The Annals of Mathematlcal Statistics
1970, Vol. 41, No. 6, 1896-1905

LINEAR RANK STATISTICS UNDER ALTERNATIVES
INDEXED BY A VECTOR PARAMETER!

By R. J. BERAN

University of California, Berkeley

1. Introduction. Since the publication of Héjek’s papers [3] and [4] on the
asymptotic distributions of linear rank statistics under the null hypothesis of
randomness and under contiguous location-shift alternatives, several other fruitful
applications of the same basic techniques have been made. Some of these later
applications may be found in the papers by Matthes and Truax [7] and by Adichie
[1], as well as in the book [5] by Hajek and Sidék. With the exception of [1], the
contiguous alternatives examined in these references have depended upon a one-
dimensional parameter. Adichie considered a two-dimensional parameter indexing
simple regression alternatives, but by making the parameter components linearly
dependent in the asymptotics, essentially reduced the problem.

This paper presents a general treatment of the asymptotic distributions of linear
rank statistics under contiguous alternatives indexed by a g-dimensional parameter.
The approach adopted follows that of Héjek and Sidak [5]. It is assumed that
under the null hypothesis, the observations are independent and identically distri-
buted random variables. The linear rank statistics considered are of the forms

(L.1) Se= Y1 e/an(Ru), and
1.2 St = Zf’: 1 &/'ay(Ry,) sign (X)),

where the p-dimensional column vectors ¢, -, cy and ay(l), -, ay(N) are,
respectively, constants and values of a score function ay(-). Such statistics arise
naturally in the present context and also in the study of locally most powerful rank
tests. The results of this paper may be used to derive asymptotic distribution theory
under vector parameter alternatives for the Kolmogorov-Smirnov, Cramér-von
Mises and Rényi statistics as well as for various simple quadratic rank statistics.
Section 4 illustrates.

2. Limiting distributions under the null hypothesis. Let X, X,, - - - be a sequence
of independent identically distributed random variables with common density f,
defined on R!. Let Ry; denote the rank of X; among X, - - -, Xy. The first situation
envisaged in this section is that of sequences of sample sizes {N,}, of p-dimensional
vector constants {(¢,;, """, ¢,y,)}, Of linear rank statistics {S,,}, defined as in (1.1),
and of null hypotheses {H,}. Under H,, the joint density of (X;, -+, Xy, ) is
assumed to be

(2.1) py(x) = [ 21 f(x).
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Our aim is to establish general conditions for the asymptotic normality of the
statistics .S, under H, as v — oo.

For simplicity of notation, the subscript v will usually be dropped. Unless
otherwise indicated, all vectors appearing in this section are p-dimensional column
vectors. The norm ||-|| is the usual Euclidean norm. A basic result to be used
repeatedly is the following central limit theorem, under whose assumptions the
Lindberg condition holds.

THEOREM 2.1. Let Y4, Y,, - - be a sequence of independent identically distributed
random variables with mean m and covariance matrix V. If

2.2) max, ;<n||ai]| >0, o) £ @% < o,

then the statistics

(2.3) S,=Y.a'Y;
are asymptotically normal (u,, 6,%) with
(2.4) By =m’ Ziv= 13, 0, = Z?: 18;'Va;.

Let F denote the distribution function with density f. If U; = F(X,), the random
variables U,, U,, - - - are independent, uniformly distributed on (0, 1). The rank of
U, among U,, - Uy is still Ry;. Let ¢(u), ue(0, 1) be a p-dimensional vector
valued function, square integrable in the sense that its Euclidean norm ||e(u)||
belongs to L,(0, 1). Define

(2.5) ay(i, ) = E[@(U,)| Ry, = i].

The following two lemmas follow immediately from Theorem V.1.4a and Theorem
V.1.4b of [5].

LeMMA 2.1. If o(u) is square integrable and ay(i, @) is defined by (2.5), then

(2.6) limy_, , E ”aN(RNl’ 0)— ‘P(Ul)l I2 =0.
LeMMA 2.2. If @(u) is square integrable and ay(i, @) is defined by (2.5), then
Q.7 limy_, o, & ||an(1 + [uNT, @) — ow)||* du = 0.

Let ¢ = [ @(u)du and let D = [§ [o(u) — $][@(u) — ]’ du. The next two theorems,
the main results of this section, are analogues of Theorem V.1.5a and Theorem
V.1.6a of [5],

THEOREM 2.2. Let the scores ay(i, ¢) be associated with a square integrable
Sfunction @(u) as in (2.5). If

(2.8) maXléiéN ”ci_E” ")0, év=1 ”ci_EHZ é dz < 00,
then, under H,, the statistics

(2.9) S = Zf’= 1¢/'ay(Ry;, @)
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are asymptotically normal (u,, 0.%) with
(210) "lc = EI zy: 1 aN(i’ ‘P), o'cz = z;\; 1 (ci _E)ID(ci _E)’
or with ¢,> = Var S,°.

PROOF. As in Theorem 3.2, it is sufficient to prove the result under the additional
assumption

(2.11) YN (=)' D(¢;—8) > ¢ < 0.

If ¢ = 0, the theorem is trivial. If ¢ > 0, we may write

(212) S =Y (¢i—%)ay(Ry;, 0)+T Y1 ay(i, 9).
Define

(2.13) T. =Y (—®'oU)+T YL, ay(i, 9).

An argument analogous to the one in [5] yields
(2.14) E[(T,—S2°)*|U) =u'"]
S NN=-1)7'YL, [lei—TE|lan(Ry1, @) —@(U)||* | T = u' ],
Thus, if 7, = Y-, ||e;—T||*/.2
(2.15) E[(T.—5.%).”']* £ N={N—1)"'El[as(Rn1, 9) —0(U )| |*

Assumption (2.8) implies that N — oo and, together with (2.11), that . is bounded
asymptotically. Therefore, Lemma 2.1 and (2.15) show that (T,—S.0,~ ' - 50.
Moreover, T, is asymptotically normal (y,, o) by Theorem 2.1. The theorem
follows.

The next theorem extends the asymptotic normality of Theorem 2.2 to a larger
class of score functions ay( ). (cf. Theorem V.1.6a of [5]).

THEOREM 2.3. Let the scores ay(i) be associated with a square integrable function
@(u) in the sense that

(2.16) limy.. ,, [&]]an(1 +[uN]) —@(w)||> du = 0.
If (2.8) is satisfied, then, under H,, the statistics

(2.17) S.=YNX ¢/an(Ry)

are asymptotically normal (u., 6.%) with

(2.18) pe=ES., ¢ =)\ (c;—T) D(c;—0),

or with 6,2 = Var S,.

Because of Lemma 2.2, the scores ay(i, ) satisfy condition (2.16). Other simple
score functions ay( ) satisfying (2.16) are provided by the following two lemmas,
which are direct consequences of Lemma V.1.6a and Lemma V.1.6b of [5].
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LeMMA 2.3. If each component of @(u) is expressible as a finite sum of square
integrable and monotone functions, then

(2.19) ay(i) = o(i/N +1), 1<iZN,
has the property (2.16).

LEMMA 2.4. If the function ¢(u) is square integrable, then
(2.20) ay(i) = NJ{% 1y n @) du, 1Si<N,

has the property (2.16).

The preceding arguments extend to rank statistics {S, }, defined as in (1.2),
under symmetric hypotheses {H,* }. Under H,*, the joint density of (Xy, - -, Xy,)
is of the form (2.1); however the density f is assumed to be symmetric about the
origin,

Let Ry; denote the rank of |X;| among (|X|, -, | Xy|), let sign (X)) equal 1, 0,
or —1 according to whether X, is positive, zero, or negative, and let D* =
{3 @(w)@(u)’ du. Then we have

THEOREM 2.4. Let the scores ay(i) be associated with a square integrable function
@(u) in the sense of (2.16). If

(2.21) max, ¢;<y|jei|| =0, My ledP £ d? < w,

then, under H,*, the statistics

(2.22) St = va= 1 ¢'ay(Ry;) sign (X)
are asymptotically normal (0, y,%) with
2.23) y2 =Y, ¢/Drc

or withy* = VarS,*.

3. Limiting distributions under contiguous alternatives. The first situation en-
visaged in this section is that of sequences of sample sizes {N,}, of p-dimensional
vector constants {(c,, " *, ¢,y,)}, Of linear rank statistics {S.,}, defined as in (1.1),
of null hypotheses {H,}, and of alternatives {K,}. Under H,, the joint density of
(X1, -+, Xy,) is assumed to be

3.1 py(x) = 121/ (x1, 80), 6, R,
where 0, is known. Under K, the joint density is assumed to be
(32) qv(x) = l—_[?’=v1f(xi’ ovi)’ oviERq’l é i é Nv'

Our aim is to derive the asymptotic distributions of the statistics S,, as v = oo for
sequences of densities {g,} contiguous to {p,}. .

As in the one-dimensional parameter case dealt with by Hajék and Sidak [5],
the principal theoretical tools used are some results due to LeCam [6]. For
notational convenience, the subscript v will again be dropped and 6, will be taken
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to be the null vector 0. The following regularity assumption on the densities will
be made.

DEFINITION 3.1. Let ®@ = R? be an open subset containing 0. A family of densities
{f(x, 0), 0€®} is said to satisfy condition A if

(i) For almost all x, f(x, 0) is continuously differentiable with respect to @ whenever
0c0O.
(i) limy gy 20 Z;(0) = 1;,(0) < 0,j = 1,2,""", q.

By 1;;(0) is meant the (j, j)th element of the information matrix
(3.3) 1(0) = E,[f(X,0)(X,0)/f*(X,0)],

where f(x, 0) denotes the g-dimensional column vector of first partial derivatives
with respect to 0. The continuous differentiability of f(x, ) is equivalent to the
existence and continuity of f(x, 8) (cf. [8] page 146). For use in the following
lemmas, let

(34 w(x,0) = 2[f(x,0)]%,
S(x,0) = f(x,0)[ f(x,0)] .
In these terms, '
3.5 1(0) = [=, W(x, O)w(x,0)’ dx
= E,[S(X,0)S(X, 0)'].
LemMA 3.1. If f(x, 0) satisfies condition A, then
(3.6) 1im, g (-0 [ 2 o0 Wi(%, )W (x, 0) dx = 1,/(0), ji=12,,q.
Proor. The Cauchy-Schwarz inequality and part (ii) of condition A imply that
3.7 lim Sup) gy (-0 JZo [W;(x, O)W,(x,0)| dx < I,/(0).
On the other hand, part (i) of condition A gives
3.9 1im, 910 W;(x, OW(x, 0) = W,;*(x,0),
for almost all x. The result follows by Theorem I1.4.2 of [5].
LemMA 3.2. If f(x, 0) satisfies condition A and if ‘
(3.9) max, << |6:]] = 0,
then, for arbitrary ¢ > 0,
(3.10) max, <;<y P(|f(X;,0)/ f(X:,0)~ 1] > &) -0
under H,.
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'PROOF. Let e; = 0,/||0,||. Then, under H,,
E|f(X,0)/f(X;,0)— 1| = =, |jio e/f(x, te,) dt| dx
(3.11) < JUom = |, te)|| dx dt
< (Yol Ttrace I(te) ] dt,

the last step using the Cauchy—-Schwarz inequality. Because of (3.9) and condition
A, the right-hand side of (3.11) tends to 0.

LemMA 3.3. If f(x, 0) satisfies condition A, then

(3.12) |20 f(x,0)dx = 0.
Proor. It is equivalent to show that for an arbitrary unit vector ee RY,
(3.13) {2 ef(x,0)dx = 0.

Now, for any 7 > 0 and any such e,
(3.14) |§2 o e'f(x,0)dx| = |2, [t~ '(f(x. 1) —f (x, 0)) — e'f(x, 0)] dx|
S 5 125 |[fCx, te) —f(x, 0)] | dx dt.
Furthermore, by the Minkowski and Cauchy-Schwarz inequalities,
2w [|iCx, &) —f(x, 0)|| dx
f(x,te) f(x,0)

B L LN
= J‘—ao f*(x, te) fi‘(x’ 0)' f (x, te) dx
o] f ’0 .
(3.]5) +f_°° 'fgf(xx’ ()))H |fi‘(x’ te) "‘f *(x’ O)I dx

S [J25 ||W(x, te)—w(x, 0)]|* dx]*
+27 Y[trace I0)}[ |2, |w(x, te) —w(x, 0)| dx]?.
Considering separately each term on the right-hand side of (3.15), we find
(3.16) [, ||W(x, &) —W(x,0)||* dx
= trace I(te) + trace 1(0) — 2 trace [ |, W(x, te)w(x, 0)’ dx] — 0
as ¢ — 0 because of Lemma 3.1 and condition A. By analogous argument,
3.17) 20 |W(x, te) —w(x, 0)]> dx = 8—2 = w(x, te)w(x,0) dx — 0

as t — 0. Thus, the lemma is established by letting t — 0 in (3.14) and noting (3.15),
(3.16) and (3.17).
The next two lemmas relate the asymptotic behavior of the statistics

(3.18) Wo =230 {[f(X:,0)/f(X,, 0] -1}
and
(3.19) Ty =YL, 60/S(X,,0),
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thereby leading up to the application of LeCam’s results on contiguity. Their
proofs are based upon (3.16) and are similar to the arguments for Lemma VI.2.1a
and Lemma VI.2.1b in [5].

LeMMA 3.4. If f(x, 0) satisfies condition A and

(3.20) max, <;<y||6]| =0,  YX,||6:]]* £ d* < o0,
then, under H,,
3.21) Var(W,—T,) - 0.
LemMa 3.5. If f(x, 0) satisfies condition A, (3.20) is satisfied, and
(3.22) YN 160/1(0)0; - b* < 0,
then, under H,,
(3.23) EW, - —}b2.
Define the likelihood ratio
(3.24) Lo = q,/p, = [[{2 1 f(X:, 0)/T T 1 (X, 0).

The following theorem establishes general conditions under which the densities
{q,} are contiguous to the densities {p,} (cf. Theorem VI.2.1 of [5]).

THEOREM 3.1. If f(x, 0) satisfies condition A, (3.20) and (3.22) are satisfied, then,
under H,,

(3.25) log Ly— T+ b?/2 - ,0.

Moreover, log L, is asymptotically normal (—b*|2, b*) and the densities {q,} are
contiguous to the densities {p,}.

ProoF. Lemma 3.3, Lemma 3.4 and Lemma 3.5 show that under H,,
(3.26) E(Wy— Ty+b?/4)? = Var (W — Ty) + (EW,— ET,+ b*/4)? - 0.
Consequently
3.27) Wo—Ty+b%/4 - 0.

Since ET, =0, VarT,- b?, it may be concluded from Theorem 2.1 that the
statistics 7, are asymptotically normal (0, 5%). Then, in view of (3.27), the statistics
W, are asymptotically normal (—b42%/4, b?) under H,. This fact, Lemma 3.2, and
LeCam’s second lemma (Lemma VI.1.3 of [5], extended to the degenerate case as
on page 219) imply the contiguity of the densities ¢, to the densities p, and also
(3.25).

The next theorem, the main result of the section and an analogue of Theorem
VI.2.4 in [5], proves the asymptotic normality of the statistics S, under alternatives
K, contiguous to the null hypotheses H,. For use in the proof, we introduce the
uniform scores

(3.28) o(u,f) = S(F~(u), 0).
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where F is the distribution function with density f(x,0). If U, = F(X,), then
U,, U,, - - - are independent, uniformly distributed on (0, 1) under H,. The statistics
Ty, defined in (3.19), may be rewritten as

(3:29) Ty = 30510/ 9(Upf).

Let the scores ay(i) be associated with a square integrable function ¢(u),
0 <u <1 as in (2.16). Define the p x p matrix D as in Theorem 2.2, and let the

p % qmatrix B = § o(u)e(u, ) du.
THEOREM 3.2. If f(x, 0) satisfies condition A, if
(3.30) lnaxléiéN”ci—E” —’O, €v=1”ci_6||2 é d2 < 00,

(3.31) max; ¢;<y||6:| 0, 1 ]|6])? < € < oo,

and if (2.16) holds, then, under K,, the statistics S, = Zf-‘;l(c,—?:)’aN(Rm) are
asymptotically normal (i, 6,%) with

(3.32) Heo = Yo (¢,—CVBO;, 02 =), (c;—€)D(c;—F).
Proor. It is sufficient to prove the theorem under the additional assumptions
(3.33) Yy (e;—C)D(c;—€) > by® < o0,
3.39) N 10/1(0)0, - b,? < 0,
(3.35) Y (c;—T)BO,— by, < .

Indeed, were the theorem false, there would exist sequences {(c,,, -, ¢,y,)} and
{(8,5, -+, 0,5,)} with the property that for all subsequences of these sequences,
(3.30) and (3.31) would hold but the conclusion of the theorem would not. There-
fore, the theorem would fail for those particular subsequences also satisfying (3.33),
(3.34) and (3.35); the existence of these latter subsequences follows from the
Bolzano-Weierstrass theorem.

The proofs for Theorem 2.2 and Theorem 2.3 demonstrate that under H,,
S.—T,—,0, where

(3.36) T, = Ziv= 1(€i—C)o(U)).

Theorem 3.1 shows that logL,—T,+b,%/2—0 under H, Thus, under H,,
(S., log Ly) has the same joint asymptotic distribution as (7, T,—b,2/2).
From Lemma 3.3 and (3.33), (3.34), (3.35),

(3.37) ET,=ET,=0
VarT,- b2, VarT,-b,%, Cov(L,T,) - b,,.

An arbitrary linear combination o, T,+«, T, may be expressed in the form

(3.38) T+, Ty = Y0l d/y(U),
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where

_ ((ei—0) _[ oW
(3.39) di—( 2,0, ), 'Il(u)—((p(u,f)>'

It is immediate from assumptions (3.30) and (3.31) that max, ;< ||d;|| - 0 and
™ 1 ||4i|]* £ ¢® < 0. From this, Theorem 2.1, and the previous paragraph, we
find that under H,, (S., log L,) is asymptotically normal (u, X), with

. = , = .
(3.40) " (—b;’/z) (bn by?

By continguity, established in Theorem 3.1, and LeCam’s third lemma (Lemma
VI.1.4 of [5]), we conclude that S, is asymptotically normal (b,,, ;%) under X,.
The theorem is proved.

For the asymptotic distribution of statistics {S.;} under alternatives {K,*},
there is an analogue of Theorem 3.2. Under K,*, the joint density of (X, - -, Xy,)
is of the form (3.2); however f(x, 0,) is assumed to be symmetric about the origin.
For convenience 6, is again taken to be the null vector 0.

Let

(3.41) ¢ (u.f) = oG +4u.f),

where @(u, f) is defined by (3.28). Define the p x p matrix D* as in Theorem 2.4
and let the p x g matrix B* = [§ o(u)o™ (u, f)' du.

THEOREM 3.3. If f(x, 0) is symmetric about the origin, if f(x, 0) satisfies condition
A, if

(3.42) max, ;<y||ci|| = 0, alled|? £ d* < o,
(3.43) max; <;<y||0:]| - 0, L ]6]? < €% < oo,

and if (2.16) holds, then, under K,*, the statistics S,* are asymptotically normal
(Vco, YCZ) With

(3.44) Veo = Yi=1¢/B0,, ve: = Yie1¢/ D

4. Applications. One application of the foregoing results is to the two parameter
regression problem considered by Adichie [1]. It is readily seen that Theorem 3.1,
Theorem 4.1 and Theorem 4.2 of [1] follow (with a small modification) from
Theorem 2.4 and Theorem 3.3 of this paper. The modification consists in replacing
condition A by the conditions on f used in [1], a possibility due to the particular
form of the regression alternatives.

Another application is to the asymptotic distribution theory under alternatives
of the generalized Kolmogorov-Smirnov, Cramér-von Mises, and Rényi statistics
analyzed in [5] (cf. Section V.3.6). These statistics are continuous functionals in
CO0, 1] of the stochastic process

1) T() = [Xi-1 (=T Ll 1 (= Dan(Rs, ).
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The scores ay(i, t) are given‘ by

4.2) =i—IN IN<i<IN+1
=1 IN+1 <.

Define ¢(u, t) by
(4.3) o(u,t)=0 if 0Sugt=1
=1 if 0Z5t<ugl.

Clearly

4.9 limy.,,, [ [ay(1+[uN], £)—o(u, )]> du = 0, 0<t=1.
Let F denote the distribution function of the density f(x, 0) and define ¥(¢) through
4.5) V(1) = [ f(x, 0) dx.

Theorem 3.1 and Theorem 3.2 imply the following generalization of Theorem
VI.3.2 of [5]. The proof is similar.

THEOREM 4.1. If f(x, 0) satisfies condition A, if

(4.6) maxlgigNlci“El -0, Z?:l(ci—é)zé d* < oo,
(4.7) maxléiéN”oi”—*O, ?’:1 ”01”2 é ez < 00,
and if

(4.8) Hep() = [Z?L 1(¢i— 5)2] _*[Z?L 1(ci— E)oilll’(t)]’

then, under K,, the process Tt)— u.t) converges in distribution in C[0, 1] to the
Brownian bridge Z (t).

With the aid of this result, the asymptotic power of a test based upon a con-
tinuous functional of 7T,(¢) may be reduced to the probability of an event involving
Z(t). However, numerical evaluation of these latter probabilities is awkward (cf.
AndZl [2]).
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