) will be analyzed separately. It will emerge
that they correspond to the Gaussian and Poissonian components in a rough
Lévy-Khintchine type of decomposition of the process. We consider MA(t) first.
From the earlier remarks it is immediate that this is quasi-left continuous, *“‘purely
discontinuous,” and boundedly square integrable.

Let H(t) denote a continuous increasing additive functional such that E*H(t) is
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finite for all (¢, x),* and with respect to which, for every square integrable martin-
gale additive functional M(¢), (M, is absolutely continuous with respect to H(z)
in the sense ([11] or [16] page 56) that there exists an &-measurable function f= 0
such that for each ¢ and x, E*[§ /(X (s))dH(s) < oo and (M), = [4f(X (s)) dH(s).
We recall that (M), is the unique continuous increasing additive functional F(r)
such that M?(f)— F(¢) is a martingale, and that two additive functionals are con-
sidered to be equal if they differ only on a set having P*-measure O for all p.
Replacing H(t) by H(t)+t if necessary, we can and do assume that H(?) is strictly
increasing and exceeds ¢. We now introduce the Lévy system (n(x, dy), H(t)) of
X (¢) relative to H(t), as constructed, for example in [16]. This system, in which
the kernel n(x, 4) is defined for each 4 € & uniquely up to a set of H-potential 0 in
x and n(x, {x}) = 0, has the property that for each purely discontinuous, quasi-left
continuous martingale additive functional M(¢t)e .#’, there is an & x &-measurable
f(x,y) = 0 with f(x, x) = 0 for all x and

E* [5 [ef*(X(5), pn(X(s), dy) dH(s) = E(M ), < o0,

such that M(1) = ¥,< f(X(s—), X(5)) = [of e (X (s), )n(X (5), dy) dH(s). Here
£/ (x, p)n(x, dy) is well defined except perhaps on a set of potential 0 (i.e. of
v-measure 0), and the summation is defined over the jump times s < ¢. Conversely,
every f with the stated properties defines such an M(t), by ([16] Theorem 3.1). Now
since X,(x) is a bounded excessive function it is known ([8] IV, Theorem 4) that
X,(y)— X,(x) is such an f. Moreover, an element of .#’ which is orthogonal to the
continuous subspace of .’ is uniquely determined by its jump, as we see by
considering the difference of two such elements. Consequently, the above f deter-
mines M,? and we have

THEOREM 2.1. For each n,
M) = Y2 (Xol(8) = X5 =)) = [o [ (ya—X,(8) (X (s), dy) dH(s)
where y, is the nth coordinate of ye E.

REMARK. It is not to be expected that this representation for all » in any sense
determines n(x, dy). On the other hand, the analogue with functions f(x,, y, ***,
X, V,) in place of just y,—x, would, if assumed for all n, determine n(x, ) v—a.e.
in x. This follows easily from the fact that since 00 > E*Y (., > 1-; (X ;(s)— X (s —) )?
any function f(xy, py, ***, X,, ¥,) With |f| < Y-, [y,—x,| would be admissible.

We consider next the continuous components M,°(t)— M,°(0). Here it is possible
to treat the joint distributions of n-tuples directly. The first step is to introduce
certain matrix-valued functions which can be thought of as transformations to
orthogonal local coordinates.

THEOREM 2.2. For each n > 0 there exists a nonnegative, Borel measurable, n x n
matrix-valued function W,(x) = (W (x;i,j)) with W,(x;i,i) =1 and W(x;i,j) =0

4 Meyer (9) I1I shows that E*H (t) may be assumed bounded in x, hence E£H (t) < oo for all p.
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for i > j, such that the equation
(M) =M “(0), -+, M ()= M,(0)) = [5.d(B,(5), ***, B,(5)) - W(X(s))

defines the left side as a stochastic integral (in the sense of M. Motoo and S. Watanabe;
[11] and [S]) of n orthogonal and continuous square integrable martingale additive
functionals By, -+, B, with E*B*(t) £ EX(M,(t)— M,(0))?, xe E. Here each W, is
triangular with unit diagonal, and, for m < n, W,, is the first m x m submatrix of W,.

PrOOF. One begins by setting B, (t) = M,°(¢)— M,“(0), and proceeds by induction.
Suppose that By, - - -, B, have been defined, and set By, ,(¢) = M, (1) — M, 1(0)—
Projection (M, . ,(t) — M, 1(0) onto the subspace of .#’ generated by By, -+, By)
where 4’ is the space of all martingale additive functionals in the sense of [11]. It
follows that By, (t) = M, (1)— M,.1(0) =Y %_, [6 W,(X (5);], k+ 1) dB/(s), where
[oW (X (5); ), k+1)dB(s) defines the projection onto the subspace generated by B;.
The inequality in the theorem is now clear. Setting

Wix;j,k+1)=1;j=k+1
=0;k+1<jZn
the theorem follows. 4

By using another known result, we can partially understand the structure of the
processes (By(t), - -+, B,(t)). The statement of the result is made awkward by the
fact that (B,), does not increase to oo. Accordingly, we let (8,(2), - - -, B,(t)) be an
n-dimensional Brownian motion entirely independent of X (¢) for all initial distribu-
tions. For any ¢ = 0, we define the stopping times 7)(c)= inf{¢t:{B,), > c}, or
T (c) = oo if no such 7 exists. Now set

n(c) = B(Ti©)), Ti(c) < 0;
= By(0) + fi(c—lim,- o, {Bi>), otherwise.

THEOREM 2.3. For each initial distribution pu, P*{B,(t) = 0,0 £ t < T\(0)} = 1 and,
for each ¢ > 0, (y,(c), -+, v,(¢)) is a vector of orthogonal normal components, each
having mean 0 and variance c.

Proor. The first statement is clear if we recall ([5S] page 211) that the martin-
gales B(tAT,(0)) are associated with the continuous increasing processes
{Bi);A1,(0). The same reasoning shows that if r, and r, vary over the nonnegative
rationals, P*{U,, <,,{{B>: = {Bi)r> 't =t = r2; Bi(to) # By(r,) for some toe(ry,
r,]} } = 0. Consequently, for a.e. path, B, remains constant in every interval in
which (B, is constant. It now follows as in the case N = 1 of ([5] Theorem 3.1)
that y,(c) is in fact an ordinary Brownian motion. Thus it needs only be shown
that the components are uncorrelated. Let T; ,(c) = T;(c) AT,(c) < co. Then we
have by orthogonality and uniform integrability E*(B{(T;(c))By(T;,(c))) =0.
But, for example, we clearly have also

E*[B(T(c))BAT(c)— T(c))); Tjulc) = T(c) < 0] = 0.

The conclusion is now obvious.
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REMARK. In Section 4 we prove a comparatively deep theorem to the effect that
(y1(c), -+, 7a(c)) is an n-dimensional Brownian motion. The most we could show
by the present method is that for ¢; < ¢, and ¢; < ¢4, y,(c;) —7;(c;) and y,(cs)—
74(c3) are orthogonal (j # k). The following example serves to illustrate both the
theorem and the stronger assertion.

Let X(¢) = (X,(2), X,(2)) be plane Brownian motion in the square 0 < x, y < 1
with paths remaining fixed upon reaching the boundary, and consider the two
excessive functions f(x,) = xA Y, fo(x,y) =1—(xvy) of this process, which
can be used as the coordinates of a representation of X (¢) as in Section 1. Obviously
both f,(X(¢)) and f,(X(¢)) become martingales if X(¢) is stopped upon reaching
the diagonal x =y, and the continuous increasing processes which must be
subtracted to obtain a representation as in Section 1 therefore increase only when
X,(¢) = X,(t). By reason of symmetry and local homogeneity for translations along
this diagonal, the increasing process is the same in both cases. Indeed, the only
additive functional (up to a constant factor) satisfying all of the requirements is the
““local time” of X (¢) on the line x = y. The simplest definition of this functional is
as the local time at O of the one-dimensional “Brownian motion” X,(¢)— X,(¢), in
the original sense of P. Lévy (we omit a factor 2%, which is irrelevant here).
Denoting this local time by L(#), letting D and D’ denote the regions0 S y < x £1
and 0 £ x £ y £ 1 respectively, and using the fact that |X 1(t)—Xz(t)|—L(t) is a
martingale (by a well-known result of Lévy), it follows that the representation of
Section 1 for these two coordinates is

H1X(®) = f1(X(0)) + 6 Ip(X(5)) dX 1(5) + 6 In(X(5)) dX 5(s) =27 ' L(#)
JA(X(®) = (X)) — o In(X(5)) dX 1(x) =[5 IpAX(5)) dX 5(s) =27 ' L(®).

Indeed, these are clearly valid up to the first passage time to {x = y}, and their
sum reduces to 1 — |X 1(t)—Xz(t)|, for which L(¢) provides the necessary difference
from a martingale. It is easily checked that the martingales {41, dX, +[51,dX,
and [§I,dX, +[yI, dX, are orthogonal, and that they are Brownian motions up
to the time when X (¢) is stopped at the boundary of {0 < x, y < 1}. Since one has
foIpdX +[51,dX,=3L@)+f1(X(0)—f1(X(0)),and—[[(Ipd X, +,61, dX,]=
LL() +/,(X () —f,(X(0)), in which the common term 1L(z) is not bounded while
the other terms are less than 1 in absolute value, it would seem that the Brownian
motions cannot be independent. However, after adjoining the Brownian motions
B1(t) and B,(¢) as in Theorem 2.3, it follows from ([5] Theorem 2.3) that they do
become independent. This fact will be shown in Section 4 to hold in general,
although [5] does not apply unless T(c) does not depend on j.

3. An alternative hypothesis. We continue to assume that X(¢) is a Hunt process
on the compact metric space E, and recall the definition of the resolvant operators
R,f(x) = [¥ e P, f(x)dt,A >0, feb(&). It is to be shown that the decomposition
of Section 1 and Section 2 can still be carried out, in all essentials and with some
simplification, if in place of Hypothesis 1.1 we assume
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HypotHesis 3.1. For feC we have R, feC, where C denotes the continuous
Sfunctions on E.

ReEMARK. We require this explicitly for only a single A > 0, however it then holds
for all A > 0.

Our idea is to apply the earlier results to the process with semigroup e~ *P,, and
then dispense with the e”*. Accordingly, we introduce the new sample space
Q x R* (where Q is the sample space of X(¢)) and construct the canonical sub-
process of X (¢) corresponding to the multiplicative functional e~ ([1] III, Section
3). In short, we adjoint to E an abstract point A as an isolated point, and let e be
an exponential random variable (P{e > t} = e~*) independent of X (¢) for all u,
with e(w, x) = x on the new sample space. Then we define

X;() = X(0); ) t<e
=A; t=e.

We also adjoint another sample point w,, and define X,(¢) = A at w, for all ¢. The
semigroup of X is given by e"*P, on E, and by the identity at A, where P, applies
to f restricted to E. It is known that X is a Hunt process, and if C, denotes C
extended by f(A) = 0 to functions on EUA, then the resolvent of X; maps C, into
Cy,. We now have the

LemmMA 3.1. Hypothesis 1.1 holds for X, with
Julx) = E¥[§ g,(X (1)) dt, 0=9,6Cp 1 =n.

ProoOF. It is clear that any such an f;, is excessive and is in C,. Let g, be a sequence
which is uniformly dense in the subset of those C, elements nonnegative and
bounded by A. The existence of such a sequence follows from that of a dense
sequence in C, by considering (g v0) A L. Then if there exist x and y in E with
f,(x) = f,(») for all n it follows that R,g(x) = R,g(p) for all ge C, and also for all
A > Osince Cis preserved by R,. Since lim,_, , AR, g(x) = g(x), this is a contradic-
tion. Finally, if g,(x) > 0 then f,(x) > 0, and hence A is also separated from E.
The sequence f, thus satisfies the lemma.

Since Hypothesis 1.2 is known to carry over to X, ([8] XV, page 160), the earlier
results apply to X, without change.> We assume as before that E is replaced by a sub-
set of X-,[0, 1]. However, it is convenient to use, instead of the o-fields generated
by X, the joint o-fields generated by #*(¢) and the sets {e < s}, s < . Since X
is Markovian relative to these o-fields the decomposition of X then yields martin-
gales with respect to these larger o-fields. More generally, we may enlarge the sample
space to the form Qx X% R ;7. and define a sequence ey, e,, - -+ of independent
exponential random variables like e, entirely independent of X(z), where

5 In the same direction as Hypothesis 3.1, it is worth noting that Hypothesis 1.2 follows from
the stronger assumption that R; maps b (¢€) into C. Indeed, this implies that A-potentials of bounded
nonnegative functions are continuous, and thus (by [1] II, (2.6)) that A-excessive functions are
lower semicontinuous. This implies Hypothesis 1.2 ([1] page 197).



AN INFINITESIMAL DECOMPOSITION FOR A CLASS OF MARKOV PROCESSES 1519

e(w;xy, **, x;,-) = x;. If we then introduce the joint o-fields generated by
FHt) and {3_,e;<s}, s<t, 1 <n, the decomposition of X, remains valid
relative to these o-fields. We are now in a position to obtain a decomposition of
X (¢) from that of X.

THEOREM 3.1. Under Hypothesis 3.1 instead of Hypothesis 1.1, X may be decomposed
in the form X,(t) = X,(0)+F,(t)+ F,*(t)— C,(), where the respective terms on the
right are processes like those in Section 1, except that the quadratic means are not
necessarily bounded over t.

ProOF. We begin by defining F,°(t Ae,) = M; ((t)— M, 1(0), where M (¢) is
the continuous martingale in the decomposition of X ; (with e = ¢,). Let also

Fnd(tAel)=M:,1(t); 0=st<e
= M; \(e;—); e St

where “e;—” denotes the left limit at time e;, and set finally Ctrne) =
A, 1(t Aey). Consider now, on the one hand X (¢), e; <t < e; +e, and on the other
a process which is stochastically equivalent to X, , given the initial distribution of
X (e,). It is clear that X (), e, <t < e, +e, will become such a process if we set
X(e;+e,) = A, and then replace ¢ by 7—e,. Furthermore, by the strong Markov
property of X (¢) at the stopping time e,, this process is conditionally independent
of the past if X (e,) is given. Accordingly, we can decompose this process as before,
and define

F(tne)+(M; (tA(eg+e)—(tAe))—M, 5(0)) = F(tA(er+es))

the subscript “2” denoting this decomposition. We also define

FAtn(es+ey))=Ftnep); 1<e
=Fe)+Mi (tn(ey+ey)); ey St <e+e,
= Fnd(el)-l-Mg,Z(eZ_); e, te; =t

and C,(t A (e, +e,)) analogously. Let us show that F,°(t A (e; +e;)) is a continuous
martingale and an additive functional of X ,(¢), where

X;.,z(t)-—-x(t); t<e1+e2

=A; tge1+ez

(of course, e, +e, is an exponential random variable independent of X (), and
X, »(¢) is a Hunt process). First, we must be more explicit as to the interpretation
of “additive functional,” since the shift transformation has not been fully defined
on the enlarged sample space. We consider here the operation 6, which shifts the
original paths w(s) to w(s+¢) and at the same time replaces, for each n, >, ¢
by Y0, e;—t, where n(t) =n—1+ inf {k:Y -, e; > t}. Now choose #; < 1,, and
denoting the (enlarged) past up to time ¢ by #(¢) (for fixed p), consider the cases
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t; < e, and t; = e, separately. For #; < e;, we have
EX(F, (ty A (e +e2)) | F(11))
= E"F, (t; ne)) +(F,(ty A(ey+e))—F,(ta A ey)) | F(ty)
= F,“(t)+E*F, (ta A(eg+ey))—F,(t, Aey) | F(t,))-

To show that the second term is 0, we distinguish the subcases t, Ae; =1t, < e,
and #, Ae; = e,. The first subcase is trivial since (#, A(e; +e,)) =1, Ae;. In the
second subcase, we write the term as

E*(E*(F, (t; A (eg+e3))—F, (ey) | F(e1)) I F(t)),

which is 0 by the martingale property of M, , and the strong Markov property of
X(¢) at e,. The other case follows similarly. Since F,°(tA(e;+e,)) is clearly
continuous, it remains only to show that it is an additive functional. On
{t; <t = e }and {e; <t <t,} this follows immediately. Now on {t; <e; <1,}
the shift 0, yields a path with e, —¢, in place of e;, e;—1, in place of e,, and
initial point X'(¢;). The desired property follows since M; (t)—M; ,(0) is an
additive functional and the increment after time e, is not changed by the shift.
In the same way it is clear that F,%(t A (e; +e,)) and C,%(t A (e, +e,)) are additive
functionals.

We next proceed inductively on & to define these expressions for A (e, + - +¢,),
and letting k — co we obtain their definition for all 7. Obviously the additive
functional property is preserved in the limit. Let us show that F,°(¢) is a square
integrable martingale. We know from Theorem 1.2 that E*(F,°(e;))* < 7, and it
follows that E*(F, (e, +*-+e,))* < Tk. Accordingly, setting e, = 0 we have the
rough estimate

E(F, (D) S Y0 EX(F(eo++ +epr 1)) PHeg+ +e, < 1}
0 0 2
< Y o) )g Ty "’W)J G 22) < K(,

ji=k

<7 i (k+1)
=0

k
where we can introduce the

DEFINITION 3.1. Let K(7) denote 28((A)2+1).
Then one has

E(ma,g | FA5)|)? = limy .., EX(ma,g |FS(s A ey + - +e))])? S 4K(),

by a theorem of Doob ([2] VII, page 317). From this it follows by the dominated
convergence theorem for conditional expectations that

EXF(1) | F (1)) = limy o EXF, (12 A(er + - +€)) | #(t1))
= limy.,, F,°(t; Aeg+-+e))
= F,%(t,) a.s. P~
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We have thus established all of the asserted properties of F,°. Turning to F,%(), we
can express it in terms of the Lévy system (Theorem 2.1) of X;. Let H(¢) denote the
additive functional obtained from its analogue for X, by the same piecing together
as was used above for F,° (since H(t) is continuous, the values at e;, e, +e¢,, etc.
cause no difficulty, and H(¢) is integrable in view of footnote 4)). It is clear upon
replacing ¢ by (¢ A e,)- that we have the formula

Fnd(t) = ngt(Xn(s)_};n(s—))_j:J IEU(A} (yn_Xn(S))n(X(s)9 dy) dH(S).

This is not a martingale, but it is evident from the properties of (n(x, 4), H(t))
(see for instance [16]) that for xe E, A€ &, this is also a Lévy system for X (), and
hence that the expression

Fi(t) = Yoz (Xo(8) = X(5=)) = [ £ (v — X.(8) (X (s), dy) dH(s)

is a martingale, orthogonal to F,°(¢). Indeed, it follows from ([16] (3.11) page 63)
that
E*(F,(1))* = E* [ [ (= X(5))*n(X(s), dy) dH(s)

< E* [ fpoay (Va—X,(5))*n(X (s), dy) dH(s)

= E*(F 1)+ (M,,1(e))— M, 1(e; =N e, <0
+(M, (€)= M, (€)M e, 4er<nt+"" )?

< K(1),

where the last inequality is proved by the same estimates as for F,° above, using
EX (M 1(e)) < 7.

To complete the proof of Theorem 3.1, it now remains only to define
C,(t) = C()— o, X,(s)n(X (s), {A})dH(s), in view of the fact that y, =0 when
y=A.

Let us return now to the martingales F,° and show that they can be orthogonal-
ized and reduced to normal variates as in Theorem 2.2 and Theorem 2.3. Let W,(x)
denote the matrix which orthogonalizes the n-tuple (Fi°(tAey), "+, F,(tney)),
and let (By(tAey), ", B,(tAe;)) denote the resulting orthogonal martingales,
the notation being justified since they are certainly constant for # > e,. It is obvious
from the proof of Theorem 2.2 that, for all n, E*(B,(tAe,))* < EX(F, (t Aey) )2,
and therefore by the same estimates as used for F,° we can piece the B, together to
define continuous martingale additive functionals B,(t) of X (¢), with E*B2(t) £ K(?).
It also follows by continuing both sides in ¢ beyond tAe; that the identity of
Theorem 2.2 remain valid. Finally, since {(B;, B;), is also the continuation of
{(Bj, Bj>¢ .., the martingales B,(t) are orthogonal.

Before summarizing these observations in a theorem, let us remark on the
structure of C,(¢). We have the

LemmMmA 3.2.

Cu(t) = 6 9u(X(s)) ds.
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Proor. Since both sides are additive functionals, it suffices to prove the result
with ¢ A e, in place of ¢. By definition, C(tAe,)+f(X(tAe;)) is to be a martin-
gale, where X (tAe;) = X,(¢) and f,(x) = E"jg" gu(X;())dt (Lemma 3.1). But for
ty <ty

E(f(X (1)) | F (1)) = EX*08 g (X i(t,— 1, + 1)) dr
= fuX(t)) = BV [ " g, (X (1)) dt
= Si(X (1)) = (BHCy(t; ne)) | F (1)) = Co(ty Aey)),

which completes the proof.
Collecting these assertions, we have finally

COROLLARY 3.1. In the representation of Theorem 3.1, (F\°(t), -, F,f(t)) =
[6d(By(s), "+, B,(s)): W,(X(s)) where (By,"**,B,) is an n-tuple of orthogonal
continuous martingales satisfying Theorem 2.3;

FA (1) = Yogt (Xo(8) = X (s =)) = [ [ (v — Xo(8)In(X(5), dy) dH(s)

where (n(x, dy), H(s)) is a Lévy system for X(t); and C,(t) = [0g.(X(s))ds—
JoX(s)n(X (s), {A}) dH(s).

4. The quasi-infinitesimal operator and uniqueness. In the preceding section we
obtained from a given process X (¢) a collection of data in the form ((n(x, dy), H(t)),
W (%), B,(t), g(x)(n = 1)), that is, of functions on E and of additive functionals.
It is natural to suppose that these data then determine X (¢) uniquely up to stochastic
equivalence. Unfortunately, we are not able to prove this in the present generality.
What we are able to do (using known methods) is somewhat less general, but does
give additional insight into the process. In brief, we introduce an invertible time
change, the appearance of additive functionals in the representation of the time-
changed process is largely eliminated, and the uniqueness problem is reduced to
that for this new process. Even for it, however, the solution seems to require a
further hypothesis. Let us remark that a time-changed process is simply one with
the same hitting probabilities as the given process, by a theorem of Blumenthal,
Getoor, and McKean ([1] V, Section 5). The present use of a time change is due to
Skorokhod [12].

We base the time change on H(¢). Recall that H(?) is continuous, strictly increas-
ing, and H(¢) 2 t. Accordingly, let 4,(x), 1 £ n, denote &-measurable functions such
that

(B, = o h(X(s)) dH(s),

and let 0 < A(x) be chosen such that
t = [4 h(X(s)) dH(s)

(clearly ¢ is absolutely continuous with respect to H(t), so that the necessary theorem
of Motoo [11] applies). We now introduce the time change 7(¢) = inf {s: H(s) > t},
and the resulting process Y (¢) = X (¢(¢)), which is again a Hunt process satisfying
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Hypothesis 1.2 with the same measure v. Let us consider the representation of
Y (¢), obtained by substituting 7(¢) for ¢ in that of X (z). We have

(Fi(x(t)), -+ FA@(®)) = [§ d(By(s), -+, B,(5)) W (X(s))

= [od(By(1(5)), -+, B,(1(5))) WY (5)),
where
{B;, Bj>r(t) =0; i#]j
= [o h(Y(s))ds; i=j,

the last steps being relevant since, in view of the inequality 7(¢) < ¢, the B(z(¢))
are square integrable martingale additive functionals. Next, we have easily

Fnd(T(t)) = ngt(Yn(s) - Y”(S _) ) —'ﬁ) _[E (yn - Y;l(s) )n( Y(S)’ dy) dS,
and finally,
C(x(t)) = [6,9,(Y(5)) de(s)— o Y(s)n(Y(s), {A}) ds
= [69.(Y(s))h(Y(5)) = Y,(s)n(Y (s), {A}) ds,

where, since dt < dH(t), we may assume that 0 < h(y) <1 and 0 < n(y, {A}) £ 1,
and thus the integrand is between 0 and A+ 1. We have thus obtained for Y(¢) a
representation entirely analogous to that of X(r) but relatively free of additive
functionals dependent upon the sample space. It is also clear that if Y (¢) is deter-
mined uniquely by the sample-space-free data (n(x, dy), W,(x), h,(x), h(x), g.(x))
of this representation, then X (¢), which is obtained from Y (¢) by the time change
H(?), is uniquely determined by its data listed before.
Using Y(t), we shall now prove the stronger form of Theorem 2.3.

THEOREM 4.1. The process (y,(c), -+, y.(c)) of Theorem 2.3 or Corollary 3.1 is an
n-dimensional Brownian motion.

PRrOOF. It is clear that this process is the same whether one begins with X (¢) or
Y () in defining it, and in view of the properties of Y (¢) this permits us to assume
from the start that <(B,>, = 41X (s))ds for suitable 4, = 0. The first step in the
proof is to justify the assumption that B,(t) = [,/ (X (s)) dD,(s),where (Dy, -+, D)
is an n-dimensional Brownian motion. Formally, the process D, is given by
Dy(t) = [th, (X (s)) dB(s), but this expression is meaningless if A(X(s))=0.
Accordingly, let (8,(¢), -+, 8,()) be an n-dimensional Brownian motion entirely
independent of X (¢), and consider the product sample space on which both are
defined. On this space the process (¥ (1), 8,(¢), ** -, 8,(¢)) is a Hunt process, in an
evident way, but it seems difficult to verify Hypothesis 1.2. Nevertheless, if we set
S, = {xeE: h(x) # 0}, and S,/ = E—S,, the expressions

Dy(t) = ji) b H(X(s) s, (X(5)) dBy(s)+ ro I (X(s)) ddy(s)

have a meaning for all £ a.s. The last term can be simply interpreted as a conditional
integral when X(s), 0 < s < oo, is given and thus I5 (X (s)) is a fixed function
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independent of §,. It follows without difficulty that relative to the o-fields
FH1)x F (8, ,8,) (where the last factor has the obvious meaning) Dy, -+, D,
is a martingale and the equation <D,>, = [oh s, d<{B> + [ols, ds = t implies by a
well-known criterion that D, is a Brownian motion. Furthermore, one has
{D;, D,y =0, and hence by ([5] Theorem 2.3) (Dy, -, D,) is an n-dimensional
Brownian motion. Now we have B,(¢) = [oh (X (s)) dD,(s), where the integral can
be interpreted in the space ./ of [5], and therefore our theorem will be an immediate
consequence of the general

LeMMA 4.1. Let (Dy, -+, D,) be an n-dimensional Brownian motion relative to a
right continuous family F *(t) of o-fields (containing all null sets), andlet ¢y, ", Py
be processes for which the expressions Ki(t) = [o¢(s)dD(s) are in M in the sense of
[5]. Then (K, """, K,) reduces to Brownian motion via time changes Ty, -, T, as
in Theorem 2.3.

PrOOF. We present first the main steps of the proof, and afterwards discuss the
technicalities needed to make it rigorous. Since the result is known for n=1 we
shall assume it for n and proceed by induction. Suppose now that D, (?) is given
for all 7= 0. Granting that ¢, - -, ¢, can be conditionally defined in such a way
that K, - -, K, still make sense, it is clear that they are still an n-tuple of orthogonal
continuous martingales to which the induction hypothesis applies. Their conditional
reduced process is thus n-dimensional Brownian motion. Since the reduced path
is also a fixed function of the d; and D; paths almost surely, this is also a conditional
version of the original reduced process. But this conclusion is free of the given
process D, ;, and it immediately follows that if the reduced process of Ky, "+, K,
is given then D, remains conditionally a Brownian motion. This implies by the
same reasoning as before that K, ; is conditionally a martingale, and therefore the
reduced process of K, is conditionally a Brownian motion. This is obviously
equivalent to the assertion of the lemma.

There is little difficulty in making this argument rigorous. We suppose at first
that ¢,, -, ¢, are bounded, right continuous processes having left limits (of
course, @;(t) is & *(t)-measurable by definition). It is required to define on the
sample space a conditional measure for the process ¢, Dy, ", ¢,, D, given D, ;.
For this it suffices to define a conditional distribution over the o-field generated by
{oj(r), D(r),1 <j < n,0 < rrational} given {D,,(r),0 = r rational}. Indeed, the
resulting processes ¢;(r) will have right and left limits along the rationals at all
t as., and it is easy to see that if ¢,(¢) is defined by right continuity it will be a
conditional process with respect to its generated o-field. Moreover, Dj(?) if defined
in the same way will remain independent of D, . According to a known theorem
([6] 27.2, page 361) such a conditional distribution exists provided that the range
of {@,(r), Dr),1<j<n} is a Borel set in the corresponding infinite product
space. This can easily be arranged by choosing the original sample space sufficiently
large (for example, by adjoining as a null set the entire product space of all 2n+2
components, and relaxing the continuity assumptions on this null set), and since
the conclusion of the lemma does not depend on the sample space (as is clear) no
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generality is thereby lost. It is now easy to see that with probability 1 the conditional
processes ¢y, -+, ¢, will be suitable integrands for defining [{,¢;(s) dD,(s). The only
property which remains to be verified is that E([5¢;*(s)ds|D,+,) < o, which is
immediate. The same method also applies to define ¢, , D,., and K, ., con-
ditionally given the reduced process of (K, -, K,). As we have noted, D,
remains a Brownian motion, and thus the proof is rigorous for ¢, ', @,.,
bounded, right continuous, and having left limits.

Proceeding to the general case, the definitions of ([5] Section 2) indicate® that
every permissible process ¢;(¢) is in the closure of this class with respect to the
seminorms E*[3¢,%(s)ds, 0 < t. Thus to complete the proof it suffices to show
that if (¢;,, 1 £j<n+1) is a sequence of integrands for which the conclusion
holds, and which converges with respect to these seminorms to a permissible set
(@1, ", @n+1), then it also holds for these. But since E([, ¢;,dD;—[4¢;dD;)*=
Ej'{) (pj,—0 j)z ds — 0, by passing if necessary to a subsequence, we may assume
that the martingales converge a.s. uniformly in finite time intervals to the
corresponding limits. Moreover, the corresponding increasing processes _ﬂ)(pf,,(s) ds
converge in the same sense. It is then clear by the continuity of the paths of all these
processes that over {Tj(c) < oo} the reduced process y;(c) is the a.s. limit of the
approximating Brownian motions y; (c). Finally, since sup {c: Tj(c) < oo} is also
the limit of the corresponding expression for Tj,, the adjoined independent
Brownian motions operate for approximately the same time periods, and if we
choose them the same for all r it is evident that the Brownian reduced processes
converge a.s. for each ¢ to the limit process. The latter is thus an n-dimensional
Brownian motion, and the proof is complete.

The following corollary, although not directly related to Markov processes, is of
general interest in that it extends Theorem 2.3 of [5] and subsumes Theorem 4.1
as well.

CoROLLARY 4.1. Let By, ‘', B, be orthogonal continuous square integrable
martingales adapted to a right continuous family F(t) of o-fields containing all null
sets. Define T(c) = inf {t: {B,>, > c} andlet B, - - -, P, be an n-dimensional Brownian
motion independent of B,, -, B,. Then the process (1, ***,7,), Where

75(¢) = B(Ty(c)); Ti(c) < o
= Bj(o0)+Bj(c—sups: Tj(s) < 0); otherwise,
is an n-dimensional Brownian motion. .

ProOF. Since one has only to imitate the proof of Theorem 4.1 we will be content
with presenting a sketch. Set H(¢) = (B, )+ *+<{B,),+1, and introduce the time
change (t) = H~'(¢t). Evidently t(¢) is a stopping time, and the process
(By((2)), -+, B,((¢))) is an orthogonal n-tuple of continuous square integrable

¢ A different class of integrands is used in [8]. However, it is not hard to check that in the case of
continuous martingales they lead to the same class of stochastic integrals.
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martingales relative to the family of o-fields #*(t) = {Se #(0): Sn{t <t} e F(¢)

for all t}. In fact, {By(t(?)), B{(1(t)) >, = {B;, B>, and it follows that the
“reduced process” of this n-tuple is the same as that of (B,, -, B,). Because
(B r+ay—<BDry <A, it follows for example by the argument of ([8] I, Pro-
position 1) that there are well-measurable processes Hy(t) = 0 such that (B>, =
tH(s)ds. Tt is easy to see that the processes

6(H=1, H()=0
=0, otherwise.

are well-measurable, and adjoining a Brownian motion (d,, ‘- -, d,) to the sample
space as before, the processes

Dy1) = If) H;~ %(S)I(s:Hj(sw 0)(8)ds B(1(s)) + .ﬁ) 0(s)dd(s)

define n-dimensional Brownian motion (by [5] Theorem 2.3). Here the interpreta-
tion of the stochastic integrals can be based on ([8] I, Section 2, # 3) where the
change from well-measurable to very-well-measurable integrands utilizes ([7] VIII,
T 20) and the continuity of B; and d;, as in the remarks of the former reference (this
continuity can replace the absence of discontinuities of #(¢) assumed there). By
considering the corresponding increasing processes it follows that Bj(t(t)) =
[oH *(s) dD/(s), and the proof is now completed by applying Lemma 4.1.

To investigate the uniqueness for Y (¢), and obtain at the same time a more formal
kind of infinitesimal operator, we shall next apply the extension of Itd’s formula
due to Kunita and Watanabe ([5S] Theorem 5.1, page 229). Let F(x,, -, x,,) be a
function with bounded continuous 2nd order partial derivatives on X'}=1[0, 1],
written Fe C,%. Then if we introduce (for yeE), y, = (y1, ", y,), and Y, (1) =
(Yy(t), ---, Y,(2)), we obtain

F(Y,(1))—F(Y,(0))

= }:j = (Yu($))d(By(2(5)), -~ 5 Bu(1(5))) W(Y(5))

110

N f f F(y) — F(Y,(5))a(ds, d)

+ f 0 L[(F(yn)—-F(Yn(S)))— 3 0= Y o (40 )]n( V(). dy)ds

o (LN = KK, (AP d
j=1 0

2

~ZnZ F (Y () Z h(Y(S)W(Y(5); k, DW,(Y(s); k. j) ds,

where q(t, A)+ [on(Y (s), A)ds, Ae &, is by definition the number of jumps of
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Y(s), s £ t, which terminate in 4 (one notes that g(ds, dy) is a kind of “random
Poisson measure”).

It is necessary to obtain some bounds on the 5 terms of this sum. Let K be an
upper bound on |F| and the absolute values of its first and second order derivatives.
The first term is clearly a square integrable martingale for each initial value x (or
distribution ) and will cause no difficulty. It follows as in the proof of Theorem
3.1 that

E*fi [ Yo 1 (= Y((9))*n(Y (5), dy) ds < K(2),

where K(?) is given by Definition 3.1, whence the third term is absolutely integrable
with expectation bounded by K(#)K in view of Taylor’s Theorem. The integrand of
the fourth term is bounded by (1+ 1)K, while the last term may be bounded by
FKY Y0 fo|d<Fi, F;y)|, which is no greater in expectation than 1n2K K(¢).

Finally, as for the second term we shall only require that it have expectation O for
each ¢ and xe E, which follows immediately from its definition in ([5] page 231)
(it is even square integrable).

As a consequence of these estimates and Fubini’s Theorem we have

E*(F(Y,(1)—F(Y,(0)) = |5 E*QF(Y,(s)) ds,

where the operator Q is well defined except, perhaps, on a set of potential 0 by the
following expression

@) QF@) = f (F(yn) Fz) - z =z <zn)) n(z, dy)

+ Z (91(2)h(z)—z;n(z, {A})) (zn)
2

0
+2 Z( Y f(@DW,(z; k, DW,(z; k, j)) éx_aF? (),

i,j=1 \k=1 i J
the integral being in the sense of L!(n(z, dy)). We note that in this definition F may
be regarded as a function over X?-,[0, 1], depending on only a finite (but arbitrary)
set of coordinates. The operator Q is an example of what is called in [3] a “quasi-
infinitesimal operator’ of Y (¢).

Letting T, denote the semigroup of Y(¢), it may appear that Q automatically
determines T, from the equation T,F(x)—F(x)= [(TQF(s)ds. This depends,
however, upon the collection of such F’s being “sufficiently large” in some precise
sense, and thus requires a further hypothesis. To arrive at a statement of it, we
apply the resolvent to the above equation and integrate by parts on the right side.
Thus we obtain

& e (T F(x)—F(x))dt
l_e—).N N 1 N
= lim[ f T,QF(x)ds+> f (e""—-l)T,QF(x)dt]
0

N- )' 0

= lJ e"MT,QF (x)dt,
AJo
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where we have used the estimates obtained above in the form ff TS|QF(x)| ds £
CK(t), in which C depends only on F. This identity can be written in a more familiar
way as follows:

(4.2) AG,F—G,QF = F; FeC?

where G, is the resolvent of Y (¢), and C? denotes the twice continuously differenti-
able functions on X{%,[0, 1] depending on only finite sets of coordinates.

To see under what conditions (4.2) determines the semigroup, we can introduce
a comparison with the weak Dynkin generator /. We recall from ([4] 1 I, Section
6) that &/ F = G holds for Feb(&) whenever lim,_, o, t~}(T,F—F) = G in the sense
of bounded pointwise convergence on E and Geb(&). Furthermore, &/ does
determine T, since G,F is defined at least for Fe C and satisfies

(4.3) AG,F— o/ G,F=F.

Comparing (4.2) and (4.3) we note that &/G,F = G,QF on C2. Let W denote the
weak continuity set of T,. Then G,(W) is the domain of 7 (of course C= W) and
for Fe G,(W) one has «/G,F = G,/ F. Thus for FeG,(W)nC? one has G,o/F =
G,QF, and the problem can be formulated as that of given the condition under
which {G,oF, FeG,(W)nC?, 1> 0} determines T,. This is a simple matter to
provide.

HYPOTHESIS 4.1. The weak closure of G,” (G,(W)NC?) is b(é").

REMARK. Since G, is one-to-one on W, the hypothesis is well stated. Moreover,
as is noted below, it does not depend on A > 0. Finally, it obviously suffices that
the same closure contain C.

THEOREM 4.2. Under Hypothesis 4.1, the operator Q of (4.1) determines the semi-
group of Y (t) uniquely.

PrOOF. For Fe G,(W)nC? we have by (4.2) the equation G,(AF—QF) = F, and
also G(AF—«/F)=F, from which it follows that G,(QF—«F)=0. Now let
Lt =(QF—-«/F)v0 and L™ = —((QF—«/F)A0). Then G,L* = G,L~, where
both sides are finite because G ,1(|QF [) < o0. We consider the continuous additive
functionals of Y (¢) given by [,L* (Y (s))ds and [,L™(Y(s))ds. Since they have the
same finite A-potentials, it is known ([1] IV, Theorem 2.13) that they must be
equivalent, and therefore L* = L™ except on a set of potential 0. Consequently,
we have QF = o/ F except on a set of potential 0. This implies that QF determines
S/ F uniquely, for if &/F, = o/F, except on a set of potential 0 then AG,(LF,) =
AG,(/F,), and as A— oo we obtain &F, = «F, everywhere. Thus for
FeG,(W)nC?* we have determined &/ F such that \F—«/F = G, 'F,i.e. G, 'F is
determined. But if £, = G, 'F, is a weakly convergent net with limit f, then since
G, is weakly continuous it follows that F, converges weakly to a limit F. It is known
that A— & is a closed operator, and hence AF— &/ F = f. By hypothesis, any fe W
may be obtained in this manner, and this determines &/. We have already remarked
that o/ determines T,, and the proof is complete.
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In conclusion, we show that Hypothesis 4.1 does not depend on A. Choose
0 <pu# A, and let £, be a net in G,”1(G,(W)NC?) such that £, converges weakly
to f (and G,f, converges weakly to G,f). Since G,f,€ G,(W)nC? = #(W)nCZ,
there is a net g, in G, '(G,(W)nC?) such that G,f, = G,g,. Furthermore, since we
have

9.=4G,9.—AG, g, = pG,j,—AG,f,

= u=1G,f.+1,

the net g, converges to (u— )G, f+f. If fe W then (u—2)G,f+fe W, and since
(u—=NG,f+f=G,~(G,f) and G,f is an arbitrary element in G,(W) = G,(w),
this implies that the weak closure of G,” (G, (W)NC?) contains W, and therefore
is b(&). The proof is complete.

REMARK. It would be worthwhile to obtain a reformulation of Hypothesis 4.1
in terms of the original process X (¢), but this problem has presented no easy
solution.
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