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BOUNDARY CROSSING PROBABILITIES
FOR THE WIENER PROCESS AND SAMPLE SUMS'

By HERBERT ROBBINS AND DAVID SIEGMUND

Columbia University,; Stanford University and Columbia University

1. Introduction and summary. Let W(¢) denote a standard Wiener process for
0 £t < 0. We compute the probability that W(t) = g(t) for some ¢ = 7> 0 (or
for some ¢ > 0) for a certain class of functions g(¢), including functions which are
~ (2tloglogt)* as t > oo. We also prove an invariance theorem which states that
this probability is the limit as m — oo of the probability that S, = m*g(n/m) for
some #n = tm (or for some n = 1), where S, is the nth partial sum of any sequence
Xy, X, - - of independent and identically distributed (i.i.d.) random variables with
mean 0 and variance 1.

The main results were announced in [19]. Some aspects of the invariance theorem
were considered independently by Miiller [14], who also studied the rate of con-
vergence to the limiting distribution. Statistical applications of these ideas are
indicated in [3] and [18].

In Section 2 we state the general theorems and give several examples. Sections 3-5
are devoted to the proof of these results. In Section 6 we indicate the applicability
of our methods to stochastic processes other than the Wiener process. Of particular
interest in this regard is the analogue of Theorem 1 for Bessel diffusion processes.
Section 7 raises questions which will be treated in a subsequent paper.

2. Statement of Theorems and examples. Let F denote any measure on (0, o)
which is finite on bounded intervals, and define for —00 < x < 00, —00 <t < 0,
O<e<

0 < f(x, 1) = [§ exp(xy—y*t/2)dF(y) < oo,
— 0 £ A(t, &) = inf {x:f(x, t) = ¢} < o0.
It is easily seen that
1) X <At e)=>f(x,1)<e  f(x, 1) <e=>x= AL ¢),

and thatif for some b, A f(b, k) < co then for each ¢ > & the equation f(x, t) = & has
the unique solution x = A(t, &). The function A(t, €) is continuous and increasing
intforh <t < o0, andfort > hf(x, t) = ¢ifand only if x = A(t, ). Set

o(x)=(Q2n)"*exp(—x%/2),  O(x)= [, 0(y)dy.
THEOREM 1. (i) For any b, h, e such that f(b, h) < &,
) P{W(t) = A(t+h,e)—b for some t >0} = f(b, h)/e.
(ii) Foranyb,h,eandt >0,
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(3) P{W(t)= A(t+h,e)—b for some t =1}
=1- @(A%(T * f; 9~ b>+e‘ ! r exp(by— yzh/2)d><A—(T-+———f; 9-h_ yr*) dF(y).
0

THEOREM 2. (i) Suppose that g(t) is continuous for t =1 >0, that t *¢(t) is
ultimately non-decreasing as t — o, and that

4 J ‘?%exp(—gz(t)/m) dt < 0.
Then
©) lim,, ., P{S, = m*g(n/m) for some n = tm}

= P{W(t) = g(t) for some t =1},

where S, = x,;+ -+ +x, and the x; are any i.i.d. random variables having mean 0
and variance 1.

(i) Suppose that in addition to the hypotheses of (i) g is continuous for t > 0, that
1 “*g(t) is non-increasing for t sufficiently small, and that

fl ‘:]—3(/12)exp(—g2(t)/2t) dt < oo.

0

Then (5) continues to hold withn = tm replacedbyn = 1 andt =t byt > 0.

REMARKS ON THEOREM 2. (a) The same relations are valid if S,, W(¢) are replaced
by |, | W(@)|-

(b) Instead of assuming that the continuous function g satisfies the indicated
growth conditions, it is sufficient to assume that it majorizes some function which
does.

(¢) If g(#) is continuous for 0 < ¢ < 7 < co and the growth conditions of (ii) hold
for ¢ sufficiently small, then

lim,, ., P{S, = m*g(n/m) for some 1 <n < 1m}

= P{W(t) = g(1) forsome 0 <t <1}

In discussing the following examples, we use the fact (cf. [2], page 266) that the
process W*(t) defined by

6) W) =tw(™ ) t>0), W*0)=0
is also a standard Wiener process.

ExAMPLE 1. Let F be the degenerate measure which puts unit mass at some point
264 >0, and let ¢ = 1. Then A(t, &) = at and (3) with & = 0 (together with (6)) and
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Theorem 2 give the result that
lim,, -, , P{max,s ., (S,—an/m*) = bm*}
= lim,,, o P{Max; <p<ms (Sy— bn/m*) 2 am*}
= P{max,,.(W(t)—at) = b}
= P{max,<,<.- W(()—bt) Z a}
= 1—®(b/r* + at*) +exp (—2ab)D(b/c* —at?)
(t>0,a>0, —0 < b < 00).
The special case b = 0 yields the relation
lim,,, , P{max,s ., S,/n = a/m*}
@) = lim,, , , P{Max, < g pme Sy = am?}
= P{max,, W(t)/t Z a}
= P{maxy,<,~1 W(t) 2 a} = 2(1—®(at?)) (t>0,a>0).
For any ¢ > 0 define as in [20]
M = M(g) = sup {n: S, = ne}.

By the strong law of large numbers, P{M <o} =1. Since {MZm}=
{max,s,, S,/n = ¢}, letting m — 0, e—0 in such a way that em* =a>0, we
obtain from (7) the result

lim,_,o P{e*M = a*} = lim,,,, P{m*max,, S,/n = a} = 2(1—®(a));

i.e., as ¢ > 0 the random variable e2M converges in law to the chi-square distribu-
tion with one degree of freedom.
Using (2) instead of (3) we obtain from Theorem 1 and Theorem 2

lim,,_, , P{S, = an/m*+bm* for some n =1}
— P{max,» o (W(t)—at) = b} = exp(—2ab) (a>0,b>0).

Equation (2) with / = 1 also gives certain probabilities associated with the “tied
down” Wiener process:

P{max,.,<; W(t) 2 al w(1) = b}
= P{max,, W(?)/t 2 a| W(1) = b}

=P{maxb-l_wt(t)za}:exp(—2a(a—b)) (a>0,b<a).

>0 1+ -
EXAMPLE 2. Let dF(y) = (2/n)*dy/y" for0 < y < o0,y < 1. Then
A(t, &) = tfa~}((1—y)logt+2logle),
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where we have set
wx) = x*+2log[Fp(y—x)dy/y’ ~ x> as x- oo,
and (2) with » = 0 and Theorem 2 imply that
lim,,, o P{S,, = (n+hm)*a~'((1—y)log(n/m+h)+2loge/2) for some n = 1}
®) = P{W(t) 2 (t+ hy*a~((1—y)log 1+ h)+2loge/2) for some ¢ > O}

(3) (3)

= SGTORaR A, h>0,2> sornmd—n) -

Fory = 0, a(x) = x*+2log ®(x), and the right-hand side of (8) becomes (24%¢) ™ *.
Setting b = h = 0, ¢ = 2 exp (3a(a)), we obtain from (3) and Theorem 2 for any
T > 0 the result

lim,,, , P{S, = n*a~'((1—y)logn/m+a(a)) for some n = tm}

9) =P{W(t) = tha"'((L—y)logt+a(a)). for some ¢ = 1}

0

o d
j @(a‘l(a—y)logr+a(a))—y)y—f

=1-0@"'((1-y)logt+a(a)))+¢(a) i

T(l—r)/zf ola—y)—~
0 y

For t = 1 the right-hand side of (9) simplifies to

«© d
<p(a)f ®(a—y) =
0 y

o d
J p(a—y) y

0 '

1-®(a)+

which for y = 0 becomes

1-®(a)+ (o(a)(a + %EZ—;) .

Finally, fort =h=0,b > 0, > (2/n)*T(1—y)/b* ", we have
lim,, , , P{S, = n*a~'((1—y)logn/m+2loge/2)+b for some n = 1}
= P{W(t) = tfa~*((1—y)logt+2loge/2)+b for some t > 0}
= (2/m)*T(1 - p)/(eb' 7).

ExAMPLE 3. Theorem 1 generalizes in an obvious manner to the case in which F
is a measure on (— o0, 0c0) which assigns measure 0 to {0}. For dF = dy/(2m)?,
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b =0, ¢ = e** the results are particularly elegant:

lim,, ., , P{|S,| = (n(a*+logn/m))* for some n = tm}
= P{|W(t)| = (#(a*+1og?))* for some ¢ = 1}
= 2[1-®((a®+log)?)+((a* +logD)/1)*e(@)], (x> e );

lim,,_, , P{|S,| = [(n+hm)(a*+log(n/m+h))]* for some n 2 1}
=P{{W(@)| 2 [(t+h)(a®+log(t+h))]* for some t > O}.
=h~te ¥  (h>e ).

ExAMPLE 4. Ford > 0let
dF(y) = dy[y(log1/y)(log, 1/y)- - (log, 1/y)* ** for 0<y <1/e,

= 0 elsewhere,
where we write log, x = log (log x), e, = €°, etc. It will be shown in Section 4 that

ast— o0, A(t, €) ~ (2tlog, t)*; infact forn = 3
(10)  A(t, &) = [2t(log, t+3/2logs t+ ) k-4 log, t+(1+8)log,, 1 t
+logde/n* +0(1))]*
while for n=2,
A(t, €)=[2t (log, t+(3/2+0) log; t+1og g/2nt +0(1))]3,

so Theorem 1 and Theorem 2 give a deeper content to the “easy”” half of the law of
the iterated logarithm. For example, for b = & = 0 we have

lim,,, , P{S, = m*A(n/m, ¢) for some n = 1}
— P{W(t) = A(t, ¢) for some 1> 0} = 1/(8¢) (&> 1/9).
EXAMPLE 5. Ford > 0let

dF(y) = dy/y(log y)(log, y)* - - (log, y)

=0 elsewhere.

145 for y>e,

In this case (0, 0) = 6™, but f(x, 0) = oo for each x >0, so that 4(0, &) = 0 for
each & > 6~!. An argument similar to that leading to (10) shows that for any
e>d6"1ast—0,

A(t, &) = [2t(log, t* +3/21ogs t ™'+ 3 log, ™!
+(1+8)log,, ¢~ +logde—5~)/nt +o(1))].
ExaMPLE 6. It will be shown in Section 4 that if

dF(y) = 4(3/n)* exp (= 16/27y~ ") dy (0O<y <o),
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thenast — o
(11) A(t, e) = 3 +47 15 logt+loge+o(1)).
More generally, if
dF(y) = yexp(—ay~")dy,
for any B > 0 and appropriate values « = a(f) > 0and y = y(8) > 0, then
A(t, 8) ~ tATB/2+H)
and an expansion similar to (11) may be obtained. We omit the details.

3. Proof of Theorem 1. The proof of Theorem 1 is an application of Lemma 1
below to certain martingales defined in terms of the function f(x, t). Since (cf.,
e.g., [21]) {exp(yW(t) —1y*t, B(W(s), s < t), t = 0} is a martingale for each fixed y,
it follows from Fubini’s theorem that for any real numbers b and A

{z(),Z7(1), t 2 0} ={f(b+ W(D), t+h), BW(s),s < 1), 1 2 0}

is also a martingale except that Ez(f) may be co. Although the definition of a martin-
gale usually includes the assumption that E |-z(t)| < oo (cf. [16], page 131), the proof
of Lemma 1 does not actually require this hypothesis, and our departure from
customary usage permits applications such as Example 2 of Section 2.

LemMA 1. Let ¢ be any positive constant and {z(t), #(t), t = 1} a nonnegative
martingale. If z(t) has continuous sample paths on {z(t) < ¢} and converges to 0 in
probability on {sup, . z(t) < &}, then

(12) P{sup,s.z() 2 ¢| (1)} = & '2(r) on {z(z) <e}.

PROOF. Define T = inf {¢: ¢ = 7, z(t) = &}, where the inf of the empty set is taken
to be +oo. It is well known (e.g. [16], page 142) that {z(TAf), F(¢),t =1} is a
martingale. Hence forany Ae#(t)and t = 1,

fazmy<ey 2(0)dP = IA(:(:)«} z(T At)dP
= EP(A{Z(T) <e T t})+jA(z(t)<e,T>t} z(t)dP.

Since Ii7>y2(t) S elp<1<myt+ 1= )2(f) < € and converges to 0 in probability as
1 = 00, we have by the dominated convergence theorem

[ dgaey<z 2(x) P = eP(A{z(7) <, T < o0})
= 8L(:(t)<a} P{T < ®© | ,97(1;)} dap,

which proves (12).
From (12) it follows directly that

(13) P{sup,s.2(1) Z &} = P{z(¢) 2 &} +¢™" f(o0y <0 2(1) dP.

LeMMA 2. If f(x, T) < oo for some x, t, then for any b, h f(b+ W(t), h+1t)— 0 in
probability as t — 0.
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PrOOF. By replacing © by t+1 if necessary, we may assume without loss of
generality that f(x, t) < oo for all x. Suppose first that 4 = 7. Forany ¢ > 0

Sb+cth, h+1) = (9(c)) ™ [§ p(c— yt*)exp (by —3hy*) dF(y) - 0
as t —» oo by the dominated convergence theorem. Hence for any & > 0, for all ¢
sufficiently large
P{f(b+W(1), h+1) 2 &} < P{W(1) 2 ct*} = 1-(c),

which can be made arbitrarily small by taking c¢ sufficiently large. Now suppose
thath < 7. Thenforanyt>t—hande >0

P{f(b+W(t), h+1) = &}
= [2, P{f(b+(z—h)}x+W(t—1+h),1+(t—7v+h)) 2 e} p(x)dx >0
as t — oo by the first part of the proof and the dominated convergence theorem.

PROOF OF THEOREM 1. (ii) Let b, A, ¢ be arbitrary and t > 0. We may assume
that f(x, t+H4) < oo for some x, since otherwise the theorem is trivially true. For
each 1 = 7 let z(¢t) =f(b+ W(t), t+h), F(t) = B(W(s), s < t), and set

B, = {W(t) < A(t+h, &)— b}, B, ={f(b+W(z), t+h) <e}.

If x < A(t +h, ¢) then for some § > 0 x+6 < A(r+ A, €) and hence f(x+0, T+ ) <e.
Thus from the continuity of the sample paths of W(¢) and the dominated con-
vergence theorem it follows that the martingale {z(¢), #(¢), t = t} has continuous
sample paths on B,. But B; = B, a.s. by (1) and the continuity of the distribution

function of W(t), and hence by Lemma 2 and (12)
P{W(t) 2 A(t+h,e)—b for some t = 1}
=1—P(B,)+ [, P{W(t) = A(t+h,e)—b for some t>t|F (1)} dP

i (D(A(HfTs)i’>+ J P{Sup,s..f(b+W(®), t+1) 2 o| F(D)} dP
B>

_ l_q)<é(fﬂii);”>+e—1f F(b+W(), t+h)dP

2

=1_q><A(’+ ”"")"’>+s-1 f exp(by— %y%)m(f‘(“%—”')—b *)dF(y).

*

(i) By absorbing the factor exp (by —1y2h) into the measure F and dividing by a
constant, we may without loss of generality assume that b = 4 = 0 and (0, 0) =
1 < &. Now (3) may be written
14) P{f(W(t),t) = ¢ forsome ¢2=1}

= P{f(W(T), ‘C) g 8} +8—1 j{f(W(t),t)<B}f(W(T)’ T) dP,



BOUNDARY CROSSING PROBABILITIES 1417

valid for any 7> 0. An argument similar to that of Lemma 2 shows that
f(W(r),7)— 1 in probability as T — 0, and hence (2) follows from (14) and the
dominated convergence theorem on letting 7 — 0.

REMARKS. (a) Although (2) is a special case of (12), we chose to prove it as the
limit of (3). The reason for this chicanery is that under the sole assumption that
f(0,0) =1 it is not immediately obvious that the martingale {f(W(?),t), Z(¢),
t 2 0} has sample paths which are continuous from the right at = 0, a condition
that is required in order that (12) apply. (That this is in fact the case follows from
our argument that f(W(¢), t) = 1 = f(0, 0) in probability as  — 0 and the martingale
convergence theorem, which asserts that this convergence takes place with prob-
ability one.)

(b) An additional argument shows that if ¢ < f(b, &) X 00, then the probability
on the left-hand side of (2) is 1. Hence we obtain instead of (2) the completely
general statement that for any b, h, ¢

2" P{W(t) 2 A(t+h,e)—b for some t > 0) = min(1, f(b, h)/e).

(c) Part (ii) of Theorem 1 remains valid if we replace “for some ¢t = 7 by “for
some ¢ > 1. In contrast, part (i) with “for some ¢ = 0" replacing “for some
t > 0” is false when A(h, €) = b and f(b, &) < ¢ (see Example 5 with b = 2 = 0 and
e>6"1).

(d) We shall say that a function ¥ : [z, ©0) = (— o0, c0) has the property (*) if
for every 7' > 1 such that Y(r) < Y(z') and every ce(¥(t), Y(r')) there exists a
smallest #e(, 7’) such that y(¢) = c. It is clear that Lemma 1 still holds if “con-
tinuous sample paths” is replaced by ‘“‘sample paths having the property (*)”. This
remark will be used toward the end of Section 6.

4. Asymptotic expansions for 4 (7, ¢). In this section we obtain asymptotic
expansions for the functions A(¢, &) associated with the measures F of Examples 4,
5 and 6 of Section 2.

Suppose first that Fis as in Example 4 with n = 2. (The case of general » requires
only minor modifications.) Let f = F’, and for fixed & > 0 let B = B(t) = A(t, &)/t*
be defined by the equation

e = [ exp(Byt* —1y’0f(y)dy = (¢(B))™* [§ ¢(yr* — B)f(y) dy.

It is easily verified that B — o0, B = o(t*) as t — 0. Let y > 1. Since f'is decreasing
in (0, &) for some &’ > 0 we have for all ¢ sufficiently large

1 yB/tY
ezq)—(ﬂ;)jo o(yt*—B)f(y)dy
 S@BIt) (7%
= o(B) Jo

_ ®((@-DB)-®-B)
yBo(B)log t*[yB(log, t*[yB)' *°

o(yt*—B)dy
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Letting 7 > oo, then y — 1, we obtain

1
15 li <e.
(15 mSup g o (Bylog /B (log; /B ™ =

Now let 0 < o < y < 1. Then for ¢ sufficiently large

s aB/t%: yB/tY% © s
dy = — _
¢(B)J eOr=B)f()dy = (B)<J J B/t J wh,)(p(yt BIydy

yB/tY2

+(B) [(0( («—~1DB)F(«B[t*) +£ («B/ t*)J o(yt*—B)dy

+f (vB/t*) o(yt*—B) dy]

yB/tYs

s [ s+ GBI Y0 (r— DB F GBI )1~y 1)3)]-

It follows easily from (15) that B? = 0(log2 t). Hence, setting o = (log, 1)~ *
using the inequality

O(x) < |x| " o(x) (x<0),
we obtain

(log, 1) exp [(3(B* —(1—7)*B?)] (2n)* ™
(1—y)B?logt*/B(log, t*/B)' *° " yBlogt*/B(log,t*/B)'*°’

(16) e=o(1)+

From (16) we have

(log, t) *¥

1),
ogrip D

¢ < const.

from which it follows that log, t = O(B?). Hence from (15) the second term on the
right-hand side of (16) is o(1) as t — oo and thus

(2n)t et

1
Blogt*/B(log, t*/B)**° = 2 ye-+oll)
Letting ¢t — oo, then y — 1, we have
27)? ¢B?
(17 lim inf (2m)" e >

- Blogt*/B(log,t*/B)**° =
From (15) and (17) it follows that
(18)  B?=2log, t*/B+log B>+2(1+6)log, t*/B
+2loge—log2n+o(l) as t— 0.
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Now log, t*/B = log (3 logt—log B) = log (3 log #(1 +o(1))) = log, t—log2+o(1),
and it follows from (18) that

B% ~ 2log, t.
Hence log B? = log; t+1og 2+ 0(1), and thus as # — oo (18) can be simplified to
B? = 2[log, t+(3/2+d)log; t+log den ¥ +o(1)],

which is equivalent to (10).

The expansion as ¢ — 0 given in Example 5 may be obtained by a similar argu-
ment, with the following important difference. Whereas the behavior of F near 0
completely determines the asymptotic behavior (as described by (10)) of A(z, €) in
Example 4, and we rightfully expect the behavior of F near infinity to play an
analogous role in Example 5; nevertheless, in this case the measure that F assigns
to bounded sets cannot be neglected. To be precise, for all K sufficiently large, we
have by the dominated convergence theorem as ¢t — 0

K 1 1
J exp (Ay—1y?t) dF(y) - 5(1—m).

0

An argument similar to that leading to (15) allows us to infer that B=t"%4 =
O((log, t~1)*) and hence

1 (t¥%logat—1)—1 s
<< lim—— @(yt*—B)dF(y)
07 1m0 ‘P(B)jo

1
B
< limsu (p(logzt‘l >_|1 1
=P T e |66

The remainder of the argument follows as before.
Next, let F be as in Example 6, and for a given ¢ > 0let A = A(t, ¢) be defined by
the equation

f(4,t) =¢.
For x > Olet
(19) h(y) = xy—y*t[2—aly (o = 16/27),
so that
(20) W(y) = x—yt+a/y? and
(21 h'(y) = —t=2a/y’.
Fix 6 > Oand let p* = ct ™%, x = bt*, where b = b(¢) and ¢ = c(?) satisfy
22) W(y*) =0 and

23) h(y*) = log (e(1+8)t%).
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From (19), (20), (22), and (23), we obtain

24) b =c—a/c? and
(25) (b—c/2—a/c?)ct® = log(e(1 +d)t?).

It follows from (24) and (25) that

(26) c=4/3+3t"Flog(e(1+8)}) +o(t™?).

Forany ¢ = y*—¢~5/12

2 2
27 h"(9) z _t—(y—*——_ti(sTﬁ)'s = —t(1+(c_—7-“Tﬁ§5)-

Since by (22) A(y) = h(y*)+3(y—y*)* K"'(§) for some &'in the interval between y
and y*, we have by (27) and (23)

, we have from (21)

©

St n z %(3/n)*j &' dy

yr—1-5/12

@ 2
> 331/m)*e(1+6) exp.[—%yzt (1 + (2_—7'}1/—12)3')] dy

—t-5/12

e(1+0)(3/2)*

2a *
1+ (—c_—t:-l—/ﬁ‘)—a

Hence from (26) we obtain
liminf, ., f(bt3, t) = &(1+9),

[1—®(—t'1?)].

1\%

and it follows that

(28) A(n s bt
for all sufficiently large z. After some calculation we see by (24), (26), and (28) that
A(t, &) < 1 +47 ¥ log (e(1 + 0)th) + o(t?),
and since ¢ is arbitrary
A(t,e) £ 1 +47 '} (3 logt+loge+o(1)).
A similar argument proves the reverse inequality.
5. Proof of Theorem 2. Forany0 < 7 < ¢ < oo we have
P{S, = m*g(n/m) for some tm < n < cm}
(29) < P{S, 2 m*g(n/m) for some n = tm}
< P{S, = m*g(n/m) for some tm < n < cm}

+ P{S, = m*g(n/m) for some n > cm}.
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Part (i) follows from (29) and Lemma 4 and Lemma 5 below by first letting m — co
and then letting ¢ — 0. The proof of (ii) is similar and is omitted.

LeMMA 3. Forany0 <t <c< o
P{maxtgtgc(W(t)_g(t)) = 0} = 0

Proor. This result has been obtained by Ylvisaker [21]. It also follows from
Theorem 7 of Doob [4] and the strong Markov property.

LemMMA 4. Forany0 <1 <c<
lim,,, , P{S, = m*g(n/m) for some tm < n < cm}
= P{W(t) = g(t) for some 1<t =< c}.

Proor. This result is easily deduced from Donsker’s invariance principle,
Lemma 3, and (for example) Theorem 4.1 of [1]. Alternatively, given Lemma 3, it
may be proved in an elementary way by the method of Erdés and Kac [6].

Let y(¢) = ¢t "*g(¢), and assume that y is ultimately non-decreasing and that (4)

" holds, or, what is more convenient, that

(30) Z'&'_)e-wz(n) < .
T n
By passing to min (Y(n), 2(log, #)*), we may assume without loss of generality
that

(31) Y2(n) < 4log, n.

From the eventual monotonicity of y and (30) it follows that for all sufficiently
large n

32) ¥2(n) 2 2log, n.
In fact, we have

" (k) exp(—3YP(k) _ Y(n) &
nZ% i zlogn nz%l/kz%!//(n)-*oo

along any subsequence of integers »n for which ¥?(n) < 2 log, n. It follows from (30)
(31), and (32) that if v, denotes exp (k/log k), then

0

1
42 ;tﬁ(vk)

LEMMA 5. Suppose that Y(t) is eventually non-decreasing as t — co and satisfies
(30) (and hence by the preceding remarks (31)-(33) as well). Then

liminf,_, , limsup,,.,, P{S, = n*Y(n/m) for some n > cm} =0.

exp(—3Y*(v)) < .
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PrOOF. We shall use the following notation:
n, = exp [k/log(k+logc)], iy = cmny, (k=0,1,--9),

K, K,, - - - numerical constants not depending on ¢ nor m (provided c is sufficiently
large),

U(x) = max(l, logx), U,(x) = U(U(x)),
H(x) = P{x, < x}.
Let ¥ = {y*: y*is eventually non-decreasing and satisfies (30)-(33)}, and define
a, = a,(m) = (nUy(n[m))*
Xn' = Xpl(x <0, Xy = X=Xy
S, = Z’f X S, = Z'f x"
Then

P{S, = n*y(n/m) for some n > cm}

< P{S,,' = n*(tﬁ(n/m)— ) for some n > cm}

-1
U,*(n/m)
+P{S,”" = (n/U,(n/m))* for some n > cm}
=Dp1+D2 say.

It will be shown in Lemma 6 below that p, — 0 as m — co. Hence to complete the
proof it suffices to show that

34) liminf,_, , limsup,,..., p; = 0.
Define y; = —2/y. It is easily verified that i, € V. Furthermore, by (31)
(35) P = Zﬁo:op{maxﬁkgnqku S, 2 ﬁkiwl(ﬁk/m)}'

Foreachn=1,2, - define

X = X Iy < (i=12:"n).
Then x,™, - -+, x,™ arei.i.d., and since x,™ = x,/(i=1, 2, - -+, n) we have
(36) P{maxs, <<, Sy = BtYi(en)} < P{maxs, <pesy,, Si™* 0 Z Aty (emy)}

for all k=0, 1,---. Since n|Ex,™| £ n{|;>q|*|dH < (n/Uy(n/m))*, we may as
above define a function i, € ¥ such that the right-hand side of (36) is majorized by

P{max;, <y <, ,, (S, — ES, "+ V) 2 it (cny)},
which by Lemma 7 below is in turn

€0) 2P {S;(iikf,l) —ES{w+ V) = ﬁlc%(‘Pz(""’lc) - [z(nk+ 1/n— 1)]%)}

Bic+1
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[t is easily verified that

Nyt 1 K,
et g <exp(— )1 — L
= exP(log(kHogc)) = log(k+logc)’

and hence by (31) that
Yalen) = [20s 1 /m— D]* Z Yalem) — Ko a(emy).
Letting /5 = ¥, — K,/{,, we see that Y5 € ¥, and from (35)-(37) we obtain
(38) P = ZI:O=0 P{Séﬁ’:ﬁ"—ES,%’;":l" 2 a(eny)}-
Since Var x,® < 1, it follows from (31) and Lemma 8 below that
(39) P{SisY—ESi 2 mtys(eny)}
S 1=O((ny/ny 1)%'//3(an))+1<3 '_11:+*1(U2(C"k+ 1))_i}fj|x|§aﬁk+1 |x|3 dH.

By Lemma 9 below the series of which the second term on the right-hand side of
(39) is the kth summand converges to 0 as m — co0. The series

ZI:O= o (1 =@((ny/my+ 1)%‘#3(0”0 )

does not depend on m, and by Lemma 10 below it converges to 0 as ¢ — oo through
the values exp (i/log i). This proves (34) and hence the lemma.

LEMMA 6.
lim,, ., P{S,” = (n/U,(n/m))* for some n 2 m} =0.

ProoF. By the Markov inequality

P{S,"” 2 (n/Uy(n/m))* for some n = m} < E[r:l;n)-((—-’l/—(]f—(n';;—"w}]

S E(S, [m*) + Bz e 1 % (U (k[ m)[K)®).

Now
i (U kM) EX,” = Y (U (km)[ ) Y24 far<x sars, X AH
= Y2 m k=m (Uakm)[K)? o < x50,y X AH
S Ky Y2 m(iU(i/m)) foy<xgas, X dH
< Kyfi>a,x*dH—>0 as m— co.
Also

m™2ES," Sm7 Y Y fa<xsac X AH
Sm™ Y min(k, m) fp<xgan., X4H
SmEYI ko <xsan, XAH+m o, xdH
= m_%(Zl[f;"} +ZlT=[am]+ l)k%jak<x§ak+1 x? dH+jx>am+1 x*dH
S €EX 2+ 15 apm, X dH =0,
as first m — oo, then ¢ — 0. This completes the proof.
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LEMMA 7. Let zy, z,, - * * be independent random variables with Ez, = 0, Ez,* £ ¢?
m=1,2,-").Foranya>0,n=1,2,-- m=1,2,---,n-1,

P{maxm§k§n2?=1zi 2a} £ 2P{Z?=1 Z; 2 a—a(2(n—m))*}.

Proor. This result is well known when m = 0. The proof given, for example,
by Lamperti ([12], page 45) works for general m as well.
The following result was proved by Nagaev [15].
LEMMA 8. Let z,, z,, - -+ be ii.d. with Ez; =0, Ez,> = 0°, E|z,|> = B < c0. There
exists a universal constant L such that
i L
P{Z z; < xan*}—(ib(x) b
1

= i1+ )

LEMMA 9.
im0 Yy " H(U5(em)) ™ sy zam, |x|* dH(x) = 0.

Proor. In the following proof K,’, K,', - - - denote constants which may depend
on the fixed value of ¢, but not on m. Let

Qm) =y, i H(U(en)” st 2am %] AH(X).
Then
(40) QM) S M™% o< v <o |X]> ez tsemetnemey 2 x2/m (€1 H(U 2(cmy) )"} dH(x).

Letting g(z) denote c exp (z/log(z +log ¢)), making the change of variable u = g(2),
and letting R denote the inverse of the function x — xU,(x), we see that the series
appearing in (40) is majorized by

Kllju;max(c,R(xz/m))u—% (Uz(“))_%d“-

Hence
Q(m)

= Kl,m—%(jlxl <Ky'm% |x|3 dH+_[|x| >Ka'm¥% |x|3(ﬁz°(x2/m) u"t (Uz(u))—% du)dH(x))

=K, (Q:1+Q2),  say.
Now

Q1 S e+ Ky [oms < x| skomus [X|* dH(x) > 0

as first m = oo, then & — 0. Also since R(x) ~ x/U,(x), for all x = K,’m* we have

JRosmu ™ (Ua(w) ™ du < K,/ (m?]x)),

and thus
0, = j|x|>K2'm1/2 IXIZ dH -0

asm — oo,
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LemMA 10. If c; = exp (i/log i), then for any Yy e 'V,
lim; ., o, 5% o (1 —@( (/4 DH(einy))) = 0.
PROOF. Since 1 —®(x) £ Kx~! e™#** (x = 1), it suffices to show that

it 1
exp(—%n”" V(e n»)»o

K=o W(cimy) k+1

as i — oo. It is easily seen from (31) that (1 —n,/n . )¥*(cn,) is bounded in ¢ and k.
Hence

K,
Y(cny)

k+1

1
Y(cny)
Set ¢; = exp (iflog i) and note that for large i

c;ny, =ex i -+ k = ex i+k
i = XP logi log(k+i/logi)) = P log(i+k))’

and hence by the monotonicity of y and by (33)

0 o]

; —Lil2(c. i 1
kgo Y(c nk)exp( wWian)) = Ke kz=:o Y(n;4p)

REMARK. The original law of the iterated logarithm for i.i.d. random variables
with mean 0 and variance 1 states that

P{limsup,_,, S,/(2nlog,n)* =1} = 1.

It was proved by Khintchin [10] in the Bernoulli case and by Hartman and Wintner
[8], who relied heavily on the results of Kolmogorov [11], in the general case. The
more difficult problem of deciding for an arbitrary ultimately non-decreasing
function ¥ whether

(41) P{S, < n*y(n) for all sufficiently large n}

exp (—3Y*(n;4)) ~ 0 as i - co.

is 0 or 1 was posed by P. Lévy and has been studied by several authors.
Erdos [5] proved that in the symmetric Bernoulli case the probability (41) is
1 or 0 according as

(42) [ witexp(—4y?/2)dt

converges or diverges. In the case of a standard Wiener process Ité6 and McKean [9]
give a simple proof that the convergence of (42) implies that

41" P{W(t) < t2y(1) for all sufficiently large ¢}

equals 1 and, following Motoo [13], prove that (41") equals O if (42) diverges. In
the context of the first boundary value problem for the heat equation this result
had been discovered earlier by Petrovski [17].



1426 HERBERT ROBBINS AND DAVID SIEGMUND

The relation between (41) and (42) for general sums of i.i.d. random variables
is not so adequately treated in the literature. It follows from Lemma 5 that if (42)
converges the probability (41) is 1. This conclusion is implicit in a paper by Feller [7],
but we are unable to justify the steps in his argument.

It may be worth noting that if a function g(¢) satisfying some mild regularity
conditions is such that (4) holds, then for any é > 0 we can find a finite measure F
on (0, ) and an & > 0 such that g(¢) = A(#, ¢) for all sufficiently large 7 and

P{W(f) = A(t, &) for some t >0} = f(0, 0)/e <.

6. Other stochastic processes. The idea underlying Theorem 1 is applicable to
stochastic processes other than the Wiener process. For example, let R(¢), ¢ =2 0,
denote the distance of 3-dimensional Brownian motion from the origin. It may be
checked by direct calculation that

sinh yR(?)
YR(®)
is a martingale for each fixed y > 0. Hence if we define
filx, 1) = x71 5 y~'sinhxy exp (—$y*1) dF(y),

where Fis any measure on (0, co0) such that f(x, 1) < co for all x > 0, then

(43) exp(—4y’t) (t>0)

Si(R(®), 1) (tz1)
is a martingale. As in Section 2, let 4, (¢, &) denote the solution of
filx, D) =¢ O<e 1St < o).

Since y~! sinhy < ¢” for all y = 0, an argument similar to the proof of Lemma 2
shows that f,(R(?), t) >0 in probability as ¢ — co. Hence from Lemmal we
obtain

THEOREM 3. Foranya > 0ande =f(a, 1)
P{R(t) = A,(t, &) for some t = 1} = 2(1—D(a))
+£(a, )7 3 [®(a—y)—D(a+y)+20(y)— 1] dF(y).

For the measure F of Example 4 of Section 2 it may be shown by methods similar
to those of Section 4 that as t — o0

(44) A,(t,8) = [2t(log, t+5/210gs t+ Y 4 log, t+(1+8)log, . | t+1og2&/n* +o(1))]*.

(To see that this is the “right” result, compare (44) with equation (14) of [9],
page 163.)

Again, let X(¢) be a one-sided stable process of index %, i.e., let X(#) be a process
having stationary independent increments and Laplace transform

(45) Ee™*X® = exp (—(24)*) (t =0, 4= 0).
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Without loss of generality we may assume that the sample paths of X(¢) are non-
decreasing, right-continuous, and increase only by jumps (e.g. [2], page 317). It
follows from (45) that foreach y > 0
{exp(—$y*X()+y1), t 2 0}
is a martingale. Let
fo(x, 1) = [§ exp(—4y*x+yO) dF (y)

for any measure Fon (0, oo) such thatf5(0, 1) < co. Thenforany x = 0, f5(x + X(¢), t)
(t = 1) is a martingale, and by the sample path properties of X(¢) and the dominated
convergence theorem it is easy to see that the sample paths of f(x+X(¢), ) (¢ = 1)
have the property (*) (see Remark (d) at the end of Section 3).

From (45) it follows that for each ¢ > 0, #~2X(¢) and X(1) have the same distribu-
tion. Moreover, forany x = 0and é > 0

fo(x+682, 141) = (96 %)) ! [& @(dtyt— 6 Hexp (—3xy* +y) dF(y) - 0

as t - oo by the dominated convergence theorem, and it follows by the argument
of Lemma 2 that f,(x+ X(¢), t) = 0 in probability as r — co. Letting 4,(¢, €) denote
the solution of the equation f,(x, t) = &, we obtain

THEOREM 4. Forany a > 0ande = f5(a, 1)
P{X(f) £ A,(t, €) for some t = 1}

(o L )

a* @ , 1
f co(ya ——;) dF(y)
0 a

For the measure F of Example 4 of Section 2, since f5(x, t) = f(¢, x), we obtain
by inversion of (10) that

Ay(t, a) = ?/2(log, t+3[2logy t+ Y44 log, t+ (1 +0)log, , t+loge/n* +0(1))

ast — oo.

7. Final remarks. The examples of Section 6 were chosen for computational
simplicity. A closer look at them suggests many questions which will be treated in a
subsequent publication. (a) What is the origin of the martingale (43), and how can
analogous martingales be found for other diffusion processes ? (b) Since R(f) - o0
with probability one as ¢ — 00, there exist functions g(¢) which are o(t*) such that

P{R(t) < ¢g(?) for some t =1} < 1.

Does our method permit us to calculate these probabilities exactly ?
(c) For the Wiener process itself, if for some 0 < « < f§ < co, Fattributes positive
measure to the interval [«, f], then

f(x, 1) Z exp (xoc—-th/Z)F[oc, Bl
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s0 f(g(1), t) = oo if g(t)/t - co. Hence the method of Theorem 1 can only generate
boundaries g(¢) which are O(¢). What is the class of martingales suitable for comput-
ing P{W(t) = g(¢) for some ¢ = 1} for arbitrary continuous functions g, and what is
the relation of the class of martingales we have obtained to this much larger class ?
This question is closely connected with the study of certain boundary value problems
for partial differential equations involving the generator /0t +40?/0x? of the space-
time Wiener process. We shall briefly indicate the nature of the connection.

Suppose for simplicity that (b, 0) < oo for all . Equation (3) implies that for
anyh =0, —o0 < b < 00,and any ¢ > f(b, h),

(46) P{W(t) 2 A(t, &) for some t = h| W(h) = b} = f(b, h)/e.
If we let P(b, h) denote the left-hand side of (46) we have -
47 P(b, h) =f(b,h))e (h=0,b< A(h,¢))
=1 (h=0,bz= A(h, ¢)).
It follows from (47) that
) PrZloo wzob<om)

where we have put g(¢) = A(t, ¢).

Now let g(¢) be any positive, continuous, and increasing function of ¢ = 0, not
necessarily of the form A(#, €). Then the left-hand side of (46) still defines a function
P, h) for h=0 and —o0 < b < oo which is 1 for b = g(h), and we may ask
whether (48) continues to hold. Conversely, if P is any function defined for # = 0
and b < g(h) which satisfies (48) and is 1 for b = g(h), we may ask whether it is
necessarily equal to the left-hand side of (46).

We are indebted to F. J. Anscombe and H. P. McKean, Jr. for several valuable

suggestions.
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